PLZ HELP A person hired by a pharmaceutical company to streamline the company’s drug production process would most likely be an electrical engineer? True or False
Answer:
False
Explanation:
False, though they could do it.
It's most likely and Industrial Engineer, it could also be a Chemical Engineer.
hi guys can u help me?
Answer:
3. have known
4. wrote
5. not sure
6.have changed, has only
7. answered
8. have missed
9.has never seen
10.never saw
11.became,have changed
12. have changed, have grown
13.was,found
14. was never
am not sure but hope it helps
Design a U-tube manometer that can measure gage pressures up to 69 kPa of air. You will want to choose a manometer fluid with good static sensitivity but will not result in an unreasonably tall manometer. Further, the manometer fluid should be mostly immiscible with the air. The two design parameters you should consider are manometer fluid (impacts manometer fluid density) as well as the manometer height.
Required:
Compute the static sensitivity, K, in mmHg/Pa
Answer:
The answer "K = 0.0075"
Explanation:
If we try to measure up to 69 kPa of air, find mercury or fluid for gauge.
While mercury was its largest liquid with a density of 13600 kg / m3 at normal room temperature.
Let's all measure for 69 kPa that height of the mercury liquid column.
[tex]\to P = 69 \ kPa[/tex]
[tex]= 69000 Pa \\\\[/tex]
[tex]\to \rho = 13600 \ \ \frac{kg}{m^3} \\\\\\to g = 9.81 \ \ \frac{m}{s^2} \\\\[/tex]
Formula:
[tex]\to P=\rho \ gh[/tex]
[tex]\to 69000 = 13600\times9.81 \times h\\\\\to h= \frac{69000}{13600\times9.81} \\\\\to h= \frac{69000}{133416} \\\\\to h= 0.517179349 \\\\ \to h= 517 \ mm \\\\[/tex]
The right choice for pressure measurements up to 69 kPa is mercury.
Atmospheric Mercury up to 69 kPa Air 517 mm
The relationship of Hg to Pa is = 134.22 Pa 1 mm Hg
Static sensitivity to Pa of mm hg = change of mercury height to Pa:
[tex]= \frac{\Delta Hg }{ \Delta P }\\\\= \frac{1 }{ 133.3 }\\\\= 0.0075[/tex]
The structure consists of a very large steel plate they will be used to transfer an in plane tensile stress. You have information from the company that performed a non-destructive testing technique if there are any flaws inside the plate. This non-destructive testing technique is based on ultrasonic wave transmission and will only detect a crack if it is bigger than 2.5 mm. No flaws were detected in the plate. You decided to pull some samples from a similar plate and you determined that the KIC value of these plates are 40 MPa*m0.5.
Required:
Estimate the maximum in plane tensile stress that you would suggest that this plate should carry.
Answer:
[tex]\mathbf{\sigma_{max} =638.308 \ MPa}[/tex]
Explanation:
For any large steel plate with an infinite length and width and a center through the crack under tension, the stress intensity factor can be expressed as:
[tex]K_I = \sigma \sqrt{\pi a}[/tex]
where;
a = 2.5 mm/2
a = 1.25 mm
a = 1.25 × 10⁻³ m
Therefore; the maximum stress in tension capacity can be computed as;
[tex]\sigma_{max} = \dfrac{K_{I_C}}{\sqrt{\pi a_c}}[/tex]
[tex]\sigma_{max} = \dfrac{40}{\sqrt{\pi \times 1.25 \times 10^{-3}}}[/tex]
[tex]\mathbf{\sigma_{max} =638.308 \ MPa}[/tex]
A work cell is currently operated 2000 hr/yr by a human worker who is paid an hourly rate of $23.00, which includes applicable overhead costs. One work unit is produced in a cycle time of 4.8 min. Management would like to increase output to meet increasing demand and a robot cell is being considered as a replacement for the present manual cell. The cycle time of the proposed cell would be reduced to 4.0 min. The installed cost of the robot plus supporting equipment is $120,000. Power and other utilities to operate the robot will be $0.30/hr, and annual maintenance costs are $2500. Determine:
a. the number of parts produced annually by the manually operated cell.
b. cost per part produced.
c. how does the cost per part of the robot cell compare with your answer in part (b), given a 4-year service life, 10% rate of return, and no salvage value.
Answer:
a) 25000 pcs/yr
b) cost per part produced is $ 1.84 per pc
c) Cpc = $ 1.365 per pcs
Explanation:
a)
the relation to calculate the number of parts produced annually by manual process is;
Q = Hw / Tc
Hw is the hourly rate ( 2000hr/yr) and Tc is the cycle time ( 4.8 min)
so we substitute
Q = (2000 × 60) / 4.8
= 120000 / 4.8
= 25000 pcs/yr
b)
cost per part produced
the relation to calculate the cost per part produced is expressed as;
Cpc = $23(Hw) / Q
Cpc is the cost per part produced
so we substitute
Cpc = $23(2000) / 25000
= 46000 / 25000
= $ 1.8 per pc
therefore cost per part produced is $ 1.84 per pc
c)
for the robot cell, at a service life of 4 years and a 10% rate of return , the factor is expressed as;
f = [r(1 + r)^t] / [((1 + r)^t ) - 1 ]
our rate r = 10% = 0.1 and our t = 4
so we substitute
f = [0.1 (1 + 0.1)^4] / [((1 + 0.1)^4 ) - 1 ]
f = 0.14641 / 0.4641
f = 0.3155
now we find the total cost
TC = 120000(0.3155) + 2000(0.3) + 2500
TC = $ 40,960
next we find the parts produced annually
Q = (2000 × 60) / 4
Q = 120,000 / 4
Q = 30000 pcs/yr
finally we find the cost per part produced;
Cpc = TC / Q
we substitute
Cpc = 40,960 / 30000
Cpc = $ 1.365 per pcs
All of the following are common causes of low engine compression except for
A. too much oil
B. defective valves.
C. weak piston rings.
D. bent pushrods
Answer:
B
Explanation:
Over filling of oil on an engine will not cause loss of compression. The crankshaft splashes it inside the engine and will come out the dip stick tube and breather on valve cover and it may splash up to the bottom of the pistons and force oil to the top through the rings
Assignment 1: Structural Design of Rectangular Reinforced Concrete Beams for Bending
Perform structural design of a rectangular reinforced concrete beam for bending. The beam is simply supported and has a span L=20 feet. In addition to its own weight the beam should support a superimposed dead load of 0.50 k/ft and a live load of 0.65 k/ft. Use a beam width of 12 inches. The depth of the beam should satisfy the ACI stipulations for minimum depth and be proportioned for economy. Concrete compressive strength f’c = 4,000 psi and yield stress of reinforcing bars fy = 60,000 psi. Size of stirrups should be chosen based on the size of the reinforcing bars. The beam is neither exposed to weather nor in contact with the ground, meaning it is subjected to interior exposure.
• Use the reference on "Practical Considerations for Rectangular Reinforced Concrete Beams"
• Include references to ACI code – see slides from second class
• Include references to Tables from Appendix A
• Draw a sketch of the reinforced concrete beam showing all dimensions, number and size of rebars, including stirrups.
Answer:
Beam of 25" depth and 12" width is sufficient.
I've attached a detailed section of the beam.
Explanation:
We are given;
Beam Span; L = 20 ft
Dead load; DL = 0.50 k/ft
Live load; LL = 0.65 k/ft.
Beam width; b = 12 inches
From ACI code, ultimate load is given as;
W_u = 1.2DL + 1.6LL
Thus;
W_u = 1.2(0.5) + 1.6(0.65)
W_u = 1.64 k/ft
Now, ultimate moment is given by the formula;
M_u = (W_u × L²)/8
M_u = (1.64 × 20²)/8
M_u = 82 k-ft
Since span is 20 ft, it's a bit larger than the average span beams, thus, let's try a depth of d = 25 inches.
Effective depth of a beam is given by the formula;
d_eff = d - clear cover - stirrup diameter - ½Main bar diameter
Now, let's adopt the following;
Clear cover = 1.5"
Stirrup diameter = 0.5"
Main bar diameter = 1"
Thus;
d_eff = 25" - 1.5" - 0.5" - ½(1")
d_eff = 22.5"
Now, let's find steel ratio(ρ) ;
ρ = Total A_s/(b × d_eff)
Now, A_s = ½ × area of main diameter bar
Thus, A_s = ½ × π × 1² = 0.785 in²
Let's use Nominal number of 3 bars as our main diameter bars.
Thus, total A_s = 3 × 0.785
Total A_s = 2.355 in²
Hence;
ρ = 2.355/(22.5 × 12)
ρ = 0.008722
Design moment Capacity is given;
M_n = Φ * ρ * Fy * b * d²[1 – (0.59ρfy/fc’)]/12
Φ is 0.9
f’c = 4,000 psi = 4 kpsi
fy = 60,000 psi = 60 kpsi
M_n = 0.9 × 0.008722 × 60 × 12 × 22.5²[1 - (0.59 × 0.008722 × 60/4)]/12
M_n = 220.03 k-ft
Thus: M_n > M_u
Thus, the beam of 25" depth and 12" width is sufficient.
Will give correct answer brainliest!!
Fill in the blank.
_________ are engineers who help to develop products and projects by creating technical drawings
Answer:
Design engineer
Explanation:
Mechanic... Mechanical Engineer... What's the difference?
Instructions: Answer the question below with at least TWO complete sentences.
Answer:
Mechanic: a person who repairs and maintains machinery
Mechanical engineers: design power-producing machines
Explanation:
If a water heater operates at 20 amps on a 240 volt circuit, what is the wattage of the appliance?
Answer:
4800 watts
Explanation:
Power is the product of voltage and current:
P = VI = (240 V)(20 A) = 4800 W
The wattage is 4800 watts.
The weight of your car will aslo affect its
Answer:
speed and acceleration
Question #9
Multiple Choice
Which statement characterizes how the creation of LIMBS benefits developing countries?
O Using nanotechnology, a new material is created to benefit many other products
Using only natural materials, there is little chemical production, thus reducing the pollution in these countries
Using regional materials creates a sustainable program that breaks countries dependencies on other nations
Using fabricated materials, no natural resources are overfarmed, keeping the environment intact.
© 2014 Glynlyon, Inc.
Answer:
Using regional materials creates a sustainable program that breaks countries’ dependencies on other nations.
Explanation:
i did the assignment
Answer:
Using regional materials creates a sustainable program that breaks countries’ dependencies on other nations.
Explanation:
C
6. Question
Which statements are true about routers? Check all that apply.
A router can only send data to another computer that's on the same network.
A router is a set of components that makes up computer networking.
A router connects devices together and helps direct network traffic.
A router utilizes network protocols to help determine where to send data packets.
7.
Question
Answer:
Check the 2nd, 3rd and 4th statements.
Explanation:
The router provides two basic functions traffic management between these networks through the transmission of data packets to the designated IP address, and the use of the same Internet connection by many devices.
A networking device is a router that transmits data packets between computer nets. Traffic control functions are executed on the internet via routers. Data sent via the internet are in data packets, for example, a web page or email.A router is a device connecting two or more packets or subnetworks. It is used to sets the components from the networking of your computer.Therefore, the final answer is "the second choice".
Learn more:
brainly.com/question/2162586
Given int variables k and total that have already been declared, use a do...while loop to compute the sum of the squares of the first 50 counting numbers, and store this value in total. Thus your code should put 1*1 + 2*2 + 3*3 +... + 49*49 + 50*50 into total. Use no variables other than k and total.
Answer:
k-1000
Explanation:
Answer:
k = 1;
total = 0;
do {
total = total + (k*k);
k++;
} while (k <= 50);
Explanation:
answer using Java
La distancia que existe entre las bases de un campo de béisbol es de 28 m. Si la pelota se batea por la línea en dirección a la tercera base con una velocidad de 32 m/s. ¿Con qué rapidez cambia la distancia entre la pelota y la primera base cuando se encuentra a la mitad del camino hacia la tercera base?
Answer: Could you put this in english plz
Explanation:
Do you consider the letter of Andres Bonifacio an eyewitness account of a firsthand account of the Philippine Revolution?
Create an array of 10 size and assign 10 random numbers. Now find the sum of the array using for and while loop.
Answer:
10
Explanation:
The recommended time weighted average air concentration for occupational exposure to water soluble hexavalent chromium (Cr VI) is 0.05 mg · m−3. This concentration is based on an assumption that the individual is generally healthy and is exposed for 8 hours per day, 5 days per week, 50 weeks per year, over a working lifetime (that is from age 18 to 65 years). Assuming a body weight of 78 kg and inhalation rate of 15.2 m3 · d−1 over the working life of the individual, what is the lifetime (75 years) CDI?
Answer: the lifetime (75 years) CDI is 0.001393 mg/kg.day
Explanation:
Given that;
CA = Contaminant Concentration = 0.05 mg/m³
IR = Inhalation Rate = 15.2m³per day = 15.2 / 24 = 0.6333 m³/hr
ET = Exposure Time = 8 hour per day
ED = Exposure Duration = (65 - 18 years) = 47
EF = Exposure Frequency = 5 day/week * 50 week/ year = 250 days/year
BW = Body Weight = 78 Kg
AT = Averaging Time = 75 years = (75 * 365 days) = 27375 days
Now to find the CDI (Chronic Daily Intake)' we say;
CDI = (CA×IR×ET×EF×ED) / ( BW×AT)
so we substitute;
CDI = (0.05 × 0.6333 × 8 ×250 × 47) / (78 × 27375)
CDI = 2976.51 / 2135250
CDI = 0.001393 mg/kg.day
therefore the lifetime (75 years) CDI is 0.001393 mg/kg.day
What kind of job does mike have? Mike’s job is to study blueprints, evaluate product stability, and to examine the safety of products. Mike’s works as a/n blank engineer with a manufacturing company.
Answer: a drafting engineer
Explanation:
which is one of the most important steps to do before you go into an interview ?
Research the company
Tell your current boss
Buy a new dressy outfit
Finish school
Answer:
Research the company
Explanation:
It is a good idea to find out information about the company you are interviewing. Among other things, this will help you decide if you actually want to work for that company.
Telling your current boss can be risky to your job. A new outfit may be helpful for certain positions--especially those where manner of dress is important. Finishing school may or may not be an important requirement for the position you're seeking. Your company research will tell you.
Researching the company is one of the most important steps to take.
What are the 3 common ladder materials?
Answer:
Aluminium, Timber, Fibreglass
Explanation:
Most ladders are made of aluminium to have resistance against oxidisation and avoid rust; aluminium also doesnt spark either and is non magnetic. Some ladders are made out of timber like Douglas Fir, Oak, and Hickory. Some ladders are made out of fibreglass because it is strong and sturdy. They are also very to carry and are electrically resistant and heat tolerant.
T.J. wants to send a friend a file with a funny dancing cat. Which file format should T.J. use?
DOCX
GIF
MP3
PDF
Answer:
T. J. should the file by GIF to his friend.
beeeeeeeeeeeeeeeeeeeeeeeeep its gif
could you put your sparkplug in the steering wheel and it still works
A. no
B. yes
C. do not care
D. it really doesn't matter
Answer:
a
Explanation:
NEEDS TO BE IN PYTHON:ISBN-13 is a new standard for indentifying books. It uses 13 digits d1d2d3d4d5d6d7d8d910d11d12d13 . The last digit d13 is a checksum, which is calculated from the other digits using the following formula:10 - (d1 + 3*d2 + d3 + 3*d4 + d5 + 3*d6 + d7 + 3*d8 + d9 + 3*d10 + d11 + 3*d12) % 10If the checksum is 10, replace it with 0. Your program should read the input as a string. Display "incorrect input" if the input is incorrect.Sample Run 1Enter the first 12 digits of an ISBN-13 as a string: 978013213080The ISBN-13 number is 9780132130806Sample Run 2Enter the first 12 digits of an ISBN-13 as a string: 978013213079The ISBN-13 number is 9780132130790
Answer:
Follows are the code to this question:
n=input("Enter the first 12 digits of an ISBN-13 as a string:")#defining a varaible isbn for input value
if len(n)!=12: #use if block to check input value is equal to 12 digits
print("incorrect input") #print error message
elif n.isdigit()==False: #use else if that check input is equal to digit
print("incorrect input") #print error message
else:# defining else block
s=0 #defining integer vaiable s to 0
for i in range(12):#defining for loop to calculate sum of digit
if i%2==0: #defining if block to check even value
s=s+int(n[i])#add even numbers in s vaiable
else: #use else block for odd numbers
s=s+int(n[i])*3 #multiply the digit with 3 and add into s vaiable
s=s%10#calculate the remainder value
s=10-s#subtract the remainder value with 10 and hold its value
if s==10: #use if to check s variable value equal to 10
s=0#use s variable to assign the value 0
n=n+s.__str__() #u
Output:
please find attached file.
Explanation:In the above Python code, the "n" variable is used for input the number into the string format uses multiple conditional statements for a check input value, which can be defined as follows:
In if block, it checks the length isn't equal to 12, if the condition true, it will print an error message. In the else, if the block it checks input value does not digit, if the condition is true, it will print an error message. In the else block, it uses the for loop, in which it calculates the even and odd number sum, and in the odd number, we multiply by 3 then add into s variable. In this, the s variable is used to calculate its remainder and subtract from the value and use the if block to check, its value is not equal to 10 if it's true, it adds 0 into the last of n variable, otherwise, it adds its calculated value.technician A says that in any circuit, electrical current takes the path of least resistance. technician B says that while this is true in a series circuit, it's not entirely true in a parallel circuit. who is correct?
Answer:
technician A is correct
Explanation:
Technician B has circuit topologies confused. In a series circuit, there is only one path for electrical current to take. In a parallel circuit, the current will divide between paths in proportion to the inverse of their resistance. The least resistance path will have the most current.
Technician A is mostly correct.
The site earthwork in Phase III of Four Hills Landfill project included a 3.0 ft deep cut across an entire 2.5-acre site. Soil was excavated from within the proposed Phase III footprint. The average unit weight of this soil is 118 lb/ft3, and the average moisture content is 9.6%. It also has a maximum dry unit weight of 122 lb/ft3 and an optimum moisture content of 11.1%, based on the modified Proctor test. The excavated soil will be placed on a nearby site and compacted to an average relative compaction of 93%. Compute the volume of fill that will be produced and express your answer in cubic yards.
Answer: 11470.4 cubic yards
Explanation:
first we calculate the volume of the site;
V1 = Area × depth
V1 = 2.5 acre × (43560 ft² / 1 acre )×3ft
V1 = 326700 ft
next we is the relative compaction
RC = [γd(field) / γdmax(laboratory)] × 100
so we substitute
93 = [γd(field) / 122 lb/ft³)] × 100
γd(field) = 113.46 lb/ft³
then the dry unit weight of the site
γday1 = γavg / ( 1 + w)
= 118 lb/ft³ / ( 1 + (9.6/100))
= 118 lb/ft³ /1.096
= 107.664 lb/ft³
finally we find the fill volume of the site
V2/V1 = γd / γd(field)
we substitute
V2/326700 = 107.664 / 113.46
V2 = 310010.83 ft³
we convert to cubic yards
= 310010.83 ft³ × (0.037 cubic yard / 1 ft³)
= 11470.4 cubic yards
Compute the number of kilograms of hydrogen that pass per hour through a 5-mm-thick sheet of palladium having an area of 0.20 m^2 at 500°C. Assume a diffusion coefficient of 1.0 x 10^8 m^2 /s, that the concentrations at the high- and low-pressure sides of the plate are 2.4 and 0.6 kg of hydrogen per cubic meter of palladium, and that steady-state conditions have been attained.
Answer:
The answer is "[tex]\bold{ 259.2 \times 10^{11} }[/tex]".
Explanation:
The amount of kilograms, which travel in a thick sheet of hydrogen:
[tex]M= -DAt \frac{\Delta C}{ \Delta x} \\\\[/tex]
[tex]D =1.0 \times 10^{8} \ \ \ \frac{m^2}{s} \\\\ A = 0.20 \ m^2\\\\t = 1\ \ h = 3600 \ \ sec \\\\[/tex]
calculating the value of [tex]\Delta C:[/tex]
[tex]\Delta C =C_A -C_B[/tex]
[tex]= 2.4 - 0.6 \\\\ = 1.8 \ \ \frac{kg}{m^3}[/tex]
calculating the value of [tex]\Delta X:[/tex]
[tex]\Delta x = x_{A} -x_{B}[/tex]
[tex]= 0 - (5\ mm) \\\\ = - 5 \ \ mm\\\\= - 5 \times 10^{-3} \ m[/tex]
[tex]M = -(1.0 \times 10^{8} \times 0.20 \times 3600 \times (\frac{1.8}{-5 \times 10^{-3}})) \\\\[/tex]
[tex]= -(1.0 \times 10^{8} \times 720 \times (\frac{1.8}{-5 \times 10^{-3}})) \\\\= -(1.0 \times 10^{8} \times \frac{ 1296}{-5 \times 10^{-3}})) \\\\= (1.0 \times 10^{8} \times 259.2 \times 10^3)) \\\\= 259.2 \times 10^{11} \\\\[/tex]
A single phase, 50-KVA, 2400-240-volt, 60 Hz distribution transformer has the following parameters: •
Resistance of the 2400-volt winding Ri=0.75 ohm
Resistance of the 240-volt winding R=0.0075 ohm
Leakage reactance of the 2400-volt winding X:=1 ohm
Leakage reactance of the 240-volt winding X2=0.01 ohm
Core loss resistance on the 2400 side Rc=733.5 ohms
Magnetizing reactance on the 2400 side X=4890 ohms
a. Draw the equivalent circuit referred to the high voltage side and referred to the low- voltage side. Label the impedances numerically.
b. The transformer is used as a step-down transformer at the load end of a feeder having impedance of (0.5+j2.0) ohms. Determine the voltage V. at the ending end of the feeder when the transformer delivers rated load at rated secondary voltage and 0.8 laggin power factor. Neglect the "exciting current" l. of the transformer (this is the current into the parallel Rc/jXm combination), which is another way of saying that you should use what we called in class the "approximate circuit #2).
Answer:
B) voltage at the sending end of the feeder = 2483.66 v
Explanation:
attached below is the the equivalent circuits and the remaining solution for option A
B) voltage = 2400 v
I = [tex]\frac{50*10^3}{2400}[/tex] = 20.83 A
calculate voltage at sending end ( Vs )
Vs = 2400 + 20.83 ∠ -cos^-1 (0.8) ( 0.75*2 + 0.5 + j 2 + j2 )
hence Vs = 2483.66 ∠ 0.961
therefore voltage at the sending end = 2483.66 v
One method that is used to grow nanowires (nanotubes with solid cores) is to initially deposit a small droplet of a liquid catalyst onto a flat surface. The surface and catalyst are heated and simultaneously exposed to a higher-temperature, low-pressure gas that contains a mixture of chemical species from which the nanowire is to be formed. The catalytic liquid slowly absorbs the species from the gas through its top surface and converts these to a solid material that is deposited onto the underlying liquid-solid interface, resulting in construction of the nanowire. The liquid catalyst remains suspended at the tip of the nanowire. Consider the growth of a 15-nm-diameter silicon carbide nanowire onto a silicon carbide sururface. The surface is maintained at a temperature of Ts = 2400 K and the particular liquid catalyst that is used must be maintained in the range 2400 K ≤ Tc ≤ 3000 K to perform its function. Determine the maximum length of a nanowire that may be grown for conditions characterized by h = 105 W/m2.K and T[infinity] = 8000 KT. Assume properties of the nanowire are the same as for bulk silicon carbide.
Answer: maximum length of the nanowire is 510 nm
Explanation:
From the table of 'Thermo physical properties of selected nonmetallic solids at At T = 1500 K
Thermal conductivity of silicon carbide k = 30 W/m.K
Diameter of silicon carbide nanowire, D = 15 x 10⁻⁹ m
lets consider the equation for the value of m
m = ( (hP/kAc)^1/2 ) = ( (4h/kD)^1/2 )
m = ( ((4 × 10⁵)/(30×15×10⁻⁹ ))^1/2 ) = 942809.04
now lets find the value of h/mk
h/mk = 10⁵ / ( 942809.04 × 30) = 0.00353
lets consider the value θ/θb by using the equation
θ/θb = (T - T∞) / (T - T∞)
θ/θb = (3000 - 8000) / (2400 - 8000)
= 0.893
the temperature distribution at steady-state is expressed as;
θ/θb = [ cosh m(L - x) + ( h/mk) sinh m (L - x)] / [cosh mL+ (h/mk) sinh mL]
θ/θb = [ cosh m(L - L) + ( h/mk) sinh m (L - L)] / [cosh mL+ (h/mk) sinh mL]
θ/θb = [ 1 ] / [cosh mL+ (h/mk) sinh mL]
so we substitute
0.893 = [ 1 ] / [cosh (942809.04 × L) + (0.00353) sinh (942809.04 × L)]
L = 510 × 10⁻⁹m
L = 510 nm
therefore maximum length of the nanowire is 510 nm
What makes a particular sector of the residential construction market dependent on globalization?
its need for innovation to spur growth
its embrace of renewable and sustainable technology
its commitment to multiculturalism
its requirement of labor or materials from far-flung sources
Answer:
its requirement of labor or materials from far-flung sources
Explanation:
"Globalization" generally means having or creating sources of supply in foreign countries, usually those with lower labor or material costs. If some industry sector is dependent upon that, then it's probably because it depends on labor or materials from low-cost sources.