4|1 9 2 pls help Its division​

Answers

Answer 1
The answer is 48

4 divided by 192

Related Questions

Martin is considering the expression 1/2(7x+48)and -(1/2x-3)+4(x+5)​

Answers

Step-by-step explanation:

1/2(7x+48) = 7x ÷2 +48÷2 = 7x÷2 + 24

and

-(1/2x-3)+4(x+5) = 7x ÷2 + 46÷2 = 7x÷2 +23

A square pyramid has 1 square base and 4 triangular faces. Find its surface area. A. The area of the base is ________ square centimeters. B. The area of the four faces is ______ square centimeters. C. The surface area is ___________ square centimeters.

Answers

Answer:

See Explanation

Step-by-step explanation:

I will answer this question with the attached square pyramid

From the attached pyramid, we have:

[tex]Base\ Length = 20m[/tex]

So, the base area is:

[tex]Area = Length * Length[/tex]

[tex]A_1= 20m*20m[/tex]

[tex]A_1= 400m^2[/tex]

The dimension of each of the 4 triangles is:

[tex]Height = 16.4m[/tex]

[tex]Base = 20m[/tex]

So, the area of 4 triangles is:

[tex]Area = 4 * 0.5 * Base * Height[/tex]

[tex]A_2 = 4 * 0.5 * 20m * 16.4m[/tex]

[tex]A_2 = 656m^2[/tex]

So, the surface area is:

[tex]Area = A_1 + A_2[/tex]

[tex]Area = 400m^2 + 656m^2[/tex]

[tex]Area = 1056m^2[/tex]

Find the area of each trapezoid. Write your answer as an integer or a simplified radical

Answers

Answer: there is no picture

Express The Following As A Percent. 10/3

Answers

The expression 10/3 can be expressed as a percent by multiplying it by 100. The result is approximately 333.33%.

To express a fraction as a percent, we need to convert it into a decimal and then multiply by 100 to get the percentage representation. In this case, we have 10/3 as the fraction.

To convert the fraction 10/3 to a decimal, we divide 10 by 3, which gives us approximately 3.3333. To express this decimal as a percentage, we multiply it by 100. Thus, 3.3333 * 100 = 333.33%.

Therefore, the expression 10/3 can be expressed as approximately 333.33% when converted to a percentage.

Learn more about percentage representation here:

https://brainly.com/question/30733051

#SPJ11

​Bob wants to build a playground in his backyard. The length and width of the playground can be represented by the equation f(x)=(x+5)(3x+6) feet. What is the area of Bob's playground? You must show your work, and include your units of measurement. ​

Answers

Step-by-step explanation:

This is an odd question  (do we have all of the info??)....I had to make an assumption...

Well..... you will not get a numerical answer...it is a quadratic equation

area = (x+5) ft  (3x+6) ft         (I assumed one was length and one was width)

area =   (3x^2 +21x + 30)     ft^2

What is the five- number summary of the following data set

52,53,55,59,60,64

Answers

The answer would be A. What we notice is the first, third, fourth, and fifth numbers are all the same in each set. But since the middle of 53 and 55 is 54; answer choice A would be correct.

A rooted tree where every other vertex is connected to the root by an edge is called a bonsai tree. (This includes the case where the tree is a seed, with no other vertices besides the root.) A collection of bonsai trees is called a bonsai forest. If n and k are positive integers, explain why the number of labeled bonsai forests with n vertices and k trees is (3) kn-k.

Answers

The number of labeled bonsai forests with n vertices and k trees is given by (3)^(kn-k).

The number of labeled bonsai forests with n vertices and k trees is (3)^(kn-k).

To understand why this is the case, let's break it down step by step.

First, let's consider a single bonsai tree with a root and n-1 other vertices connected to the root.

Each of these n-1 vertices can have one of three choices: either it is connected to the root, it is not connected to the root, or it is the root itself. Therefore, for a single bonsai tree, we have 3^(n-1) possibilities.

Now, if we have k bonsai trees, we can treat each tree as an independent entity. Therefore, the total number of labeled bonsai forests with k trees would be the product of the number of possibilities for each individual tree.

Hence, the total number of labeled bonsai forests with n vertices and k trees is (3)^(n-1) * (3)^(n-1) * ... * (3)^(n-1) (k times), which can be written as (3)^(kn-k).

In simpler terms, for each vertex in the bonsai forest, there are three possible choices: being connected to the root, not connected to the root, or being the root itself. As each vertex is independent and has the same three choices, the total number of possibilities for the entire forest is calculated by multiplying the number of possibilities for each vertex (3) by itself (n-1) times, for a total of kn-k times.

To know more about the bonsai forests, click here;

https://brainly.com/question/30090701

#SPJ11

5. Bryce gets a monthly allowance of $10 plus $1 for each
additional chore.
A) Determine if the situation is linear or not.
B) Determine if the situation is proportional or not.
C) Determine if the situation is a function or not.
How can you tell? Be sure to use the words input, output, slope and y-intercept in your
explanation.

Answers

He will make around 16 the slope is eat and the Y intercept is seven

find the area of the surface. the part of the sphere x2 y2 z2 = 4z that lies inside the paraboloid z = x2 y2.

Answers

The area of the surface formed by the part of the sphere [tex]x^2 + y^2 + z^2 = 4z[/tex] that lies inside the paraboloid [tex]z = x^2 + y^2[/tex] is π/6 square units.

To find the area of the surface, we need to calculate the double integral over the region that lies inside both the sphere and the paraboloid.

The given sphere equation can be rewritten as [tex]x^2 + y^2 + (z - 2)^2 = 4[/tex]. This represents a sphere centered at (0, 0, 2) with a radius of 2.

The paraboloid equation [tex]z = x^2 + y^2[/tex] represents an upward-opening paraboloid centered at the origin.

To find the region of intersection, we set the sphere equation equal to the paraboloid equation:

[tex]x^2 + y^2 + (x^2 + y^2 - 2)^2 = 4[/tex]

Simplifying, we get [tex]x^4 + y^4 - 4x^2 - 4y^2 + 4 = 0[/tex].

This equation represents the boundary curve of the region of intersection.

By evaluating the double integral over this region, we find the area of the surface to be π/6 square units.

Therefore, the area of the surface formed by the given part of the sphere lying inside the paraboloid is π/6 square units.

Learn more about paraboloid here:

https://brainly.com/question/30634603

#SPJ11

hi please help i’ll give brainliest

Answers

Answer:

between Jupiter and mars

Answer:

Choice A

Step-by-step explanation:

The Asteroid Belt in our Solar System is in-between the planets Jupiter and Mars.

The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars, that is occupied by a great many solid, irregularly shaped bodies, of many sizes but much smaller than planets, called asteroids or minor planets.

what divided by 3/7=7/15

Answers

Answer:

45/49

decimal form:

0.91836734

Step-by-step explanation:

Find the distance from (-6, 1) to (-3, 5).

Answers

Answer:

9.8 units

Step-by-step explanation:

distance = sqrt (x2 - x1)^2 + ( y2 - y1)^2

sqrt (-3 - (-6))^2 + (5 - 1)^2

sqrt (9)^2 + (4)^2

sqrt 81 + 16

sqrt 97

9.848857802




2. verify the Wronskian formulas 2 sin vít (a)],(x)]-v+1(x) + J_v(x)]v-1(x) = πχ (b)],(x)Y/(x) - L(x)Y, (x) 2 = πχ

Answers

The Wronskian formula is given by:$$W(y_1,y_2)=\begin {vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$To prove the Wronskian formula of two functions, let $y_1$ and $y_2$ be two non-zero solutions of the differential equation $y'' + p(x)y' + q(x)y = 0$.

Then the Wronskian of these two functions is given by: $W(y_1,y_2)=\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}=Ce^{-\int p(x)dx}$ where $C$ is a constant that depends on $y_1$ and $y_2$ but not on $x$.

Part (a) of the given Wronskian formulas is: $$W(2\sin v(x), J_v(x))=\begin{vmatrix} 2\sin v(x) & J_v(x) \\ 2v\cos v(x) & J_v'(x) \end{vmatrix}=2\sin v(x)J_v'(x)-2v\cos v(x)J_v(x)$$

Note that this formula is almost the same as the standard Wronskian formula, but with the constant $C$ replaced by $2\sin v(x)$.

We can verify that this is indeed a valid Wronskian by taking the derivative with respect to $x$:$$\frac{d}{dx}[2\sin v(x)J_v'(x)-2v\cos v(x)J_v(x)]=2\cos v(x)J_v'(x)-2\sin v(x)[vJ_v(x)+J_v'(x)]=0$$

The last step follows from the differential equation satisfied by the Bessel functions: $x^2y''+xy'+(x^2-v^2)y=0$

Part (b) of the given Wronskian formulas is: $$W(Y_\nu(x),Y_{\nu+1}(x))=\begin{vmatrix} Y_\nu(x) & Y_{\nu+1}(x) \\ Y_\nu'(x) & Y_{\nu+1}'(x) \end{vmatrix}=W_0Y_{\nu+1}(x)-W_1Y_\nu(x)$$where $W_0$ and $W_1$ are constants that depend on $\nu$ but not on $x$. This formula is also a valid Wronskian, since we can verify that its derivative with respect to $x$ is zero:

$$\frac{d}{dx}[W_0Y_{\nu+1}(x)-W_1Y_\nu(x)]=W_0Y_{\nu+1}'(x)-W_1Y_\nu'(x)=0$$

This follows from the recurrence relations satisfied by the Bessel functions:$Y_{\nu-1}'(x)-\frac{\nu}{x}Y_{\nu-1}(x)+\frac{\nu+1}{x}Y_{\nu+1}(x)=0$ $Y_{\nu+1}'(x)-\frac{\nu+1}{x}Y_{\nu+1}(x)+\frac{\nu+2}{x}Y_{\nu+2}(x)=0$

To know more about Wronskian formula refer to:

https://brainly.com/question/31402423

#SPJ11

Solve for Y(s), the Laplace transform of the solution y(t) to the initial value problem below. 3t y'' - 9y' + 18y = 6t e y(0) = 5, y'(0) = -6 "

Answers

Y(s) = 6/s * 1/(s * (s - 3)) + 1/s * 5 + 1/(s - 3) * 12

The solution to the initial value problem is :

y(t) = 12e³ᵗ + 3.

We have 3t y'' - 9y' + 18y = 6t e

Taking Laplace transform on both sides, we get

3L(ty'') - 9L(y') + 18L(y) = 6L(te)

Using Laplace transform formulas, we get:

3[s²Y(s) - sy(0) - y'(0)] - 9[sY(s) - y(0)] + 18Y(s) = 6/s²L(e)

⇒ 3s²Y(s) - 3s(5) + 6 - 9sY(s) + 45 + 18Y(s) = 6/s² * 1/sY(s)[3s² - 9s + 18] = 6/s² * 1/s - 3s + 12Y(s) = 6/s * 1/(s * (s - 3)) + 1/s * 5 + 1/(s - 3) * 12

Now, we need to find inverse Laplace transform of Y(s) to obtain the solution y(t).

Let's solve for the first term by Partial Fraction Expansion.

6/s * 1/(s * (s - 3))= A/s + B/(s - 3)6 = A(s - 3) + Bs

Therefore, A = -2 and B = 2y(t) = L⁻¹[Y(s)] = L⁻¹[6/s * 1/(s * (s - 3)) + 1/s * 5 + 1/(s - 3) * 12]= -2L⁻¹[1/s] + 2L⁻¹[1/(s - 3)] + 5L⁻¹[1/s] + 12L⁻¹[1/(s - 3)]= -2 + 2e³ᵗ + 5 + 12e³ᵗ= 12e³ᵗ + 3

Therefore, Y(s) = 6/s * 1/(s * (s - 3)) + 1/s * 5 + 1/(s - 3) * 12 and the solution to the initial value problem is y(t) = 12e³ᵗ + 3.

To learn more about initial value problem visit : https://brainly.com/question/31041139

#SPJ11


PLSSSSSSSS SOMEONE HELPPPP

Answers

Answer:

(-2, -4)

Step-by-step explanation:

The awnser is -2,-4

can someone help me AND explain how they got the answer?

Answers

Answer:

g=4

Step-by-step explanation:

this is a 30 60 90 triangle. the hypotenuse is 2x while the shortest side is x. if 8=2x then x must be 4.

Thermometer A shows the temperature in the morning. Thermometer B shows the temperature in the evening. What is the difference in the temperatures?

Answers

Answer:

(Thermometer B reading - Thermometer A reading)

Step-by-step explanation:

The thermometer reading aren't given in the question.

However, hypothetically.

The difference between two temperature values (morning and evening values) would be :

Temperature in the evening - morning temperature

Therefore,

If ;

Thermometer A reading = morning temperature

Thermometer B reading = evening temperature

Difference in the temperature :

(Thermometer B reading - Thermometer A reading)

ILL MARK BRAINLIESTTTTT

Answers

Answer:

$247.50

Step-by-step explanation:

b) Consider the following metric: ds2 = €2A(r) dt? – e2B(r) dr2 – 22 (d02 + sin? 0d62), = with A(r) and B(r) two functions to be determined that depend only on r. Calculate the 20 independent components of the Riemann tensor.

Answers

The given metric is as follows: $$ ds^2 = e^{2A(r)} dt^2 - e^{2B(r)} dr^2 - 2(r^2 +\sin^2\theta) (d\phi^2 + \sin^2\theta d\phi^2) $$

The Riemann tensor is given as: $$ R^a_{bcd} = \partial_c \Gamma^a_{bd} - \partial_d \Gamma^a_{bc} + \Gamma^a_{ce}\Gamma^e_{bd} - \Gamma^a_{de}\Gamma^e_{bc} $$

Here, $\Gamma^a_{bc}$ is the Christoffel symbol of the second kind defined as:

$$ \Gamma^a_{bc} = \frac{1}{2} g^{ad}(\partial_b g_{cd} + \partial_c g_{bd} - \partial_d g_{bc}) $$

In this problem, we need to calculate the 20 independent components of the Riemann tensor. First, let's calculate the Christoffel symbols of the second kind.

Here, $g_ {00} = e^{2A(r)}$, $g_ {11} = -e^{2B(r)} $, $g_ {22} = -(r^2 + \sin^2\theta) $, and $g_{33} = -(r^2 + \sin^2\theta) \sin^2\theta$.

Using these, we get:$$ \Gamma^0_{00} = A'(r)e^{2A(r)}$$$$ \Gamma^0_{11} = B'(r)e^{2B(r)}$$$$ \Gamma^1_{01} = A'(r)e^{2A(r)}$$$$ \Gamma^1_{11} = -B'(r)e^{2B(r)}$$$$ \Gamma^2_{22} = -r(r^2 + \sin^2\theta)^{-1}$$$$ \Gamma^3_{33} = -\sin^2\theta(r^2 + \sin^2\theta)^{-1}$$$$ \Gamma^2_{33} = \cos\theta\sin\theta(r^2 + \sin^2\theta)^{-1}$$$$ \Gamma^3_{32} = \Gamma^3_{23} = \cot\theta $$

Using these Christoffel symbols, we can now calculate the components of the Riemann tensor. There are a total of $4^4 = 256$ components of the Riemann tensor, but due to symmetry, only 20 of these are independent. Using the formula for the Riemann tensor, we get the following non-zero components:

$$ R^0_{101} = -A''(r)e^{2A(r)}$$$$ R^0_{202} = R^0_{303} = (r^2 + \sin^2\theta)(\sin^2\theta A'(r) + rA'(r))e^{2(A-B)}$$$$ R^1_{010} = -A''(r)e^{2A(r)}$$$$ R^1_{121} = -B''(r)e^{2B(r)}$$$$ R^2_{232} = r(r^2 + \sin^2\theta)^{-1}$$$$ R^3_{323} = \sin^2\theta(r^2 + \sin^2\theta)^{-1}$$$$ R^2_{323} = -\cos\theta\sin\theta(r^2 + \sin^2\theta)^{-1}$$$$ R^3_{322} = -\cos\theta\sin\theta(r^2 + \sin^2\theta)^{-1}$$$$ R^0_{121} = A'(r)B'(r)e^{2(A-B)}$$$$ R^1_{020} = A'(r)B'(r)e^{2(A-B)}$$$$ R^2_{303} = -\sin^2\theta A'(r)e^{2(A-B)}$$$$ R^3_{202} = -rA'(r)e^{2(A-B)}$$$$ R^0_{202} = (r^2 + \sin^2\theta)\sin^2\theta A'(r)e^{2(A-B)}$$$$ R^0_{303} = (r^2 + \sin^2\theta)A'(r)e^{2(A-B)}$$$$ R^1_{010} = A''(r)e^{2(A-B)}$$$$ R^1_{121} = B''(r)e^{2(A-B)}$$$$ R^2_{232} = r(r^2 + \sin^2\theta)^{-1}$$$$ R^3_{323} = \sin^2\theta(r^2 + \sin^2\theta)^{-1}$$

Therefore, these are the 20 independent components of the Riemann tensor.

To know more about symbols refer to:

https://brainly.com/question/30763849

#SPJ11

use the laplace transform to solve the given initial-value problem. y' 5y = f(t), y(0) = 0, where f(t) = t, 0 ≤ t < 1 0, t ≥ 1

Answers

The solution to the initial-value problem using the Laplace transform is y(t) = (1/25)(1 - [tex]e^{(-5t)[/tex]) - (1/25)t + (1/125)[tex]e^{(-5t)[/tex].

To solve the given initial-value problem using Laplace transform, we will first take the Laplace transform of the given differential equation and apply the initial condition.

Take the Laplace transform of the differential equation:

Applying the Laplace transform to the equation y' + 5y = f(t), we get:

sY(s) - y(0) + 5Y(s) = F(s),

where Y(s) represents the Laplace transform of y(t) and F(s) represents the Laplace transform of f(t).

Apply the initial condition:

Using the initial condition y(0) = 0, we substitute the value into the transformed equation:

sY(s) - 0 + 5Y(s) = F(s).

Substitute the given function f(t):

The given function f(t) is defined as:

f(t) = t, 0 ≤ t < 1

f(t) = 0, t ≥ 1

Taking the Laplace transform of f(t), we have:

F(s) = L{t} = 1/s²,

Solve for Y(s):

Substituting F(s) and solving for Y(s) in the transformed equation:

sY(s) + 5Y(s) = 1/s²,

(Y(s)(s + 5) = 1/s²,

Y(s) = 1/(s²(s + 5)).

Inverse Laplace transform:

To find y(t), we need to take the inverse Laplace transform of Y(s). Using partial fraction decomposition, we can write Y(s) as:

Y(s) = A/s + B/s² + C/(s + 5),

Multiplying both sides by s(s + 5), we have:

1 = A(s + 5) + Bs + Cs².

Expanding and comparing coefficients, we get:

A = 1/25, B = -1/25, C = 1/125.

Therefore, the inverse Laplace transform of Y(s) is:

y(t) = (1/25)(1 - [tex]e^{(-5t)[/tex]) - (1/25)t + (1/125)[tex]e^{(-5t)[/tex].

Learn more about laplace transform at

https://brainly.com/question/30759963

#SPJ4

What is the median amount of water (in ounces) that Mindy drank per day

Answers

Answer:

i need the rest of the problem to figure it out sorry

Step-by-step explanation:

Answer:

60 ounces

Step-by-step explanation:

got i t on edmentum

y=Ax^2 + Bx + C is the solution of the DEQ: By' = 2x + 7. Determine A,B. Separate variables, & integrate.

Answers

The exact value of A in the general solution is 1 and B is 7

How to determine the value of A and B in the general solution

From the question, we have the following parameters that can be used in our computation:

y = Ax² + Bx + C

The differential equation is given as

y' = 2x + 7

When y = Ax² + Bx + C is differentiated, we have

y' = 2Ax + B

So, we have

2x + 7 = 2Ax + B

By comparing both sides of the equation, we have

2Ax = 2x

B = 7

So, we have

2A = 2

B = 7

Divide both sides of 2A = 2 by 2

A = 1

B = 7

Hence, the value of A in the general solution is 1 and B is 7

Read more about differential equation at

https://brainly.com/question/1164377

#SPJ4

if x=10, write an expression in terms of x for the number 5,364

Answers

Answer:

(5,354 + x)

or

536.4*x

Step-by-step explanation:

We know that x = 10.

Now we want to write an expression (in terms of x) for the number 5,364.

This could be really trivial, remember that x = 10.

Then:  (x - 10) = 0

And if we add zero to a number, the result is the same number, then if we add this to 5,364 the number does not change.

5,364 = 5,364 + (x - 10) = 5,364 + x - 10

5,364 = 5,354 + x

So (5,354 + x) is a expression for the number 5,364 in terms of x.

Of course, this is a really simple example, we could do a more complex case if we know that:

x/10 = 1

And the product between any real number and 1 is the same number.

Then:

(5,364)*(x/10) = 5,364

(5,364/10)*x = 5,364

536.4*x = 5,364

So we just found another expression for the number 5,364 in terms of x.

Write the radian measure of each angle with the given degree measure explain your reasoning

Answers

Answer:

90 = π/2

45 = π/4

0 and 360 = 0 and 2π

135 = 3π/4

180 = π

225 = 5π/4

270 = 2π/3

315 = 7π/4

315 =

Step-by-step explanation:

please help me ...........​

Answers

Answer:

a

Step-by-step explanation:

the 5y and the negative one cancel each other out. add the rest together you end up with 5x=-15. and divide each side by 5. you'll end up with x=-3

i need an answer ASAP with an explanation please!
find the y-intercept of the function f(x)= (x+2) (x-1) (x-2)

Answers

Answer:

y intercept (0;4)

Step-by-step explanation:

let x = 0 because the graph will intersect the y-axis at the value of 0 for the x-axis

consider a population proportion p = 0.68. a-1. calculate the expected value and the standard error of p− with n = 30

Answers

If a population proportion p = 0.68, the expected value and the standard error of p' with n = 30 is 0.68 and 0.090 respectively.

To calculate the expected value and standard error of the sample proportion p' with a known population proportion p = 0.68 and a sample size n = 30, we use the formulas:

Expected value of p' (E[p']) = p

Standard error of p' (SE[p']) = √((p * (1 - p)) / n)

Given that the population proportion p = 0.68 and the sample size n = 30, we can substitute these values into the formulas:

E[p'] = p = 0.68

SE[p'] = √((p * (1 - p)) / n) = √((0.68 * (1 - 0.68)) / 30) = √(0.2176 / 30) ≈ 0.090

Therefore, the expected value of the sample proportion p' is 0.68, indicating that, on average, we expect the sample proportion to be equal to the population proportion.

The standard error of the sample proportion is approximately 0.090, representing the estimated standard deviation of the sampling distribution of p' and indicating the variability in the estimates of p'.

To learn more about population proportion click on,

https://brainly.com/question/14009075

#SPJ4

If you calculate an F statistic and find that it is negative, then you know that the difference among the group means is less than what would have occurred by chance the within groups variance exceeds the between groups variance O you have made a calculation error the difference among the group means is greater than what would have occurred by chance

Answers

It is important to carefully review the calculations and ensure the data has been entered correctly. Double-checking the formulas and verifying the input values will help identify any mistakes and provide an accurate interpretation of the F statistic.

If you calculate an F statistic and find that it is negative, it is highly likely that a calculation error has occurred. The F statistic is a measure of the ratio of variances, specifically the ratio of the between-groups variance to the within-groups variance. The F statistic is always expected to be positive, as it represents the difference among group means relative to the variation within the groups.

A negative F statistic contradicts the fundamental nature of the statistic, as it implies that the between-groups variance is smaller than the within-groups variance, suggesting that the difference among group means is less than what would have occurred by chance. This scenario is highly unlikely and indicates that an error has been made during the calculation or data entry process.

Learn more about F-statistics here, https://brainly.com/question/15980493

#SPJ11

1. For all named stors that have made landfall in the United States since 2000, of interest is to determine the mean sustained wind speed of the storms at the time they made landfall in this scenario, what is the population of interest?

5. Consider the information presented in question 1. Suppose it is known that among all named storms that have made landfall in the United States since 2000, 31% of them stay over land for 3 or more days once they make landfall. In this scenario, is 31% an example of a parameter or a statistic?
A. Constant
B. Parameter
C. Variable
D. Statistic

Answers

The distinction between parameters and statistics is crucial for inferential statistics, the correct is option D.

The population of interest in the scenario,

1."For all named storms that have made landfall in the United States since 2000, of interest is to determine the mean sustained wind speed of the storms at the time they made landfall," is:

all named storms that have made landfall in the United States since 2000.

5.The correct answer is D. Statistic.

A parameter is a numerical or other measurable factor that characterizes a given population, while a statistic is a numerical value calculated from a sample of data.

Parameters are used to describe a population, while statistics are used to describe a sample from a population.

The distinction between parameters and statistics is crucial for inferential statistics.

To know more about inferential, visit

https://brainly.com/question/30910479

#SPJ11

A rectangular window is 3.5 feet wide and has an area of 19.25 square ft you have six yards of string light do you have enough string lights to outline the window with light

Answers

Answer:

yes

Step-by-step explanation:

We are to determine if 6 yards is enough t to go round the perimeter of the window

The length is not given, so we have to determine the length from the area

Area of a rectangle = length x breadth

19.25 = 3.5 x length

length = 5.5 feet

Perimeter = 2 x ( length + breadth )

2 x (5.5 + 3.5) = 18 feet

We need to convert the string to foot

1 yard = 3 foot

6 x 3 = 18 foot

the string and the perimeter are equal, so it is enough

Other Questions
a storm blew down many trees. several neighbors rented a chain saw for $232.85 and helped each other cut up and stack wood. the rental company charges $73.95 per day plus a $11 sharpening fee. how many days was the saw rented? Seoul Specialty Hospital (SSH) has just purchased a five-year membership in the Korean Hospital Association (KHA). The membership costs $10,000 and KHA has sent SSH a bill that must be paid within ninety days. How would SSH record this transaction. (Hint: Be sure to distinguish between the long and short term aspects of the transaction.) Why was it so desirable for a county to have a normal school?A. Normal schools provided economic boosts to their regions.B. Normal schools brought railroad access to underserved regions.C. Normal schools improved relations between counties.D. Normal schools provided more engineers for mining regions. dose ever person have a DNA or not and why If a and b are the legs of a right triangle, and c is the hypotenuse, what isthe length of b if a = 6 and c = 18.5? (If necessary, round to the nearesttenth) a) Define the term externalities and give two examples of positive externalities and two examples of negative externalities.b) Describe the characteristics Public Goods and Private Goods and suggest two examples of each good. c) With your knowledge of market failure, briefly explain the two types of economic efficiencies that should be achieved. It says mr fuller wants to put fence around his rectangular yard. The length is 75 and the width is 55. Chapter 20 Homework Contribution Margin, Break-Even Sales, Cost-Volume-Profit Chart, Margin of Safety, and Operating Leverage Belmain Co. expects to maintain the same inventories at the end of 20Y7 as Michelle is going to vacation in a location on the globe that is currently experiencing summer and daylight. According the model below, which location could Michelle be visiting? Location A - Axis Sun Location C Location B Equator Location D A) Location A B) Location B ) Location ( D) Location D HELP !Write a realistic scenario where you might face and respond to peer pressure. provide a brief description of the process of rust Cyrus the Great built the largest ________ the world had yet seen. Explain the importance of design in1. communication 2. transportation 3. sports, 4. education 5. business Im giving brainliest How effective was passive resistance as a means of gaining independence in India? How did it contrast with other means used during revolutions ? 5. Let T1 and T2 be two stop times with respect to the same filtration. Prove that me (T1, T2) and T +T2 are also stopping times. in the bohr model, how many electron wavelengths fit around this orbit? solve the equation 13. 9^3c + 1 = 27^3c - 1 Which characteristic of "Sonnet XII" shows that the poem is asonnet?A: It is written in Medieval English.B: Most of the words have two syllables.C: All of the lines rhyme.D: It is written in iambic pentameter. Can someone help me with this problem