LE THE UNKNOWN NUMBER BE x WHEN I SOLVE
[tex] \frac{0.2}{100} \times x = 8 \\ \frac{0.2x}{100} = 8 \\ [/tex]
I WILL USE CROSS MULTIPLICATION
[tex]0.2x = 8(100) \\ 0.2x = 800 \\ \frac{0.2x}{0.2} = \frac{800}{0.2} \\ x = 4000[/tex]
OF ( 4000) IS 0.2% OF 8.
HOPE THIS HELPS.
Christina made 4 three-point shots and 5 two-point shots in her basketball game. How many points (p) did she score?
The total points Christina made is as follows:
[tex]T=4\cdot3+5\cdot2=12+10=22[/tex]Then, Christina scored 22 points.
A table is on sale for 38% off. The sale price is $527.00.What is the regular price?
Given:
A table is on sale for 38% off, The sale price of table is $527.00.
To find:
The regular price of the table.
Step by step solution:
To solve this problem, we need to use the basic formula of sales price and discount:
Sale price = $527.00
Discount percentage= 38%
[tex]\begin{gathered} \text{sale price = cost price - discount }\times\text{ \lparen cost price \rparen} \\ \\ 527=cp-\frac{38}{100}(cp) \\ \\ 527=\frac{62}{100}(cp) \\ \\ cp=\frac{52,700}{62} \\ \\ cp=850 \end{gathered}[/tex]From here we can say that the Cost-price / Regular price of the table is equal to $850.
√54²-43.8² +2(7)
What is the height of the space Lilly needs? Round to the nearest hundredth.
18.52
24.20
45.58
235.06
√54²-43.8² +2(7)
54-1918.44+14
-1850.44
Consider the numbers below. Use two of the numbers to make the greatest sum, greatest difference, greatest product, and greatest quotient.-5 1/23.75-20.8-411.25
Given data,
[tex]-5\frac{1}{2},\text{ 3.75,-20.8,-4,11.25}[/tex]For the greatest sum,
We need to add the two large number.
Thus,
[tex]11.25+3.75=15[/tex]For the greatest difference, we need to substract the largest number from the smallest,
Thus,
[tex]11.25-(-20.8)=32.05[/tex]To find the greatest product,
we should multiply the two great numbers.
[tex]11.25\times3.75=42.1875[/tex]To find the greatest quotient,
we need to divide the largerst number by the smallest
[tex]\frac{11.25}{3.75}=3[/tex]A package of 3 pairs of insulated socks costs $15.87. What is the unit price of the pairs of socks?
The unit price is $
per pair of socks.
A package of 3 pairs of insulated socks costs $15.87, thus the unit price of the pair of socks can be calculated as $5.29 via the unitary method.
What is Unit Price?A unit price is the cost of a single object or unit of measurement, such as a pound, a kilogram, or a pint, and it is used to compare the prices of similar products offered in various weights and quantities.
Selling more than one unit of the same product at a discount from its unit price is known as multiple pricing.
What does "unit pricing" mean?A price stated in terms of a certain amount per predetermined or standard unit of good or service agreed to purchase the gravel for 50 cents per yard.
Frequently a price that is quoted that includes both the base unit of the good or service and any additional costs (such as shipment or installation).
To know more about Unit price, visit:
https://brainly.com/question/12611440
#SPJ9
3,000 is 1/10 of?-30030,000300,000
Let X be the number, then we know that
[tex]\frac{X}{10}=3,000[/tex]If we isolate X by moving 10 to the right hand side, we obtain
[tex]\begin{gathered} X=10\cdot3,000 \\ X=30,000 \end{gathered}[/tex]that is, the answer is 30,000
When a number is divided by $5,$ the result is $50$ less than if the number had been divided by $6$. What is the number?
Answer:
1500$
Step-by-step explanation:
Answer: -1500
Step-by-step explanation: yes it is
how to solve the problem “Compute 3'7 mod 7”
Given
[tex]3^7mod\text{ }7[/tex]Find
Compute the value of mod
Explanation
We have given
[tex]3^7mod\text{ }7[/tex]as we can rewrite it
[tex]\begin{gathered} 3^7mod\text{ 7} \\ 2187mod7 \\ \end{gathered}[/tex]here , we see dividend , a = 2187 and divisor , b = 7
we know ,
[tex]a\text{ mod b = a- \lparen int \lparen a/b\rparen}\times b\text{\rparen}[/tex]where int is a integer part of the value .
so ,
2187 mod 7 = 2187 -(Int (2187/7)*7)
2187 mod 7 = 2187 - 312 *7
2187 mod 7 = 2187 - 2184
2187 mod 7 = 3
Final Answer
Therefore , the value of 3^7 mod 7 = 3
An oil slick is expanding as a circle. The radius of the circle is currently 2 inches and is increasing at a rate of 5 inches per hour. Express the area of the circle, as a function of ℎ, the number of hours elapsed. ( Answer should be (ℎ)= some function of ℎ, enter as pi )
Answer: f(h) = (2 pi (5x + 2)^2)
Step-by-step explanation:
1) Set the area of the circle in an equation
f(h) = pi r ^2
2) Set r to the rate that the circle is growing
The rate is 5x +2 because its starting value is two, and the 5x because it is growing 5 inches per hour.
f(h) = (2 pi (5x + 2)^2)
Sam graduation picnic cost $13 for decoration plus an additional $5 for each attendee.at most how many attendees can there be if sam budgets a total of $33 for his graduation picnic?
Given:
The cost of graduation picnic = $13 for decoration plus an additional $5 for each attendee
Let the number of attendance = x
we need to find x when sam budgets a total of $33 for his graduation picnic
So,
[tex]13+5x=33[/tex]solve for x, subtract 13 from both sides:
[tex]\begin{gathered} 13+5x-13=33-13 \\ 5x=20 \end{gathered}[/tex]divide both sides by 5
[tex]\begin{gathered} \frac{5x}{5}=\frac{20}{5} \\ \\ x=4 \end{gathered}[/tex]So, the answer is:
The number of attendees = 4
A wind-up toy car can travel 5 yards in about 3 minutes. If the car travels at a constant speed, then how many minutes will it takes to travel 40 meters? State your answer to the nearest minute.( 1 yard = 0.92 meters)
A) 20
B) 22
C) 24
D) 26
Answer: D
Step-by-step explanation:
0.92 metres = 1 yard
40 metres = 43.5 yard [tex](\frac{40 * 1}{0.92})[/tex]
5 yards : 3 minutes
43.5 yards : 26.1 minutes [tex](\frac{43.5*3}{5})[/tex]
26.1 mins ≈ 26 mins
P(6, -3); y = x + 2
Write an equation for the line in point-slope form.
The equation of the line by using slope value is: y = x -9
What is slope of a line?
The slope of a line explain the steepness of the line segment. It is ration of the coordinates of the y-axis and the vertical coordinates of the x-axis. Depending upon the slope value, it is classified as whether lines are parallel or perpendicular.
According to the question, the given parameters for the line segment is as written below:
Equation of a line = x + 2 and the coordinate points = (6, -3): (x = 6; y = -3)
Now, by using standard equation for the line segment: y = mx + c
where, 'm' is the slope; c is the y-intercept; (x, y) are coordinates
Substituting given values that is slope and y-intercept in the standard equation, we get:
y = mx + c
⇒ -3 = (1)(6) + c
⇒ c = -3 - 6 = -9
Therefore, the value of the y-intercept is: c = (-9)
equation of the line by substituting the value of the y-intercept as well as slope value:
y = (1)x + (-9) = y = x -9
Hence, the equation of the line by using slope value is: y = x -9
To learn more about the slope of a line from the given link:
brainly.com/question/16949303
#SPJ9
Abner and Xavier can make a loaf of bread from scratch in 3 hours. This includes
preparation and baking time. Prep time is 135 minutes. For how long does the bread
bake?
Check Your Understanding- Question 1 of 2
Fill in the blanks to identify the steps needed to solve the problem.
Start by converting the total time to minutes. The conversion factor from hours to
60 minutes
minutes is
1 hour
It takes
Attempt 2 of 2
810 minutes in total to make the bread.
Answer:
the bread bakes for 45 minutes (yum)
The table graph shows the population of Oregon Mule Deer between 1980 and 2018,
84 - 250
94 - 237.50
04 - 245
14 - 230.50
18 - 173.50
What was the average population decline between 1984 and 2018?
B. The average rate of population decline between 2004 and 2014 is 1.45 thousand deer per year. If the population continued to decline at this rate, between which 2 year period would the population have reached 225 thousand deer? Explain reasoning.
C. Calculate and compare the average rate of change of the population from 1994 to 2004 to that from 2004 to 2014. Explain what this means in terms of the population of deer.
Using the average rate of change, it is found that:
A. The average population decline between 1984 and 2018 was of 2.25 thousand deer a year.
B. The population would have reached 225 thousand deer between 2017 and 2018.
C.
The rates are as follows:
1994 to 2004: 0.75 thousand deer a year.2004 to 2014: -1.45 thousand deer a year.Meaning that between 1994 and 2004 there was a increase in the population of deer, and from 2004 to 2014 there was a decrease.
What is the average rate of change of a function?The average rate of change of a function is given by the change in the output divided by the change in the input. Hence, over an interval [a,b], the rate is given as follows:
[tex]r = \frac{f(b) - f(a)}{b - a}[/tex]
For 1984 and 2018, we have that:
f(1984) = 250.f(2018) = 173.50.Hence the rate is:
r = (173.50 - 250)/(2018 - 1984) = -2.25 thousand deer a year.
For item b, the situation is modeled by a linear function, as follows:
D(t) = 230.50 - 1.45t.
The population would be of 225 thousand deer when D(t) = 225, hence:
230.50 - 1.45t = 225
1.45t = 5.5
t = 5.5/1.45
t = 3.79.
Hence between the years of 2017 and 2018.
For item c, the rates are as follows:
1994 to 2004: (245 - 237.50)/10 = 0.75 thousand deer a year -> increase.2004 to 2014: (230.50 - 245)/10 = -1.45 thousand deer a year -> decrease.More can be learned about the average rate of change at https://brainly.com/question/11627203
#SPJ1
The sum is the measure of three angles of a triangle is 180 degrees. In a triangle, the measures of an angle are x,x+12 and x-48. What is the measure of each angle?
Answer:
24° , 72° , 84°
Step-by-step explanation:
sum the 3 angles and equate to 180 , that is
x + x + 12 + x - 48 = 180
3x - 36 = 180 ( add 36 to both sides )
3x = 216 ( divide both sides by 3 )
x = 72
Then the measure of the 3 angles are
x = 72°
x + 12 = 72 + 12 = 84°
x - 48 = 72 - 48 = 24°
Which fraction is the smallest?8/9, 9/10, 11/12, 12/13
Given:
[tex]\frac{8}{9},\frac{9}{10},\frac{11}{12},\frac{12}{13}[/tex][tex]\frac{8}{9}=0.8889[/tex][tex]\frac{9}{10}=0.9[/tex][tex]\frac{11}{12}=0.9167[/tex][tex]\frac{12}{13}=0.9231[/tex][tex]\frac{8}{9}\text{ is the smallest fraction.}[/tex]Describe using words in a sentence the transformations that must be applied to the graph of f to obtain thegraph of g(x) = -2 f(x) + 5.
we have
f(x)
and
g(x)=-2f(x)+5
so
step 1
First transformation
Reflection about the x-axis
so
f(x) -----> -f(x)
step 2
Second transformation
A vertical dilation with a scale factor of 2
so
-f(x) ------> -2f(x)
step 3
Third transformation
A translation of 5 units up
so
-2f(x) -------> -2f(x)+5
Show all work to identify the asymptotes and state the end behavior of the function f(x) = 6x/ x - 36
Vertical asymptotes are when the denominator is 0 but the numerator isn't 0.
[tex]x-36=0 \implies x=36[/tex]
Since this value of x does not make the numerator equal to 0, the vertical asymptote is [tex]x=36[/tex].
Horizontal asymptotes are the limits as [tex]x \to \pm \infty[/tex].
[tex]\lim_{x \to \infty} \frac{6x}{x-36}=\lim_{x \to \infty}=\frac{6}{1-\frac{36}{x}}=6\\\\\lim_{x \to -\infty} \frac{6x}{x-36}=\lim_{x \to -\infty}=\frac{6}{1-\frac{36}{x}}=6\\\\[/tex]
So, the horizontal asymptote is [tex]y=6[/tex].
End behavior:
As [tex]x \to \infty, f(x) \to -\infty[/tex]As [tex]x \to -\infty, f(x) \to \infty[/tex].Lukalu is rappelling off a cliff. The parametric equations that describe her horizontal and vertical position as a function of time are x ( t ) = 8 t and y ( t ) = − 16 t 2 + 100 and . How long does it take her to reach the ground? How far away from the cliff is she when she lands? Remember to show all of the steps that you use to solve the problem.
SOLUTION
Now the ground is assumed to be 0, so we have that
[tex]y(t)=0[/tex]So, that means we have
[tex]\begin{gathered} y(t)=-16t^2+100 \\ 0=-16t^2+100 \\ 16t^2=100 \\ t^2=\frac{100}{16} \\ t=\sqrt{\frac{100}{16}} \\ t=\frac{10}{4} \\ t=2.5\text{ seconds } \end{gathered}[/tex]Now, we have found t, which is how long it takes to get to the ground, you can plug it into x(t) to find the horizontal distance travelled, we have
[tex]\begin{gathered} x(t)=8t \\ x(2.5)=8\times2.5 \\ =20\text{ feet } \end{gathered}[/tex]Hence it takes her 2.5 seconds to reach the ground
And she is 20 feet away from the cliff
"demonstrate that the functions are cumulative or not cumulative show all work"f(x)=1/4x+5 g(x)=4x-20
Given the functions:
f(x)=1/4x+5
g(x)=4x-20
The functions g and f are said to commute with each other if g ∘ f = f ∘ g.
Let's check the functions if they are commutative.
a.) f ∘ g = f(g(x))
[tex]f\mleft(x\mright)=\frac{1}{4}x+5[/tex][tex]f(g(x))=\frac{1}{4}(4x-20)+5[/tex][tex]=\frac{4x}{4}-\frac{20}{4}+5[/tex][tex]=x-5+5[/tex][tex]f\circ g\text{ = x}[/tex]b.) g ∘ f = g(f(x))
[tex]g\mleft(x\mright)=4x-20[/tex][tex]g\mleft(f(x)\mright)=4(\frac{1}{4}x+5)-20[/tex][tex]=\frac{4}{4}x+5(4)-20[/tex][tex]=x+20-20[/tex][tex]g\circ f\text{ = x}[/tex]Conclusion:
g ∘ f = f ∘ g
Therefore, the functions are commutative.
I need help with this practice problem I’m having trouble
Part N 1
[tex]2^{(6\log _22)}=12[/tex]Apply property of log
[tex]\log _22=1[/tex]so
[tex]\begin{gathered} 2^{(6\cdot1)}=12 \\ 2^6=12\text{ -}\longrightarrow\text{ is not true} \end{gathered}[/tex]the answer is false
Part N 2
we have
[tex]\frac{1}{4}\ln e^8=\sqrt[4]{8}[/tex]applying property of log
[tex]\frac{1}{4}\ln e^8=\frac{8}{4}\ln e=2\ln e=2[/tex]so
[tex]2=\sqrt[4]{8}\text{ ---}\longrightarrow\text{ is not true}[/tex]the answer is false
Part N 3
we have
[tex]10^{(\log 1000-2)}=10[/tex]log1000=3
so
log1000-2=3-2=1
10^1=10 -----> is true
the answer is trueLet p: The shape is a rhombus.
Let q: The diagonals are perpendicular.
Let r: The sides are congruent.
Which represents "The shape is a rhombus if and only if the diagonals are perpendicular and the sides are congruent”?
p ∧ (q ∧ r)
(p ∨ q) ∨ r
p ↔ (q ∧ r)
(p ∨ q) ↔ r
The correct representation of statement ''The shape is a rhombus if and only if the diagonals are perpendicular and the sides are congruent'' will be;
⇒ p ↔ (q ∧ r).
What is Logic operators?
A symbol or words to use to connect two or more expressions are called Logic operators.
Given that;
The statement is,
''The shape is a rhombus if and only if the diagonals are perpendicular and the sides are congruent''
Now,
Since, The word ''if and only if'' is represent by using the biconditional logic operator (↔) and the word ''and'' is represented by using the logical conjunction operator (∧).
So, The logic representation of the statement;
"The shape is a rhombus if and only if the diagonals are perpendicular and the sides are congruent” will be;
⇒ p ↔ (q ∧ r).
Thus, The correct representation of statement ''The shape is a rhombus if and only if the diagonals are perpendicular and the sides are congruent'' will be;
⇒ p ↔ (q ∧ r).
Learn more about the logical operator visit:
https://brainly.com/question/22571937
#SPJ1
(37) + (-2) + (-65) + (-8)
You have the following expression:
(37) + (-2) + (-65) + (-8)
eliminate parenthesis with the required change of signs:
37 - 2 - 65 - 8
sum negative numbers
37 - 75
simplify: rest the numbers and put the sign of the higher number:
-38
Then, you have:
(37) + (-2) + (-65) + (-8) = -38
Ratios equivalent to 13:14
Equivalent fractions are those that, despite their visual differences, reflect the same value. For instance, if you take a cake and cut it into two equal pieces, you will have consumed half of the cake.
How can one determine equivalent fractions?When two fractions are expressed in their simplest form, they are said to be equivalent. When broken down into its simplest components, the fraction 26/28 equals 13/14. You only need to multiply the numerator and denominator of the reduced fraction (13/14) by the same natural number, i.e., multiply by 2, 3, 4, 5, 6 to get analogous fractions.
13 and 14 in decimal form.In decimal form, 13/14 is 0.92857142857143.
To Learn more About Equivalent fractions, Refer;
https://brainly.com/question/683310
#SPJ13
After how many months of saving do Sam and Frank have thesame amount in their accounts? How much do they have in theiraccounts at this time? Use the graph to explain your answer.
Answer:
To find: After how many months of saving do Sam and Frank have the same amount in their accounts and how much do they have in their accounts at this time
From the graph,
x axis represents number of months,
axis represents Amount saved.
The red graph represents the amount saved by Sam over the number of months
The blue graph represents the amount saved by Frank over the number of months
To find the intersection point of the two graphs.
The intersection point is (4,80)
After 4 months Sam and Frank saved $80.
Hence we get that,
After 4 months, Sam and Frank have the same amount in their accounts. They have $80 in their accounts.
Answer is: After 4 months, Sam and Frank have the same amount in their accounts. They have $80 in their accounts.
PLEASE HELP ME PLEASE I WILL GET A 0 ON THIS PLEASE HELP PLEASE
Answer:
[tex]58.29[/tex] cm
Step-by-step explanation:
So the area of a trapezium follows this equation/formula: [tex]\frac{a+b}{2} h[/tex]
So we pretty much just substitute the numbers given into this equation
[tex]\frac{a+b}{2} h[/tex]
[tex](\frac{7+10.4}{2} )6.7[/tex]
[tex](\frac{17.4}{2} )6.7[/tex]
[tex](8.7) 6.7[/tex]
[tex]58.29[/tex] cm
Ariel makes $35 a day. How much can she get for 1/7 of a day? Ariel will earn ____ for 1/7 of the day.
We can calculate how much she get for 1/7 of a day by multiplying the daily pay rate by 1/7:
[tex]E=\frac{1}{7}\cdot35=\frac{35}{7}=5[/tex]Answer: Ariel will earn $5 for 1/7 of the day.
Given P = $8945, t= 5 yearsand r= 9% compounded monthly. Is the correct compound interest formula to calculate to the nearest cent to the value of a
For this question, we use the following formula for compounded interest:
[tex]P=a(1+0.09)^{5\cdot12}[/tex]Solving for a we get:
[tex]\begin{gathered} a=\frac{8945}{(1+0.09)^{60}} \\ a=\frac{8945}{(1.09)^{60}} \\ a=50.81 \end{gathered}[/tex]The graph shows the distance, y, that a car traveled in x hours:A graph is shown with the x-axis title as Time in hours. The title on the y-axis is Distance Traveled in miles. The values on the x-axis are from 0 to 5 in increments of 1 for each grid line. The values on the y-axis are from 0 to 325 in increments of 65 for each grid line. A line is shown connecting ordered pairs 1, 65 and 2, 130 and 3, 195 and 4, 260. The title of the graph is Rate of Travel.What is the rate of change for the relationship represented in the graph? (1 point)
The rate of change is 65 miles per hour
Explanation:Given the ordered pairs (1, 65) and (2, 130)
The rate of change is given as:
[tex]\frac{y_2-y_1}{x_2-x_1}=\frac{130-65}{2-1}=\frac{65}{1}[/tex]The rate of change is 65 miles per hour
help meeeeeee pleaseee !!!!
The linear function that passes through the two points (-6, -2) and (-9, -1) is defined by the rule:
y = -(1/3)*x - 4
How to find the linear function with the given points?The general linear function in the slope-intercept form:
y = m*x + k
Where m is the slope (also called rate of change) and k is the intercept of the y-axis.
If we know that the line passes through two points (a, b) and (c, d) then the slope of the function is:
m = (d - b)/(c - a)
So with only two points, we can find the slope.
In this case, the line passes through the points (-6, -2) and (-9, -1) , then the slope is:
m = (-1 +2)/(-9 + 6) = 1/-3 = -1/3
Then the slope is m = -1/3
So the linear function is something like:
y = (-1/3)*x + k
To find the value of k i will use the pint (-9, -1), replacing these values we get:
-1 = -(1/3)*-9 + k
-1 = 3 + k
-1 - 3 = k
-4 = k
So the linear function that passes through these points is:
y = -(1/3)*x - 4
If you want to earn more about linear equations:
https://brainly.com/question/4074386
#SPJ1