a 5.2×10−4 v/mv/m electric field creates a 3.6×1017 electrons/selectrons/s current in a 2.0-mmmm-diameter aluminum wire.

Answers

Answer 1

When a 5.2×10⁻⁴ V/m electric field is applied to a 2.0-mm diameter aluminum wire, it generates a current of 3.6×10¹⁷ electrons per second flowing through the wire.

The electric field can be considered as an electric property associated with each point in the space where a charge is present in any form.

A 5.2×10⁻⁴ V/m electric field creates a 3.6×10¹⁷ electrons/s current in a 2.0-mm diameter aluminum wire.

To understand this better, let's break down the terms:

1. Electric field (5.2×10⁻⁴ V/m): This represents the force experienced by a charged particle in the presence of an electric charge distribution.

2. Current (3.6×10¹⁷ electrons/s): This is the rate at which electric charge flows through a conductor, like a wire, measured in electrons per second.

3. Diameter (2.0 mm): This is the thickness of the aluminum wire.

Learn more about electric field:

https://brainly.com/question/14372859

#SPJ11

Answer 2

When a 5.2×10⁻⁴ V/m electric field is applied to a 2.0-mm diameter aluminum wire, it generates a current of 3.6×10¹⁷ electrons per second flowing through the wire.

The electric field can be considered as an electric property associated with each point in the space where a charge is present in any form.

A 5.2×10⁻⁴ V/m electric field creates a 3.6×10¹⁷ electrons/s current in a 2.0-mm diameter aluminum wire.

To understand this better, let's break down the terms:

1. Electric field (5.2×10⁻⁴ V/m): This represents the force experienced by a charged particle in the presence of an electric charge distribution.

2. Current (3.6×10¹⁷ electrons/s): This is the rate at which electric charge flows through a conductor, like a wire, measured in electrons per second.

3. Diameter (2.0 mm): This is the thickness of the aluminum wire.

Learn more about electric field:

https://brainly.com/question/14372859

#SPJ11


Related Questions

A section of a sphere is mirrored on both sides. If the magnification of an object is +3.70 when the section is used a concave mirror, what is the magnification of an object at the same distance in front of the convex side?

Answers

A section of a sphere is mirrored on both sides. If the magnification of an object is +3.70 the magnification is -4.70.

The magnification of an object at the same distance in front of the convex side of the mirrored section of a sphere can be found using the mirror equation:
1/f = 1/di + 1/do
where f is the focal length of the mirror, di is the distance of the object from the mirror, and do is the distance of the image from the mirror.
Since the section is mirrored on both sides, the focal length of the concave and convex sides will be the same. Therefore, we can use the magnification equation:
m = -di/do

where m is the magnification.
We know that when the section is used as a concave mirror, the magnification is +3.70. Therefore,
+3.70 = -di/do

Solving for do, we get
do = -di/3.70
Now, substituting this value of do into the mirror equation, we get
1/f = 1/di - 3.70/di
Simplifying this equation, we get
f = di/4.70
Therefore, the magnification of an object at the same distance in front of the convex side of the mirrored section will be
m = -di/(di/4.70)
m = -4.70


Learn more about magnification here:

https://brainly.com/question/21370207

#SPJ11

the pull cord of a lawnmower engine is wound around a drum of radius 6.43 cm. while the cord is pulled with a force of 76 n to start the engine, what magnitude torque does the cord apply to the drum?

Answers

The magnitude of the torque applied to the drum by the pull cord is approximately 4.89 Nm.

Torque is a measure of the twisting force that causes rotation. It is a vector quantity that depends on the force applied, the distance between the force and the pivot point, and the angle between the force and the lever arm (the perpendicular distance between the force and the pivot point). To find the magnitude of torque applied to the drum, you can use the formula: torque = force x radius. In this case, the force is 76 N and the radius is 6.43 cm (which needs to be converted to meters).
So first, convert the radius to meters: 6.43 cm = 0.0643 m.
Now, calculate the torque: torque = 76 N x 0.0643 m = 4.8868 Nm.
Therefore, the magnitude of the torque applied to the drum by the pull cord is approximately 4.89 Nm.

Learn more about Torque :

https://brainly.com/question/29024338

#SPJ11

a store's sign, with a 20.0 kg and 3.00 m long and has its center of mass at the center of the sign. It is supported by a loose bolt attached to the wall at one end and by a wire at the other end. The wire makes an angle of 25.0° with the horizontal. What is the tension
in the wire?

Answers

The tension in the wire supporting the 20.0 kg, 3.00 m long store sign is 399.4 N.

To calculate the tension, first find the torque at the loose bolt, which acts as the pivot point. The weight of the sign (mg) causes a torque, where m is the mass (20.0 kg) and g is the acceleration due to gravity (9.81 m/s²). The distance from the pivot to the center of mass is half the length of the sign (1.50 m). The torque is then given by:

Torque = (20.0 kg)(9.81 m/s²)(1.50 m) = 294.3 Nm

Next, consider the horizontal and vertical components of the tension in the wire. The vertical component balances the weight of the sign, and the horizontal component creates a counter-torque. With a 25.0° angle with the horizontal, the tension T can be found using:

Vertical: Tsin(25.0°) = (20.0 kg)(9.81 m/s²)
Horizontal: Tcos(25.0°) = Torque / 3.00 m

Solve the vertical equation for T, then substitute it into the horizontal equation to find the tension in the wire:

T = 399.4 N

To know more about center of mass click on below link:

https://brainly.com/question/8662931#

#SPJ11

What does resistances within a circuit have to do with the brightness of a light bulb within that same circuit?
✧❁❁✧✿ꕥ✿✧❁❁✧
What do we call objects with high resistance and low resistance?
✧❁❁✧✿ꕥ✿✧❁❁✧
Complete and full answer with explanation gets Brainliest
✧❁❁✧✿ꕥ✿✧❁❁✧
Thank you for your help





✧❁❁✧✿ꕥ✿✧❁❁✧





People who misuse this and only use it to get points will be reported

Answers

The resistance within a circuit can affect the brightness of a light bulb within that same circuit because the amount of current flowing through the circuit depends on the resistance in the circuit. The greater the resistance in the circuit, the less current will flow through it, which means less energy is being delivered to the light bulb. This can result in a dimmer light bulb. On the other hand, if there is lower resistance in the circuit, more current will flow through it, which means more energy is being delivered to the light bulb. This can result in a brighter light bulb.

Objects with high resistance are called resistors, while objects with low resistance are called conductors. Resistors are objects that restrict the flow of current through a circuit, while conductors are objects that allow current to flow freely through them. Resistors are used in circuits to control the amount of current flowing through them, while conductors are used to provide a low resistance path for current to flow through. Some examples of conductors include metals like copper and aluminum, while some examples of resistors include materials like carbon and metal oxide.

what is the energy required to accelerate a 1765 kg car from rest to 29 m/s?

Answers

The energy required to accelerate a 1765 kg car from rest to 29 m/s is approximately 373,128,250 Joules.

To calculate the energy required to accelerate a car from rest to 29 m/s, we can use the formula:

E = (1/2)mv^2

where E is the energy, m is the mass of the car, and v is the final velocity.

First, we need to convert the mass of the car from kilograms to grams:

m = 1765 kg = 1,765,000 g

Next, we can substitute the values into the formula:

E = (1/2)(1,765,000 g)(29 m/s)^2

Simplifying the equation:

E = (1/2)(1,765,000)(841) JE = 373,128,250 J

To know more about accelerate, click here.

https://brainly.com/question/30660316

#SPJ4

1.This problem is based on a patient standing on one limb. For the following set of scenarios, determine: i. The torque that the abductor muscles must provide in order to maintain the body position. ii. The abductor muscle force that was required to produce this torque iii. The magnitude of the net hip joint reaction force.

Answers

A torque is a force that a lever arm uses to apply to a body. When used to describe internal combustion engines or electric motors, torque refers to the force acting on the driving shaft.

To determine the torque, abductor muscle force, and net hip joint reaction force in a patient standing on one limb, please follow these steps:

1. Determine the torque that the abductor muscles must provide to maintain the body position:
i. Identify the forces acting on the hip joint: the patient's body weight (W) acting vertically downwards and the abductor muscle force (F) acting perpendicular to the lever arm (L).
ii. Calculate the torque (T) required to maintain body position using the formula: T = F * L

2. Determine the abductor muscle force that was required to produce this torque:
i. Rearrange the formula for torque to find the abductor muscle force: F = T / L
ii. Substitute the calculated torque (T) and the known lever arm (L) into the formula to find the abductor muscle force (F).

3. Determine the magnitude of the net hip joint reaction force:
i. Recognize that the net hip joint reaction force (R) is the vector sum of the abductor muscle force (F) and the patient's body weight (W).
ii. Calculate the magnitude of the net hip joint reaction force (R) using the Pythagorean theorem: R = √(F² + W²)

In summary, to solve this problem, you need to first calculate the torque required to maintain body position, then determine the abductor muscle force needed to produce this torque, and finally find the magnitude of the net hip joint reaction force.

Know more about torque:

https://brainly.com/question/17512177

#SPJ11

A stress of 75 MPa is applied in the [001] direction on an FCC single crystal. Calculate (a) the resolved shear stress acting on the (111) [101] slip system and, (b) the resolved shear stress acting on the (111) [110] slip system.

Answers

The resolved shear stress on the (111)[101] slip system is 43.3 MPa, and on the (111)[110] slip system, it is 25.98 MPa.

To calculate the resolved shear stress (τ) on the given slip systems, we can use the equation: τ = σ * cos(φ) * cos(λ), where σ is the applied stress, φ is the angle between the stress direction and the slip plane normal, and λ is the angle between the stress direction and the slip direction.

(a) For the (111)[101] slip system, first calculate the angle φ between [001] and (111). Use the dot product formula: cos(φ) = ([001] • (111))/(|[001]|*|(111)|).

Next, calculate the angle λ between [001] and [101] using the same formula. Then, substitute the calculated cos(φ) and cos(λ) values and the given stress of 75 MPa into the equation to find the resolved shear stress.

(b) For the (111)[110] slip system, follow the same process, but now calculate the angle φ between [001] and (111), and λ between [001] and [110]. Substitute the calculated cos(φ) and cos(λ) values and the given stress of 75 MPa into the equation to find the resolved shear stress.

To know more about shear stress click on below link:

https://brainly.com/question/13385447#

#SPJ11

Protons move in a circle of radius 7.00cm in a .0.498T magnetic field. What value of electric field could make their paths straight? In what direction must it point?

Answers

The electric field required to straighten the protons' paths is 3.49 10^{-2} V/m, and it must be in the opposite direction of the protons' motion.

Why does a proton in a magnetic field move in a circle?

This is due to the magnetic field's force, which always pushes it in a direction that is perpendicular to both its own and the magnetic field's directions. The force pushes the proton in a circular path because the magnetic field is pointing directly out of the screen in this case.

The electric force on a proton moving in an electric field is given by:

F_e = qE

F_e = electric force

q = charge of the proton (+1.602 × 10^{-19} C)

E = electric field

In a magnetic field, the magnetic force on a moving proton is,

F_m = qvB

F_m = magnetic force

v = velocity of the proton

B = magnetic field strength

The electric force must be equal in magnitude and direction to the magnetic force in order to straighten the protons' paths.

F_e = F_m

qE = qvB

E = vB

Substitute the given values,

E = (7.00 × 10^{-2} m) × (0.498 T)

 = 3.49 × 10^{-2} V/m

To know more about the electric field visit:

https://brainly.com/question/19878202

#SPJ1

a 0.142 kgkg baseball leaves a pitcher's hand at a speed of 28.5 m/sm/s. If air drag is negligible, how much work has the pitcher done on the ball by throwing it?

Answers

The pitcher has done 57.68 Joules of work on the 0.142 kg baseball by throwing it.

To calculate the work done on a 0.142 kg baseball by the pitcher, we need to consider the initial speed of the ball (28.5 m/s) and the terms "speed" and "work."

First, let's calculate the ball's kinetic energy (KE) using the formula: KE = 0.5 * mass * speed^2

KE = 0.5 * 0.142 kg * (28.5 m/s)^2

Now, solve for the kinetic energy:
KE = 0.071 * 812.25
KE = 57.68 J (Joules)

Since air drag is negligible, the work done by the pitcher on the ball is equal to the ball's kinetic energy. So, the pitcher has done 57.68 Joules of work on the 0.142 kg baseball by throwing it at a speed of 28.5 m/s.

To know more about work: https://brainly.com/question/25573309

#SPJ11

there is a fan that blows air across the pipe with an average velocity of 7 ft/sec. what is the rate that heat is convected into the ambient air from the pipe (in watts)?

Answers

The rate of heat connected into the ambient air from the pipe is approximately 8667 watts.

To determine the rate of heat convected into the ambient air from the pipe, we need to use the formula:

Q = h * A * ΔT

Where:
Q = Rate of heat transfer in watts
h = Convective heat transfer coefficient
A = Surface area of the pipe
ΔT = Temperature difference between the surface of the pipe and ambient air

Assuming that the pipe is made of copper (which has a convective heat transfer coefficient of approximately 100 W/m²K), and has a diameter of 0.05 meters and length of 1 meter, the surface area of the pipe can be calculated as:

A = π * d * L
A = π * 0.05 * 1
A = 0.157 m²

Assuming the ambient temperature is 25°C and the temperature of the pipe surface is 150°C (which is a typical temperature for a hot water pipe), the temperature difference (ΔT) can be calculated as:

ΔT = 150 - 25
ΔT = 125°C

Converting the velocity of the air from feet per second to meters per second (since the convective heat transfer coefficient is in units of W/m²K), we get:

V = 7 * 0.3048
V = 2.1336 m/s

Now we can calculate the convective heat transfer coefficient as:

h = 100 * V^(0.8) / d^(0.2)
h = 100 * 2.1336^(0.8) / 0.05^(0.2)
h = 440.46 W/m²K

Finally, substituting all the values into the formula, we get:

Q = 440.46 * 0.157 * 125
Q = 8667.33 watts

Therefore, the rate of heat convected into the ambient air from the pipe is approximately 8667 watts.

Know more about Average Velocity here:

https://brainly.com/question/13372043

#SPJ11

for the first order decomposition of phosphine, the time required to go from 1.00 m to 0.250 m is 120 seconds. how long will it take for the concentration to go from 0.400 m to 0.100 m

Answers

The first-order decomposition of phosphine is a chemical reaction in which phosphine decomposes into its constituent elements over time. The rate of this reaction is proportional to the concentration of phosphine. In this problem, we are given that the time required to go from 1.00 m to 0.250 m is 120 seconds.

To determine the time it will take for the concentration to go from 0.400 m to 0.100 m, we can use the following formula:

ln([A]t/[A]0) = -kt

where [A]t is the concentration of phosphine at time t, [A]0 is the initial concentration of phosphine, k is the rate constant of the reaction, and t is the time.

We can rearrange this formula to solve for t:

t = ln([A]t/[A]0) / -k

We know that the initial concentration is [A]0 = 0.400 m and the final concentration is [A]t = 0.100 m. We can also use the rate constant k, which can be determined from the half-life of the reaction:

t1/2 = ln(2) / k

We are given that the time required to go from 1.00 m to 0.250 m is 120 seconds, so we can use this information to find the half-life:

t1/2 = ln(2) / k = ln(2) / (120 seconds) = 0.0058 seconds^-1

Now we can use this value of k and the concentrations to find the time required to go from 0.400 m to 0.100 m:

t = ln([A]t/[A]0) / -k = ln(0.100/0.400) / (-0.0058 seconds^-1) = 358 seconds

Therefore, it will take approximately 358 seconds for the concentration of phosphine to go from 0.400 m to 0.100 m.

learn more about decomposition here: brainly.com/question/28383069

#SPJ11

Which statements describe isotopes? Check all that apply.
Isotopes of the same element have the same number of protons.
Isotopes of the same element have the same number of neutrons.
All isotopes are unstable.
Some isotopes are unstable.
Isotopes are identified by their mass number.
Isotopes are identified by their atomic number.

Answers

These four statements are correctly describe the isotopes.

Isotopes of the same element have the same number of protons. (True)Isotopes of the same element may have different numbers of neutrons. (True)Some isotopes are unstable. (True)Isotopes are identified by their mass number. (True)

Therefore, the statements "Isotopes of the same element have the same number of neutrons," "All isotopes are unstable," and "Isotopes are identified by their atomic number" are incorrect.

What are the isotopes?

Isotopes are variants of an element that have the same number of protons in their atomic nucleus but different numbers of neutrons. Isotopes of an element share the same atomic number, which is the number of protons in the nucleus, but have different atomic masses due to the varying number of neutrons. For example, carbon-12, carbon-13, and carbon-14 are three isotopes of the element carbon, with 6, 7, and 8 neutrons, respectively.

Isotopes occur naturally for many elements, and some isotopes can be artificially created through nuclear reactions. Isotopes have a wide range of applications in fields such as radiometric dating, nuclear power, medical diagnosis and treatment, and materials science.

To know more about isotopes, visit:

https://brainly.com/question/11808418

#SPJ9

Answer:1,4,5

Explanation:

In a polarization of light experiment an incandescent light source is used. The ratio polarized to unpolarized light intensity is (a) 25% (b) 50% (c) 75% (d) 100%

Answers

(b) 50%.  In a polarization of light experiment an incandescent light source is used. The ratio polarized to unpolarized light intensity is  50%.

In an experiment to measure the polarization of light, an incandescent light source is used to emit light in all directions. However, the emitted light is unpolarized, meaning that the light waves vibrate in all possible planes perpendicular to the direction of propagation. To obtain polarized light, a polarizer is used to pass only the light waves that vibrate in a single plane. As a result, only half of the original light intensity can pass through the polarizer, and the other half is absorbed or blocked. Thus, the ratio of polarized to unpolarized light intensity is 1:1 or 50%. This result holds true for any polarizer that only allows light waves vibrating in a single plane to pass through.

learn more about light intensity here:

https://brainly.com/question/30499504

#SPJ11

You want to find the moment of inertia of a complicated machine part about an axis through its center of mass. You suspend it from a wire along this axis. The wire has a torsion constant of 0.450N⋅m/rad0.450N⋅m/rad. You twist the part a small amount about this axis and let it go, timing 165 oscillations in 265 s. What is its moment of inertia?

Answers

The moment of inertia of the machine part about an axis through its center of mass is 50384.37 kg·m².

Given:

T = 265 s (the time period of oscillation)

k = 0.450 N·m/rad (torsion constant)

The torsion pendulum equation relates the moment of inertia (I) of an object to its torsion constant (k) and the time period of oscillation (T):

I = (k × T²) / (4π²)

Substituting the values into the equation:

I = (0.450 N·m/rad × (265 s)²) / (4π²)

Calculating:

I = 0.450 N·m/rad × 70345 s²/ (4π²)

I = 0.450 N·m/rad × 176164225 s² / (4π²)

I = 0.450 N·m/rad × 4437.6 × 10⁶ s² / (4π²)

I = 0.450 N·m/rad × 4437.6 × 10⁶ s² / (39.48)

I = 50384.37 N·m·s²

I = 50384.37 kg·m²

Learn more about inertia, here:

https://brainly.com/question/3268780

#SPJ12

The earth makes one complete revolution on its axis in 23 h 56 min. Knowing that the mean radius of the earth is 3960 mi, determine the linear velocity and acceleration of a point on the surface of the earth (a) at the equator, (b) at Philadelphia, latitude 40° north, (c) at the North Pole.

Answers

At the equator, Philadelphia, and the North Pole, a point's linear velocity and acceleration are determined as described above.

(a) At the equator:

The Earth's equator has a radius of 3960 miles. Therefore, the linear velocity of a point on the surface of the Earth at the equator is:

v = ωr = (2π / 23.9333 hours) * 3960 miles = 1037.564 mph

The acceleration of a point on the surface of the Earth at the equator can be calculated using the formula:

[tex]a = v^2 / ra = (1037.564 mph)^2 / 3960 miles = 0.273 g[/tex]

(b) At Philadelphia, latitude 40° north:

r = 3960 miles * cos(40°) = 3004.05 miles

The linear velocity of a point on the surface of the Earth at Philadelphia is:

v = ωr = (2π / 23.9333 hours) * 3004.05 miles = 784.166 mph

[tex]a = v^2 / r = (784.166 mph)^2 / 3004.05 miles = 0.154 g[/tex]

(c) At the North Pole:

r = 3960 miles * cos(90°) = 3960 miles

The linear velocity of a point on the surface of the Earth at the North Pole is:

v = ωr = (2π / 23.9333 hours) * 3960 miles = 1038.993 mph

The acceleration of a point on the surface of the Earth at the North Pole is:

[tex]a = v^2 / r = (1038.993 mph)^2 / 3960 miles[/tex] = 0.034 g

A key idea in physics is acceleration, which defines how rapidly an object's velocity alters over time. In other words, it is the rate at which the velocity of an object changes in relation to time. An item is considered to be accelerating when its speed changes, whether it is increasing or decreasing.

Depending on how the velocity changes, acceleration can be either positive or negative. For instance, an object's acceleration is positive while it is speeding up, whereas it is negative when it is going down. According to Newton's second equation of motion, acceleration is directly linked to the force pulling on an object.

To learn more about Acceleration visit here:

brainly.com/question/30660316

#SPJ4

At the equator, Philadelphia, and the North Pole, a point's linear velocity and acceleration are determined as described above.

(a) At the equator:

The Earth's equator has a radius of 3960 miles. Therefore, the linear velocity of a point on the surface of the Earth at the equator is:

v = ωr = (2π / 23.9333 hours) * 3960 miles = 1037.564 mph

The acceleration of a point on the surface of the Earth at the equator can be calculated using the formula:

[tex]a = v^2 / ra = (1037.564 mph)^2 / 3960 miles = 0.273 g[/tex]

(b) At Philadelphia, latitude 40° north:

r = 3960 miles * cos(40°) = 3004.05 miles

The linear velocity of a point on the surface of the Earth at Philadelphia is:

v = ωr = (2π / 23.9333 hours) * 3004.05 miles = 784.166 mph

[tex]a = v^2 / r = (784.166 mph)^2 / 3004.05 miles = 0.154 g[/tex]

(c) At the North Pole:

r = 3960 miles * cos(90°) = 3960 miles

The linear velocity of a point on the surface of the Earth at the North Pole is:

v = ωr = (2π / 23.9333 hours) * 3960 miles = 1038.993 mph

The acceleration of a point on the surface of the Earth at the North Pole is:

[tex]a = v^2 / r = (1038.993 mph)^2 / 3960 miles[/tex] = 0.034 g

A key idea in physics is acceleration, which defines how rapidly an object's velocity alters over time. In other words, it is the rate at which the velocity of an object changes in relation to time. An item is considered to be accelerating when its speed changes, whether it is increasing or decreasing.

Depending on how the velocity changes, acceleration can be either positive or negative. For instance, an object's acceleration is positive while it is speeding up, whereas it is negative when it is going down. According to Newton's second equation of motion, acceleration is directly linked to the force pulling on an object.

To learn more about Acceleration visit here:

brainly.com/question/30660316

#SPJ4

2) what would you expect the sky color to be at an altitude of 50km? why? what factors explain the lower atmospheres blue color?

Answers

At an altitude of 50km, you would expect the sky color to be a darker shade of blue, almost black.

This is because the atmosphere becomes thinner as you go higher in altitude, leading to less scattering of sunlight.

The lower atmosphere's blue color can be explained by several factors, including Rayleigh scattering and absorption of light. Rayleigh scattering occurs when sunlight interacts with gas molecules and small particles in the atmosphere. This scattering is more effective for shorter wavelengths of light, such as blue and violet.

However, our eyes are more sensitive to blue light, which is why we perceive the sky as blue. Additionally, some of the violet light is absorbed by the ozone layer, further contributing to the sky's blue appearance.

To know more about Rayleigh scattering click on below link :

https://brainly.com/question/30694232#

#SPJ11

a block is dropped from the top of a 450-foot platform. what is its velocity after 2 seconds? after 5 seconds?

Answers

After two seconds, the block has walked 257.6 feet. After 5 seconds, the block's velocity is 161 feet per second.

Where is the velocity formula?

V is the velocity, d is the distance, and t is the time in the equation V = d/t. Calculate the object's acceleration by dividing its mass by its force, then multiplying the result by the acceleration's duration.

s = ut + (1/2)at²

where s is the distance traveled, u is the initial velocity, a is the acceleration, and t is the time taken.

After 2 seconds:

s = 450 ft (height of the platform)

t = 2 s

a = g = 32.2 ft/s²

Using the equation, we get:

s = ut + (1/2)at²

450 ft = 0 + (1/2) * 32.2 ft/s² * (2 s)²

450 ft = 0 + 64.4 ft/s² * 4 s²

450 ft = 257.6 ft

s = 257.6 ft

v = u + at

v = 0 + 32.2 ft/s² * 2 s = 64.4 ft/s

s = 450 ft (height of the platform)

t = 5 s

a = g = 32.2 ft/s²

s = ut + (1/2)at²

450 ft = 0 + (1/2) * 32.2 ft/s² * (5 s)²

450 ft = 403 ft

s = 403 ft

v = u + at

v = 0 + 32.2 ft/s² * 5 s = 161 ft/s

To know more about velocity visit:-

https://brainly.com/question/17127206

#SPJ1

Bats use echolocation to navigate. They can emit ultrasonic waves with frequencies as high as 1.0×105 Hz.
What is the wavelength of such a wave? The speed of sound in air is 340 m/s.
A) 3.4×103 m
B) 3.4×10−3 m
C) 3.4×105 m
D) 3.4×107 m

Answers

The wavelength of the ultrasonic wave emitted by bats is B) 3.4×10−3 m.

How to find wavelength

To calculate the wavelength of the ultrasonic wave emitted by bats, we can use the formula:

Wavelength (λ) = Speed of sound (v) / Frequency (f)

Given that the frequency (f) is 1.0×10^5 Hz and the speed of sound (v) is 340 m/s, we can plug in the values:

λ = 340 m/s / 1.0×10^5 Hz

λ = 3.4×10^−3 m

So the correct answer is: B) 3.4×10^−3 m

Learn more about ultrasonic wave at

https://brainly.com/question/3359719

#SPJ11

Math the type of field with the correct object is associated with edulasic

Answers

Objects with charge: Electric and Magnetic fields, Objects with iron or steel: Magnetic field.  and Objects with mass: Gravitational field.

Electric fields are associated with objects that have an electric charge. Any object that has a charge, whether it is positive or negative, will create an electric field around it. This field can interact with other charged objects and cause a force between them.

Magnetic fields are associated with objects that have magnetic properties, such as iron or steel. These materials have tiny magnetic domains that can align in the presence of an external magnetic field, creating a net magnetic field. This magnetic field can interact with other magnetic objects and cause a force between them.

Gravitational fields are associated with objects that have mass. Any object that has mass, whether it is large or small, will create a gravitational field around it. This field can interact with other massive objects and cause a force between them. The strength of the gravitational field is proportional to the mass of the object creating the field.

Therefore, Charged objects exhibit electric and magnetic fields, whereas steel or iron objects exhibit a magnetic field.  and the gravitational field for mass-bearing objects.

To learn more about Gravitational force click:

brainly.com/question/29190673

#SPJ1

Determine the normal force at a section passing through point C
Determine the shear force at a section passing through point C
Determine the moment at a section passing through point C
P = 9 kN

Answers

We cannot provide a numerical answer for the moment at point C.

Explanation:

To determine the normal force, shear force, and moment at a section passing through point C, we can follow these steps:

1. Normal force at point C:
Since normal force is the force acting perpendicular to the surface, and there is no information given about any additional forces in the vertical or horizontal direction, the normal force at point C would be zero. This means there is no force acting perpendicular to the surface at point C.

Normal force at point C = 0

2. Shear force at point C:
Shear force is the force acting parallel to the surface. In this case, the only force acting on the structure is P = 9 kN. Since no other forces or reactions are mentioned, the shear force at point C is equal to the applied force P.

Shear force at point C = 9 kN

3. Moment at point C:
To determine the moment at point C, we need to know the distance from the point where the force is applied to point C. However, this information is not provided in the question. Assuming the distance is 'd', the moment at point C can be calculated using the formula:

Moment at point C = P * d

Without knowing the value of 'd', we cannot provide a numerical answer for the moment at point C.

Learn more about Shear force here: brainly.com/question/30763282

#SPJ11

For a concave mirror, an object located from infinity to the focal distance F (regions 1 and 2) forms a ________ (real upright), (real inverted), (virtual upright), (virtual inverted) image located on the same opposite side of the mirror as the object.

Answers

For a concave mirror, an object located from infinity to the focal distance F (regions 1 and 2) forms a real inverted image located on the same opposite side of the mirror as the object.

When an object is located from infinity to the focal distance of a concave mirror, the image formed is real and inverted. This is because the light rays converge to a point after reflecting off the mirror, creating an actual intersection of the light rays. The image is located on the same opposite side of the mirror as the object.

Therefore, an object located from infinity to the focal distance F (regions 1 and 2) forms a real inverted image located on the same opposite side of the mirror as the object.

To know more about concave mirror click here:

https://brainly.com/question/16075331

#SPJ11

A 22.0-μ F capacitor is connected to an ac generator with an rms voltage of 112 V and a frequency of 60.0 Hz.
Part A
What is the rms current in the circuit?
Express your answer to three significant figures and include appropriate units.

Answers

The rms current in the circuit consisting of the capacitor connected to the ac generator is 0.929 A.

To find the rms current in the circuit, we can use the formula:

I_rms = V_rms / X_c

Where:
I_rms is the rms current,
V_rms is the rms voltage (112 V),
X_c is the capacitive reactance.

To find X_c, we use the formula:

X_c = 1 / (2 * π * f * C)

Where:
f is the frequency (60.0 Hz),
C is the capacitance (22.0 μF).

First, let's calculate X_c:

X_c = 1 / (2 * π * 60.0 Hz * 22.0 * 10⁻⁶ F) ≈ 120.57 Ω

Now, we can find the rms current:

I_rms = 112 V / 120.57 Ω ≈ 0.929 A

So the rms current in the circuit is 0.929 A (to three significant figures).

Learn more about rms current here: https://brainly.com/question/31384351

#SPJ11

according to phil, the only way we know how to get accurate stellar masses is group of answer choices when they have iron absorption lines when they are incredibly dim when they are incredibly bright when they have hydrogen absorption lines when they are in a binary system

Answers

According to Phil, the only way we know how to get accurate stellar masses is when they are in a binary system.

In a binary system, two stars orbit each other, and their gravitational interaction can be observed and measured. This interaction allows astronomers to determine the stars' masses using Kepler's laws and other astrophysical methods. Other methods, such as using iron or hydrogen absorption lines, can provide information about the stars' compositions and temperatures, but not their masses with the same accuracy as binary systems.

To obtain accurate stellar masses, it is essential to observe stars in a binary system, as their gravitational interaction provides the most reliable measurements.

To know more about gravitational interaction visit:

brainly.com/question/11974484

#SPJ11

What is the frequency of the most intense radiation from an object with temperature 100degreeC? The constant i law is 0.0029 m.K. (c - 3.0 * 10^8 m/s) A)2.9 x 10^-5 Hz B)3.9 x 10^13 Hz C)1.0 x 10^13 Hz D)1.0 x 10^11 Hz

Answers

The frequency of the most intense radiation from an object with temperature 100°C is approximately 3.9 × 10^13 Hz, which is option B.

What is the Planck constant, put simply?

Planck's constant, also known as h, is a fundamental universal constant that defines the quantum nature of energy and connects the energy of a photon to its frequency. The constant value in the International System of Units (SI) is 6.626070151034 joule-hertz1 (or joule-seconds).

We can use Wien's displacement law to determine the wavelength of the most intense radiation from an object with temperature T. Wien's law is given by:

λ_max = b/T

where λ_max is the wavelength of the most intense radiation, T is the temperature in Kelvin, and b is Wien's displacement constant, which is given as 2.898 × 10⁻³m.K.

When we convert the 100°C temperature to Kelvin, we obtain:

[tex]T = (100 + 273) K = 373 K[/tex]

When we change the values in the above equation, we obtain:

λ_max = (2.898 × 10⁻³m.K) / 373 K = 7.77 × 10⁻⁶ m

The frequency of radiation can be determined using the formula:

c = f λ

where c is the speed of light in a vacuum, λ is the wavelength, and f is the frequency.

Substituting the values, we get:

f= c / λ_max = (3.0 × 10⁸ m/s) / (7.77 × 10⁻⁶m) = 3.86 × 10¹³ Hz

To know more about radiation visit:-

https://brainly.com/question/4072364

#SPJ1

A falling 1-N apple hits ground with a force of about A. 4 N B. 2 N C. 1 N D. 10 N E. need more information

Answers

A falling 1-N apple hits ground with a force of about C) 1 N

The force with which an object falls to the ground is determined by its weight, which is equal to its mass multiplied by the acceleration due to gravity. On Earth, the acceleration due to gravity is approximately 9.8 m/s^2. Since the weight of a 1-N apple is 1 N, the force with which it hits the ground would also be approximately 1 N.

Therefore, the correct answer is C. 1 N. However, it's worth noting that this answer assumes the apple is falling freely under the influence of gravity and there are no other forces acting on it, such as air resistance.

In reality, the force with which the apple hits the ground could vary depending on various factors such as height from which it falls, air resistance, and surface on which it falls.

For more questions like Force click the link below:

https://brainly.com/question/13191643

#SPJ11

find the average magnitude of the induced emf if the change in shape occurs in 0.165 s and the local 0.422- t magnetic field is perpendicular to the plane of the loop.

Answers

The average magnitude of the induced emf can be calculated using the formula. The magnitude of the induced emf is therefore 0.424 volts.

emf = -NΔΦ/Δt
where N is the number of turns in the loop, ΔΦ is the change in magnetic flux, and Δt is the time interval over which the change occurs. Since the magnetic field is perpendicular to the plane of the loop, the change in magnetic flux can be expressed as:
ΔΦ = B*A*cos(θ)*Δt
where B is the magnetic field strength, A is the area of the loop, θ is the angle between the magnetic field and the normal to the plane of the loop, and Δt is the time interval. In this case, θ = 90 degrees, so cos(θ) = 0. Therefore, the formula simplifies to:
ΔΦ = B*A*Δt
Substituting the given values, we get:
ΔΦ = (0.422 T)*(1 m^2)*(0.165 s) = 0.070 m^2·T·s
Since the loop has only one turn, N = 1. Therefore, the emf can be calculated as:
emf = -(ΔΦ/Δt) = -(0.070 m^2·T·s/0.165 s) = -0.424 V
The magnitude of the induced emf is therefore 0.424 volts.


To find the average magnitude of the induced emf in a situation where the change in shape occurs in 0.165 s and the local 0.422-T magnetic field is perpendicular to the plane of the loop, we can follow these steps:
1. Determine the initial magnetic flux (Φ₁) through the loop before the change in shape.
2. Determine the final magnetic flux (Φ₂) through the loop after the change in shape.
3. Calculate the change in magnetic flux (ΔΦ) by subtracting Φ₁ from Φ₂.
4. Calculate the average magnitude of the induced emf (ε) using Faraday's law: ε = |ΔΦ| / Δt, where Δt is the time taken for the change in shape (0.165 s).

Visit here to learn more about magnetic flux:

brainly.com/question/30858765

#SPJ11

if an object has a moment of inertia 26 kg·m2 and rotates with an angular speed of 80 radians/s, what is its rotational kinetic energy?

Answers

The rotational kinetic energy of the object is 83,200 Joules.

The rotational kinetic energy of an object is the energy it possesses due to its rotation. It can be calculated using the formula:

[tex]K_rot = (1/2) * I * ω^2[/tex]

where K_rot is the rotational kinetic energy, I is the moment of inertia of the object, and ω is its angular velocity.

In this case, the object has a moment of inertia of [tex]26 kg·m^2[/tex]and is rotating with an angular speed of 80 radians/s. Substituting these values into the formula gives:

[tex]K_rot = (1/2) * 26 kg·m^2 * (80 radians/s)^2[/tex]

= 83,200 J

Therefore, the rotational kinetic energy of the object is 83,200 Joules.

learn more about kinetic energy

https://brainly.com/question/26472013

#SPJ4

a 220 gg block on a 58.0 cmcm -long string swings in a circle on a horizontal, frictionless table at 65.0 rpm

Answers

The speed of a 220 g block hanging from a 58.0 cm long string is 3.94 m/s.

The question is "A 220 g block on a 58.0 cm -long string swings in a circle on a horizontal, frictionless table at 65.0 rpm. What is the speed of the block?"

Based on the information given, we know that there is a 220 g block hanging from a 58.0 cm long string.

The block is swinging in a circle on a horizontal, frictionless table at a rate of 65.0 revolutions per minute (rpm).

To find the speed of the block, we can use the formula:
v = 2πr/T
where v is the speed, r is the radius of the circle (which is the length of the string), and T is the period (the time it takes for the block to complete one revolution).

We can convert the rpm to revolutions per second (rps) by dividing by 60:
65.0 rpm / 60 s = 1.083 rps

The period is then:
T = 1 / 1.083 rps = 0.923 s

Using the length of the string as the radius, we have:
r = 58.0 cm = 0.58 m

Plugging these values into the formula, we get:
v = 2π(0.58 m) / 0.923 s = 3.95 m/s

Therefore, if a 220 g block on a 58.0 cm-long string swings in a circle on a horizontal, frictionless table at 65.0 rpm, then the speed of the block is 3.94 m/s.

Learn more about speed:

https://brainly.com/question/13943409

#SPJ11

A section of a sphere is mirrored on both sides. If the magnification of an object is +4.10 when the section is used a concave mirror, what is the magnification of an object at the same distance in front of the convex side?
_______________

Answers

Magnification is the relationship between the size of an image and the size of the item that created it in optics. The ratio of the image length to the object length, as measured in planes perpendicular to the optical axis, is referred to as linear magnification, also known as lateral or transverse magnification.

Since the section of the sphere is mirrored on both sides, the focal length of the concave mirror and the convex mirror will be the same. Therefore, we can use the mirror formula:
1/f = 1/u + 1/v
Where f is the focal length, u is the distance of the object from the mirror, and v is the distance of the image from the mirror.

When the section is used as a concave mirror, the magnification is given by:
m = -v/u = +4.10

Since the magnification is positive, the image is upright.

Now, when the same object is placed in front of the convex side at the same distance u, the image will be virtual and erect. The magnification is given by:
m = v/u

To find v, we need to first find f. We know that:
m = -v/u = +4.10
Therefore, v = -4.10u

Now, using the mirror formula, we can find f:
1/f = 1/u + 1/v
1/f = 1/u - 1/4.10u
1/f = (4.10 - 1)/4.10u
f = 4.10u/3.10
f = 1.32u

Now that we know the focal length, we can find the image distance v:
1/f = 1/u + 1/v
1/1.32u = 1/u + 1/v
v = -0.32u

Therefore, the magnification is: m = v/u = -0.32

So, the at the same distance in front of the convex side is -0.32.

Know more about the magnification of the object:

https://brainly.com/question/20486185

#SPJ11

The velocity potential for an Incompressible unliform flow parallel to the x-axis was given In class. Which of the following is the velocity potential for a uniform flow at an angle of attack a? φ(r,y)=Lycosa-rsina) cos α cos

Answers

The given expression is not a valid velocity potential for a uniform flow at an angle of attack α. The correct expression for the velocity potential of a uniform flow at an angle of attack α is φ(r, θ) = U(r cos θ + sin θ), where U is the velocity magnitude.

The velocity potential for a uniform flow at an angle of attack would not be the same as the one given in class for an incompressible uniform flow parallel to the x-axis. The formula given in the question, φ(r,y)=Lycosa-rsina) cos α cos appears to be a formula for a different scenario.

However, to answer the question directly, the terms "velocity", "parallel", and "potential" are all related to the concept of potential flow theory in fluid mechanics. Velocity potential refers to the scalar potential function that can be used to describe the velocity field in a possible flow, where the flow is irrotational and the pressure varies only with the position. Parallel refers to the direction of the flow, where in this case the flow is parallel to the x-axis. Potential refers to the energy per unit mass of the fluid, which is conserved in a potential flow.

In summary, the formula given in the question does not correspond to the velocity potential for a uniform flow at an angle of attack a. However, the terms "velocity", "parallel", and "potential" are all relevant to the concept of potential flow theory.

Learn more about velocity here:

https://brainly.com/question/17127206

#SPJ11

Other Questions
Sojourner Truth's speech "Ain't I a Woman?" became one of the most famousspeeches of the:A. women's rights and suffrage movements.B. women's rights and temperance movements.OC. abolition and women's rights movements.D. abolition and temperance movements. (a) Prove that the symbol < defines a relation on Z that is transitive but not reflexive and not symmetric. (b) Is < an antisymmetric relation? Prove your answer. Franklin D. Roosevelt information What does the root infer mean in the word inferior?After the change of management, the store began to offer inferior products. Best answer to this sentence freshbettersmallbelow Why are ketones less reactive than aldehydes? Ketones are less electron deficient due to donation from the two alkyl groups. Both (a) Ketones are more sterically hindered and (b) Ketones are less electron deficient due to donation from the two alkyl groups. Ketones are more sterically hindered. The statement is false; ketones are more reactive than aldehydes. neural mechanism of auditory localization that proposes that neurons are wired to each receive signals from the two ears Please help stuck on this question! The table below shows that the number of miles driven by Jamal is directly proportional to the number of gallons he used.Gallons UsedGallons Used Miles DrivenMiles Driven1414 5255254343 1612.51612.54747 1762.51762.5How many gallons of gas would he need to travel 296.25296.25 miles Nucleosomes are DNA wrapped around a protein core of 8 histone molecules and are involved in DNA packing. What helps histones bind to DNA?A. High proportions of negatively charged amino acids such as lysine and arginine.B. High proportions of positively charged amino acids such as lysine and arginineC. Low proportions of negatively charged amino acids such as lysine and arginineD. Low proportions of positively charged amino acids such as lysine and arginine le jeu doit-il toujours avoir un gagnant pour tre amusant Help math homework will brainlist a diverging lens with a focal length of -11 cm is placed 10 cm to the right of a converging lens with a focal length of 19 cm . an object is placed 36 cm to the left of the converging lens.If the final image is 22 cm from the diverging lens, where will the image be if the diverging lens is 39 cm from the converging lens?Is it to the left or right of the diverging lens? Under the buy one, get one free regime, the Budget line rotates counter-clockwise Price is reduced by 50% Budget set expands Indifference curve is changed The marginal rate of substitution (MRS) determines the rate at which a consumer is willing to substitute between two goods in order to achieve A higher level of satisfaction A lower level of satisfaction The same level of satisfaction None of the statements associated with this question are correct If widgets and gidgets are complements and both are normal goods, then an increase in the demand for widgets will result from a diverging lens has a focal length of magnitude 10 cm . at what object distance will the magnification be 0.40? Refer to the Lincolnville school District bus data. Select the variable referring to the number of miles traveled since the last maintenance, and then organize these data into a frequency distribution.What is a typical amount of miles traveled? What is the range?Comment on the shape of the distribution. Are there any outliers in terms of miles driven?Draw a cumulative relative frequency distribution. Forty percent of the buses were driven fewer than how many miles? How many buses were driven less than 10,500 miles?Draw a cumulative relative frequency distribution. Forty percent of the buses were driven fewer than how many miles? How many buses were driven less than 10,500 miles? A line segment has endpoints at (-12,19) and (13,- 11).What is the length of the line segment rounded to the nearest whole number? Joi Chatman recently received her finance degree and has decided to enter the mortgage broker business. Rather than working for someone else, she will open her own shop. Her cousin Mike has approached her about a mortgage for a house he is building. The house will be completed in three months, and he will need the mortgage at that time. Mike wants a 15-year, fixed-rate mortgage in the amount of $500,000 with monthly payments. Joi has agreed to lend Mike the money in three months at the current market rate of 4 percent. Because Joi is just starting out, she does not have $500,000 available for the loan; she approaches Ian Turnbell, the president of IT Insurance Corporation, about purchasing the mortgage from her in three months. Ian has agreed to purchase the mortgage in three months, but he is unwilling to set a price on the mortgage. Instead, he has agreed in writing to purchase the mortgage at the market rate in three months. There are Treasury bond futures contracts available for delivery in three months. A Treasury bond contract is for $100,000 in face value of Treasury bonds.QUESTIONS 1. What is the monthly mortgage payment on Mike's mortgage?2. What is the most significant risk Joi faces in this deal?3. How can Joi hedge this risk?4. Suppose that in the next three months the market rate of interest rises to 6 percent.a. How much will Ian be willing to pay for the mortgage?b. What will happen to the value of Treasury bond futures contracts? Will a long or short position increase in value?5. Suppose that in the next three months the market rate of interest falls to 3 percent.a. How much will Ian be willing to pay for the mortgage?b. What will happen to the value of T-bond futures contracts? Will a long or short position increase in value?6. Are there any possible risks Joi faces in using Treasury bond futures contracts to hedge her interest rate risk? Need help please about : Trace an argument.-- Arguing about the definition of a sandwich may sound silly, but it can have serious consequences. For example, sandwiches are sometimes taxed differently than non-sandwich breads, like plain unsliced bagels. Also, some shopping areas only allow one sandwich restaurant to be built on their property. That means that a restaurant may or may not be allowed to open in a particular location depending on how "sandwich" is defined. Therefore, it's important for everyone to agree on one definition for a sandwich. And let's be fair: a burrito is definitely a sandwich.What does the paragraph do? a) It suggests a new definition for sandwich. b) It summarizes an opposing claim. c) It explains why this issue is important. d) It provides evidence for why a burrito is a sandwich help qiuckly math homework If one were to adopt an epistemological and/or morally relativistic position, then one's ability to defend a moral or epistemological claim is: Harmed, even if you come off as tolerant. Neither benefited nor harmed, because nothing is knowable anyway. Who cares? A matter of opinion and completely irresolvable, but nevertheless desirable because tolerance is the absolute moral virtue, especially since it contradicts itself by being intolerant toward intolerance. Benefited, since you would not come off as intolerant.