A compound containing only sulfur and phosphorus is 50.9% S by mass; the molar mass is 252 g/mol. What are the empirical and molecular formulas of the compound?

Answers

Answer 1

The empirical formula of the compound is S₁P₁, and the molecular formula is S₄P₄.

What is the difference between empirical and molecular formulas?

The empirical formula gives the simplest whole-number ratio of atoms in a compound, whereas the molecular formula gives the actual number of atoms of each element in a molecule of the compound.

How did you determine the molecular formula of the compound from the empirical formula and molar mass?

The molecular formula can be found by dividing the molar mass of the compound by the empirical formula mass and rounding the result to the nearest whole number. The resulting number gives the subscript in the molecular formula.

To determine the empirical formula of the compound, we need to convert the mass percentages into mole ratios.

Assuming a 100 g sample of the compound, there would be 50.9 g of sulfur and 49.1 g of phosphorus.

The moles of sulfur can be calculated as: moles of S = (50.9 g S) / (32.06 g/mol S) = 1.588 mol S

The moles of phosphorus can be calculated as: moles of P = (49.1 g P) / (30.97 g/mol P) = 1.585 mol P

To find the empirical formula, we need to divide both the number of moles of sulfur and phosphorus by the smallest of the two.

So, the empirical formula is: S₁P₁

To determine the molecular formula, we need to know the molar mass of the compound. The given molar mass is 252 g/mol.

The empirical formula mass can be calculated as:

S₁P₁ = 1 x 32.06 g/mol S + 1 x 30.97 g/mol P = 63.03 g/mol

To find the molecular formula, we need to divide the molar mass of the compound by the empirical formula mass:

molecular formula mass / empirical formula mass = n

252 g/mol / 63.03 g/mol = 3.993

Round this to the nearest whole number to get the subscript in the molecular formula: S₄P₄

Learn more about empirical formula here:

https://brainly.com/question/14044066

#SPJ1


Related Questions

3. A solution of hydrochloric acid is made by dissolving hydrogen chloride gas in 100.0ml water. This solution neutralizes a 15ml sample of 0.10 mol/L sodium carbonate solution. a. What mass of hydrogen chloride gas was dissolved in 100.0ml of water? b. What volume of hydrogen chloride was this?​

Answers

Okay, here are the steps to solve this problem:

a) To neutralize 15ml of 0.10 mol/L sodium carbonate solution, the hydrochloric acid solution must contain 0.015 moles of HCl.

Since the HCl solution is made by dissolving HCl gas in 100ml water, we can calculate the moles of HCl gas dissolved in 100ml:

0.015 moles HCl / 15ml sodium carbonate solution = X moles HCl gas / 100ml HCl solution

X = 0.015 * (100/15) = 0.01 moles HCl gas

b) Molar volume of HCl gas at STP is 24.45 L/mol.

So the volume of 0.01 moles HCl gas is: 0.01 moles * 24.45 L/mol = 0.2445 L

Since the solution is made with this gas in 100ml water, the volume of HCl gas dissolved in 100ml water is 0.2445 L.

So the final answers are:

a) 0.01 moles of HCl gas

b) 0.2445 L of HCl gas

Please let me know if you have any other questions!

please help this is dus today please help ​

Answers

A percentage expressing the variation between a calculated/measured value and the anticipated/real value is known as a "calculated percent error."

What does this mean?

A positive numerical discrepancy implies that the assessed number exceeds what was expected, with negative values indicating the reverse.

When conducting an experiment, if an excessive percent error emerges it suggests potential errors or miscalculations in experimental design, data collection, or analysis.

This may mean unaccounted variables were present, and equipment/procedures require refinement. In opposition, lower percentages signal accuracy despite any limitations resulting from the human elements involved.

Read more about percent error here:

https://brainly.com/question/5493941

#SPJ1

A 346.9 mL sample of carbon dioxide was heated to 373 K. If the volume of the carbon dioxide sample at 373 K is 596.2 mL,
what was its temperature at 346.9 mL?
T =

Answers

Answer:

216.9 K

Explanation:

We can use the combined gas law to solve this problem:

(P1V1/T1) = (P2V2/T2)

where P is pressure, V is volume, and T is temperature. We can assume that the pressure is constant, since the problem doesn't mention any changes in pressure.

Let's label the initial temperature T1 and the final temperature T2, and plug in the given values:

(P1V1/T1) = (P2V2/T2)

V1 = 346.9 mL

V2 = 596.2 mL

T2 = 373 K

(P1 * 346.9 mL / T1) = (P1 * 596.2 mL / 373 K)

Simplifying and solving for T1:

T1 = (P1 * 346.9 mL * 373 K) / (P1 * 596.2 mL)

T1 = (346.9 * 373) / 596.2

T1 = 216.9 K

Therefore, the temperature of the carbon dioxide sample at 346.9 mL was 216.9 K.

Hope this helps and be sure to mark this as brainliest! :)


What quantity of heat (in J) would be required to convert 0.27 mol of a pure substance from a liquid at 50 °C to a gas at 113.0 °C?.
Cliquid = 1.45 J/mol C
Cgas = 0.65 J/mol *C
Tboiling = 88.5 °C
AHvaporization = 1.23 kJ/mol
Give your answer in Joules

Answers

Explanation:

First you have to heat the liquid from 50 to 88.5 C  to get it boiling...

  then you need to boil it all to a gas....the you have to heat it to 113 C

.27 mole  *

     (  (88.5 -50 C)*1.45 J / (mole-C)      <====heating the liquid

               +  1230 J / mole                              <====boiling to a gas

                       + (113 - 88.5 C) * .65 J/(mole C)    <=====heating the gas

                                = 351 .5 J                              <=====result

Calculation: 3. A new alloy of steel is 525 g at 100-C. It is dropped into 375 grams of water at 25 C. The final temperature changes to 55C, what is the specific heat of steel? ​

Answers

The specific heat capacity of the steel is 2 g/°C.

What is the specific heat capacity of the steel?

To determine the specific heat capacity of a particular sample of steel, the sample can be heated to a known temperature and then placed in contact with a known amount of water at a lower temperature.

We know that the heat lost by the steel is equal to the heat gained by the water.

Thus we have that;

-(525 * c * (55- 100)) = (375 * 4.2 * (55- 25)

23625c = 47250

c = 47250/23625

c = 2 g/°C

Learn more about specific heat capacity:https://brainly.com/question/29766819

#SPJ1

How many chloride ions are in 15.0 mL of a 2.5 molar solution of magnesium chloride? (MgCl2)

Answers

In 15.0 mL of a 2.5 molar magnesium chloride solution, there are approximately 4.51 × 10^{22} chloride ions.

How many chloride ions are there in MgCl_2?

An inorganic compound composed of one magnesium ion and two chloride ions.

We must first determine the number of moles of MgCl_2 in the solution,

moles of solute = concentration × volume (in liters)

Converting the solution's volume from milliliters to liters,

15.0 mL = 15.0 × 10^{-3} L

moles of MgCl_2 = 2.5 mol/L × 15.0 × 10^{-3} L = 0.0375 moles

The solution contains the following number of chloride ions:

number of Cl^{-} ions = 2 × moles of MgCl_2

Substitute the value of moles of MgCl_2,

number of Cl^{-} ions = 2 × 0.0375 moles = 0.075 moles

by using Avogadro's number:

number of Cl^{-} ions = 0.075 moles × 6.02 × 10^{23} ions/mol ≈ 4.51 × 10^{22} ions

To know more about the magnesium chloride visit:

https://brainly.com/question/31108110

#SPJ1

Give the number of significant figures indicated.

0.066

Answers

There are 3 significant figures, because after a . A 0 and the numbers after it count as sig figs

Calculate the mass of water produced when 1.03 g
of butane reacts with excess oxygen.

Answers

1.03 g of butane will yield 1.59 g of water when it reacts with too much oxygen.

What is mass?

The amount of matter in an item is measured by the fundamental physical quantity known as mass. It is a scalar quantity that is measured in grams (g) or kilograms (kg) (g). No matter where it is or what force is pushing against it, an object's mass always remains constant.

How do you determine it?

For butane and oxygen to burn, the chemical equation is balanced as follows:

2C4H10+13 O2→ 8 CO2+ 10 H2O

According to the equation, 1 mole of butane (C4H10) and 13/2 moles of oxygen (O2) combine to form 5 moles of water (H2O).

To begin with, we must count the butane moles that are present:

Mass of butane divided by its molar mass yields moles of butane.

1.03 g/58.12 g/mol is the formula for butane.

A mole of butane weighs 0.0177 mol.

Then, we can calculate the quantity of water created using the butane-to-water mole ratio:

Moles of water = [tex]\frac{5 mol H2O}{(1 mol C4H10 ×0.0177 mol C4H10)}[/tex] = 0.0885 mol.

Eventually, we can determine how much water was generated:

moles of water equal 0.0885 mol when 5 mol H2O is divided by 1 mol C4H10 and multiplied by 0.0177 mol C4H10.

Lastly, we can determine the mass of created water:

Water's mass is equal to its moles times its molar mass= 0.0885 mol × 18.02 g/mol = 1.59 g.

As a result, 1.03 g of butane will yield 1.59 g of water when it reacts with to moles of water equal 0.0885 mol when 5 mol H2O is divided by 1 mol C4H10 and multiplied by 0.0177 mol C4H10.

Lastly, we can determine the mass of created water:

Water's mass is equal to its moles times its molar mass = 0.0885 mol × 18.02 g/mol = 1.59 g.

As a result, 1.03 g of butane will yield 1.59 g of water when it reacts with too much oxygen.

To know more about mass, visit:

brainly.com/question/19694949

#SPJ1

A 0.675 mole sample of oxygen gas has a pressure of 2.50 atm at 50. °C. What volume of gas is present
in the sample? Show the rearranged ideal gas law solving for volume. Cancel units in work.

Answers

Considering the ideal gas law, the volume of gas present in the sample is 7.15122 L.

Definition of Ideal Gas Law

Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.

An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar gas constant:

P×V = n×R×T

Volume of gas in this case

In this case, you know:

P= 2.50 atmV= ?n= 0.675 molesR= 0.082 (atmL)/(molK)T= 50 C= 323 K (being 0 C= 273 K)

Replacing in the ideal gas law:

2.50 atm×V = 0.675 moles×0.082 (atmL)/(molK)× 323 K

Solving:

V= (0.675 moles×0.082 (atmL)/(molK)× 323 K)÷ 2.50 atm

V= 7.15122 L

Finally, the volume of gas is 7.15122 L.

Learn more about ideal gas law:

brainly.com/question/4147359

#SPJ1

Which of the following reactants lead to the fastest reaction?
A) Solid aluminum and oxygen
B) Sodium hydroxide and hydrogen chloride in water
C) Copper nitrate and ethanol in water
D) Solid barium chloride and sodium sulfate​

Answers

Solid aluminum and oxygen are the reactant that lead to the fastest reaction. Therefore, the correct option is option A.

Chemical reaction, the transformation of one or more chemicals (the reactants) into one or more distinct compounds (the products). Chemical elements or chemical compounds make up substances.

Chemical reactions constitute a fundamental component of life itself, as well as technology and culture. Burning fuels, melting iron, creating glass or pottery, brewing beer, making wine. Solid aluminum and oxygen are the reactant that lead to the fastest reaction.

Therefore, the correct option is option A.

To know more about chemical reaction, here:

https://brainly.com/question/29039149

#SPJ1

Watch the animation and select the interactions that can be explained by hydrogen bonding.
HF
is a weak acid neutralized by NaOH
.
HF
has a higher boiling point than HCl
.
CH4
molecules interact more closely in the liquid than in the gas phase.
Ice, H2O
, has a solid structure with alternating H−O
interactions.
H2Te
has a higher boiling point than H2S

Answers

The interactions that can be explained by hydrogen bonding are:

HF has a higher boiling point than HClIce, H₂O, has a solid structure with alternating H−O interactions.

Hydrogen bonding is a type of intermolecular force that occurs between a hydrogen atom in a polar molecule and a highly electronegative atom, such as nitrogen, oxygen, or fluorine, in a neighboring molecule. It is a relatively strong force and can significantly affect the physical and chemical properties of substances.

In the case of HF and HCl, both molecules are polar, but HF has a higher boiling point due to the stronger hydrogen bonding between its molecules. In ice, the hydrogen bonding between water molecules creates a crystal structure with a characteristic lattice arrangement.

To learn more about Hydrogen bonding, here

https://brainly.com/question/30885458

#SPJ1

Classify each of the following aqueous solutions as a nonelectrolyte, weak electrolyte, or strong electrolyte.
(a) PbCl2
(b) N(CH3)3
(c) CsOH
(d) H2S
(e) CrCl2
(f) Ni(CH3COO)2

Answers

Strong electrolyte: lead(II) chloride weak electrolyte trimethylamine Strong electrolyte: cesium hydroxide sulphide of hydrogen: a weak electrolyte, strong electrolyte chromium chloride Weak electrolyte: nickel(II) acetate

Is acetic acid an electrolyte that is weak?

Response and justification The fact that acetic acid has a low dissociation constant suggests that it is a weak acid. Acetic acid's restricted ability to ionise in an aqueous solution is a result of its low dissociation constant. With this in mind, acetic acid can be regarded as a weak electrolyte.

Is acid phosphoric a type of electrolyte?

Phosphoric acid is a useful electrolyte because of its low volatility, strong ionic conductivity, stability at high temperatures, carbon dioxide and carbon monoxide tolerance, and low flammability.

To know more about weak electrolyte visit:-

https://brainly.com/question/29771118

#SPJ1

How many carbon atoms are in 11.5 g C2H5OH?

Answers

There are approximately 3.02 x 10²³ carbon atoms in 11.5 g of [tex]C_{2}H_{5} OH[/tex]

To calculate the number of carbon atoms present in the 11.5g of [tex]C_{2}H_{5}OH[/tex]which is ethanol, we need to find and calculate the number of moles of ethanol present and convert moles to the number of carbon atoms by using Avogadro's number.

The molecular weight of [tex]C_{2}H_{5}OH[/tex] is =

no. of atoms x its atomic weight. So the molecular weight is,

(2 atoms of carbon x 12 g/mol )+ (5 atoms of hydrogen x 1 g/mol) + (1 atom of oxygen x 16 g/mol) + (1 atom of hydrogen x 1 g/mol ) =

24+10+16+1  ≅  47 g/mol

The number of moles of ethanol = given mass / molecular weight = 11.5g /47  g/mol =  0.2446 moles

Number of Carbon atoms = no. of moles of ethanol x Avogadro number x no. of carbon atoms in each molecule of ethanol =  0.2446 moles x 6.022 x 10²³ atoms/mol x 2 carbon atoms/molecule ≅ 3.02 x 10²³

To know more about Carbon Atom,

https://brainly.com/question/29486189

What is molecular weight of a substance given that 1.22g of the sample was vaporised in 100ml flask at 45°C and 687mmHg.​

Answers

To calculate the molecular weight of a substance, we can use the ideal gas law, which relates the pressure (P), volume (V), number of moles (n), and temperature (T) of a gas:

PV = nRT

where R is the gas constant. Rearranging this equation gives:

n = PV / RT

We can use this equation to calculate the number of moles of the substance in the vapor phase. Then, we can use the definition of molecular weight, which is the mass of one mole of the substance, to calculate the molecular weight.

First, let's convert the temperature and pressure to SI units:

Temperature: 45°C = 318.15 K
Pressure: 687 mmHg = 91.6 kPa

Next, let's calculate the number of moles of the substance in the vapor phase. We know that 1.22 g of the substance was vaporized in a 100 mL flask, which is equivalent to 0.1 L. Therefore, the concentration of the substance in the vapor phase is:

c = 1.22 g / 0.1 L = 12.2 g/L

We can convert this concentration to units of pressure using the ideal gas law:

PV = nRT

n/V = P/RT

n/V = (91.6 kPa) / (8.314 J/mol K * 318.15 K) = 0.0361 mol/L

Therefore, the number of moles of the substance in the vapor phase is:

n = (0.0361 mol/L) * 0.1 L = 0.00361 mol

Finally, we can calculate the molecular weight using the definition of molecular weight:

molecular weight = mass / moles

mass = 1.22 g

moles = 0.00361 mol

molecular weight = 1.22 g / 0.00361 mol = 337.4 g/mol

Therefore, the molecular weight of the substance is approximately 337.4 g/mol.

A sample of helium gas, He(g), is placed in a rigid cylinder sealed with a movable piston.
The temperature of the helium is 25.0°C. The volume of the helium is 300. milliliters and
the pressure is 0.500 atmosphere.

16) State, in terms of the average distance between the helium atoms, why the density of the gas increases when the piston is pushed farther into the rigid cylinder. [1]

17) Determine the volume of the helium gas when the pressure is increased to 1.50 atm and
the temperature remains at 25.0°C. [1]

Answers

(16) When the piston is pushed farther into the rigid cylinder, the volume available for the helium gas decreases. This leads to an increase in density because the gas molecules are packed into a smaller volume, resulting in a shorter average distance between the helium atoms; (17) volume = 100mL.

What will be the effect on density on pushing the piston  farther into the rigid cylinder?

When the piston is pushed farther into the rigid cylinder, the volume available for the helium gas decreases. This causes the average distance between the helium atoms to decrease as well. Since the volume available for the gas molecules to move in is reduced, they will collide more frequently with each other and with the walls of the container, leading to an increase in density.

(17) To determine the new volume of the helium gas, we can use the combined gas law:

(P1V1)/T1 = (P2V2)/T2

where P1, V1, and T1 are the initial pressure, volume, and temperature of the helium gas, and P2 and T2 are the final pressure and temperature.

Substituting the given values, we get:

(0.500 atm)(300. mL)/(298.15 K) = (1.50 atm)(V2)/(298.15 K)

Solving for V2, we get:

V2 = (0.500 atm)(300. mL)/(1.50 atm) = 100. mL

Therefore, the volume of the helium gas when the pressure is increased to 1.50 atm and the temperature remains at 25.0°C is 100mL.

Learn more about density here:

https://brainly.com/question/29775886

#SPJ1

Under what conditions would one mole of methane gas, ch4 , occupy the smallest volume?

Answers

Under the condition A. 273 K and 1.01 × [tex]10^{5}[/tex] Pa, one mole of methane gas, [tex]CH_{4}[/tex], occupy the smallest volume.

What is the smallest volume ?

The ideal gas law, PV = nRT, can be rearranged to solve for volume as V = nRT/P, where V is volume, n is the number of moles, R is the gas constant, T is temperature in Kelvin, and P is pressure.

To find the conditions under which one mole of methane gas occupies the smallest volume, we need to find the combination of temperature and pressure that results in the smallest volume.

Using the equation V = nRT/P, we can see that volume is inversely proportional to pressure, so we want the highest pressure possible. Therefore, we can eliminate choices A and C, which have lower pressures than B and D.

Next, we need to consider temperature. Using the same equation, we can see that volume is directly proportional to temperature, so we want the lowest temperature possible. Therefore, the correct choice is A, which has a temperature of 273 K, the lowest temperature of all the choices.

Therefore, the answer is A. 273 K and 1.01  × [tex]10^{5}[/tex]  Pa.

To know more about volume, visit:

https://brainly.com/question/14423944

#SPJ9

Complete question is: Under the 273 K and 1.01 × [tex]10^{5}[/tex] Pa condition, one mole of methane gas, [tex]CH_{4}[/tex], occupy the smallest volume.

Select the correct answer. A certain reaction has this form:aA bB. At a particular temperature and [A]0 = 2.00 x 10-2 Molar, concentration versus time data were collected for this reaction and a plot of ln[A]t versus time resulted in a straight line with a slope value of -2.97 x 10-2 min-1. What is the reaction order and rate law for this reaction? A. first, rate = k[A] B. first, rate = k[A]2 C. second, rate = k[A] D. second, rate = k[A]2 E. third, rate = k[A]

Answers

The reaction order and rate law for this reaction is first, rate = k[A]. Option A is correct.

The reaction order and rate law for a reaction can be determined from the slope of a plot of ln[A] versus time.

Given that the plot of ln[A] versus time resulted in a straight line with a slope value of -2.97 x 10⁻² min⁻¹, we can determine the reaction order and rate law as follows;

If the slope is equal to 1, the reaction order is 1st order.

If the slope is equal to 2, the reaction order is 2nd order.

If the slope is equal to 3, the reaction order is 3rd order.

From the given slope of -2.97 x 10⁻² min⁻¹, we can conclude that the reaction order is 1st order, because the slope value is equal to -1 times the reaction order. So, the reaction order for this reaction is 1st order.

The rate law for a 1st order reaction will be given by;

rate = k[A]

where [A] is the concentration of the reactant, and k is the rate constant.

Therefore,  first, rate = k[A].

Hence, A. is the correct option.

To know more about rate law here

https://brainly.com/question/30379408

#SPJ1

Sucrose (C12H22011) is combusted in air according to the following reaction:
C12H22011(s) + O2(g) = CO2(g) + H2O(l )
How many moles of carbon dioxide would be produced by the complete combustion of 38.5 grams of sucrose in the presence of excess oxygen?

Answers

Okay, let's break this down step-by-step:

1) The molecular formula for sucrose is C12H22011. This means each mole of sucrose contains 12 moles of carbon and 22 moles of hydrogen.

2) You are combusting 38.5 grams of sucrose. To convert grams to moles, we divide by the molar mass:

Molar mass of C12H22011 = 342.3 g/mol

So 38.5 g / 342.3 g/mol = 0.113 moles of sucrose

3) According to the combustion reaction, each mole of sucrose produces 12 moles of CO2.

So 0.113 moles of sucrose will produce 0.113 * 12 = 1.356 moles of CO2.

4) Round to the nearest whole number:

1 mole of CO2

Therefore, the complete combustion of 38.5 grams of sucrose in excess oxygen would produce 1 mole of carbon dioxide.

Let me know if you have any other questions!

Consider a sample containing 0.300 mol of a substance. How many atoms are in the sample if the substance is iron?

Answers

The number of atoms in a sample containing 0.300 mol of iron is 1.8066 x 10²³ atoms.

The number of atoms in a sample of a substance can be determined using Avogadro's number, which is equal to 6.022 x 10²³ particles per mole. The atomic mass of iron is 55.85 g/mol.

Therefore, 0.300 mol of iron will contain:

0.300 mol x 6.022 x 10³ atoms/mol = 1.8066 x 10²³ atoms

Avogadro's number is a fundamental constant in chemistry that represents the number of particles (atoms or molecules) in one mole of a substance.

To learn more about atoms follow the link:

https://brainly.com/question/29695801

#SPJ1

Macmillan Learning
A 346.9 mL sample of carbon dioxide was heated to 373 K. If the volume of the carbon dioxide sample at 373 K is 596.2 mL,
what was its temperature at 346.9 mL?
T=. K

Answers

Answer:

Explanation:

Use the Equation: [tex]\frac{V1}{T1}=\frac{V2}{T1} \\[/tex]

V1 = 346.9 mL

T1 = ? K

V2 = 596.2 mL

T2 = 373 L

This assumption can only be made when pressure is held constant.

[tex]\frac{346.9}{V1}=\frac{596.2}{373}, solve for V1\\ V1 = 217.0 K[/tex]

What is the temperature of 0.59 mol of gas at a pressure of 1.0 atm and a volume of 11.0 L? (Express the temperature in kelvins to two significant figures).

Answers

Answer:

T = 230 K

Explanation:

Simply use the equation: PV = nRT, where P is pressure, V is volume, n is moles, R is 0.0821, and T is temperature in kelvin

Place the values in

(1.0 atm)(11.0 L)=(0.59 moles)(0.0821 Lxatm/Kxmol)(T)

Solve for T = 230 K

For which of the following reactions does ΔH
o
rxn
= ΔH
o
f
?

(a) H2(g) + S(rhombic) → H2S(g)

(b) C(diamond) + O2(g) → CO2(g)

(c) H2(g) + CuO(s) → H2O(l) + Cu(s)

(d) O(g) + O2(g) → O3(g)

Answers

ΔH° = ΔHf° is true for two reactions which are ,

H₂(g) + S(rhombic) → H₂S(g)

C(diamond) + O₂(g) → CO₂(g)

Hence, option a and b are correct.

∆Hf is the enthalpy of formation, is the enthalpy when product is made from its constituent elements. Generally the enthalpy of formation is described as the standard reaction enthalpy for the formation of the compound from its elements (which may include atoms or molecules) in their most stable reference states at the chosen temperature (298.15K) and at 1bar pressure.

In a part, H₂S is formed by H₂ and S means it's constituent elements.

So, a is correct.

In b also, CO₂ is formed by C and O₂, so b is also correct. Hence, option a and b are correct.

Learn more about enthalpy of formation from the link given below.

https://brainly.com/question/28302300

#SPJ1

Determine which statements are consistent with Daltons atomic theory

Answers

Answer:

Explanation:

Dalton's atomic theory had several postulates, including:

1. All matter is made up of atoms, which are indivisible and indestructible.

2. All atoms of a given element are identical in mass and properties.

3. Compounds are formed by a combination of two or more different kinds of atoms.

4. A chemical reaction is a rearrangement of atoms.

Based on these postulates, the following statements are consistent with Dalton's atomic theory:

1. Chemical reactions involve the rearrangement of atoms to form new compounds.

2. Elements are composed of small, indivisible particles called atoms.

3. Atoms of the same element have the same mass and chemical properties.

4. A compound is made up of two or more different elements.

5. Atoms can neither be created nor destroyed in a chemical reaction.

However, the following statements are not consistent with Dalton's atomic theory:

1. Atoms are divisible into smaller particles.

2. Isotopes of the same element have different chemical properties.

3. The mass of an atom is distributed uniformly throughout the atom.

It's worth noting that while Dalton's atomic theory has been largely superseded by modern atomic theory, it remains an important historical milestone in the development of atomic theory.

50 points, and I’ll mark as brainliest!!!

Problem 1. Sea water contains dissolved salts at a total ionic concentration of about 1.13 mol×L–1. What pressure must be applied to prevent osmotic flow of pure water into sea water through a membrane permeable only to water molecules (at 25oC)?
Problem 2. What is the osmotic pressure of a solution prepared by adding 6.65 g of glucose to enough water to make 350 mL of solution at 35°C?
Problem 3. What is the osmotic pressure of a solution prepared by adding 9.0 g of glucose to enough water to make 450 mL of solution at 35°C?
Problem 4. What is the osmotic pressure of a solution prepared by adding 11.0 g of propanol to enough water to make 850 mL of solution at 25°C?
Problem 5. What is the osmotic pressure of a solution prepared by adding 65 g of glucose to enough water to make 35000 mL of solution at 15°C?

Answers

Problem 1:

The osmotic pressure can be calculated using the equation:

π = CRT

Where π is the osmotic pressure, C is the total concentration of dissolved particles, R is the gas constant (0.0821 L·atm/(mol·K)), and T is the temperature in Kelvin.

In this case, the total concentration of dissolved particles is 1.13 mol/L, and the temperature is 25°C, or 298 K.

π = (1.13 mol/L) (0.0821 L·atm/(mol·K)) (298 K) = 24.7 atm

Therefore, a pressure of 24.7 atm must be applied to prevent osmotic flow of pure water into seawater.

Problem 2:

The osmotic pressure of a solution can be calculated using the equation:

π = MRT

Where M is the molar concentration of the solution, R is the gas constant (0.0821 L·atm/(mol·K)), and T is the temperature in Kelvin.

First, we need to calculate the molar concentration of the glucose solution:

molar mass of glucose = 180.16 g/mol
moles of glucose = 6.65 g / 180.16 g/mol = 0.0369 mol
volume of solution = 350 mL = 0.350 L

Molar concentration = moles of solute / volume of solution = 0.0369 mol / 0.350 L = 0.105 M

Now we can calculate the osmotic pressure:

π = (0.105 M) (0.0821 L·atm/(mol·K)) (308 K) = 2.87 atm

Therefore, the osmotic pressure of the glucose solution is 2.87 atm.

Problem 3:

Using the same equation as in Problem 2:

molar mass of glucose = 180.16 g/mol
moles of glucose = 9.0 g / 180.16 g/mol = 0.0499 mol
volume of solution = 450 mL = 0.450 L

Molar concentration = moles of solute / volume of solution = 0.0499 mol / 0.450 L = 0.111 M

π = (0.111 M) (0.0821 L·atm/(mol·K)) (308 K) = 3.05 atm

Therefore, the osmotic pressure of the glucose solution is 3.05 atm.

Problem 4:

In this case, propanol is the solute, so we need to first calculate the molar concentration:

molar mass of propanol = 60.10 g/mol
moles of propanol = 11.0 g / 60.10 g/mol = 0.183 mol
volume of solution = 850 mL = 0.850 L

Molar concentration = moles of solute / volume of solution = 0.183 mol / 0.850 L = 0.215 M

π = (0.215 M) (0.0821 L·atm/(mol·K)) (298 K) = 4.84 atm

Therefore, the osmotic pressure of the propanol solution is 4.84 atm.

Problem 5:

molar mass of glucose = 180.16 g/mol
moles of glucose = 65 g / 180.16 g/mol = 0.361 mol
volume of solution = 35000 mL = 35.00 L

Molar concentration = moles of solute / volume of solution = 0.

Problem 1:

The osmotic pressure (π) can be calculated using the van 't Hoff equation: π = iMRT, where i is the van 't Hoff factor (1 for water), M is the molar concentration, R is the gas constant, and T is the temperature in Kelvin.

In this case, the molar concentration is 1.13 mol/L, and the temperature is 25°C = 298 K. So,

π = iMRT = (1)(1.13 mol/L)(0.08206 L·atm·K⁻¹·mol⁻¹)(298 K)

π = 29.8 atm

Therefore, a pressure of 29.8 atm must be applied to prevent osmotic flow of pure water into sea water through a membrane permeable only to water molecules at 25°C.

Problem 2:

The osmotic pressure of a solution can be calculated using the van 't Hoff equation: π = iMRT, where i is the van 't Hoff factor, M is the molar concentration, R is the gas constant, and T is the temperature in Kelvin.

First, we need to find the molar concentration of glucose in the solution. The molecular weight of glucose is 180.16 g/mol. So,

Molar concentration = (mass/volume) / (molecular weight)

Molar concentration = (6.65 g/0.35 L) / 180.16 g/mol

Molar concentration = 0.104 mol/L

Now, we can calculate the osmotic pressure:

π = iMRT = (1)(0.104 mol/L)(0.08206 L·atm·K⁻¹·mol⁻¹)(308 K)

π = 2.44 atm

Therefore, the osmotic pressure of the solution prepared by adding 6.65 g of glucose to enough water to make 350 mL of solution at 35°C is 2.44 atm.

Problem 3:

Using the same process as in Problem 2, we can find the molar concentration of glucose in the solution:

Molar concentration = (mass/volume) / (molecular weight)

Molar concentration = (9.0 g/0.45 L) / 180.16 g/mol

Molar concentration = 0.44 mol/L

Now, we can calculate the osmotic pressure:

π = iMRT = (1)(0.44 mol/L)(0.08206 L·atm·K⁻¹·mol⁻¹)(308 K)

π = 10.2 atm

Therefore, the osmotic pressure of the solution prepared by adding 9.0 g of glucose to enough water to make 450 mL of solution at 35°C is 10.2 atm.

Problem 4:

Propanol (C₃H₇OH) is a non-electrolyte, so its van 't Hoff factor is 1.

First, we need to find the molar concentration of propanol in the solution. The molecular weight of propanol is 60.10 g/mol. So,

Molar concentration = (mass/volume) / (molecular weight)

Molar concentration = (11.0 g/0.85 L) / 60.10 g/mol

Molar concentration = 0.178 mol/L

Now, we can calculate the osmotic pressure:

π = iMRT = (1)(0.178 mol/L)(0.08206 L·atm·K⁻¹·mol⁻¹(298 K)

π = 3.67 atm

Therefore, the osmotic pressure of the solution prepared by adding 11.0 g of propanol to enough water to make 850 mL of solution at 25°C is 3.67 atm.

Problem 5:

Using the same process as in Problem 2 and Problem 3, we can find the molar concentration of glucose in the solution:

Molar concentration = (mass/volume) / (molecular weight)

Molar concentration = (65 g/35,000 mL) / 180.16 g/mol

Molar concentration = 0.00177 mol/L

Now, we can calculate the osmotic pressure:

π = iMRT = (1)(0.00177 mol/L)(0.08206 L·atm·K⁻¹·mol⁻¹)(288 K)

π = 0.0398 atm

Therefore, the osmotic pressure of the solution prepared by adding 65 g of glucose to enough water to make 35,000 mL of solution at 15°C is 0.0398 atm.

What is the energy change for the following equation?

Answers

Answer:

1) -572 kJ/mol

2) -2220.7 kJ/mol

Explanation:

Multiply the bond enthalpies to take into account the amount of moles of each compound in the reaction. Then, to get the total change in energy/enthalpy in the reaction, subtract the reactant energy from the product energy.

1) 2(-286) = -572 kJ/mol

2) 4(-286) + -393.5(3) - -103.8 = -2220.7 kJ/mol

Calculate the molality of a solution prepared by dissolving 19.9 g of KCl in 750.0 mL of water.

Answers

Answer:

Explanation:

First, we need to calculate the moles of KCl:

Calculate the molar mass of KCl:

KCl = 39.10 g/mol (atomic weight of K) + 35.45 g/mol (atomic weight of Cl)

= 74.55 g/mol

Calculate the moles of KCl:

moles of KCl = mass of KCl / molar mass of KCl

= 19.9 g / 74.55 g/mol

= 0.267 mol

Next, we need to convert the mass of the solvent (water) from milliliters to kilograms:

Convert mL to L:

750.0 mL = 750.0 mL * (1 L / 1000 mL)

= 0.7500 L

Calculate the mass of water:

mass of water = volume of water x density of water

= 0.7500 L x 1000 g/L

= 750.0 g

Convert the mass of water to kilograms:

mass of water = 750.0 g / 1000 g/kg

= 0.7500 kg

Now we can calculate the molality of the solution:

molality = moles of solute / mass of solvent (in kg)

molality = 0.267 mol / 0.7500 kg

= 0.356 mol/kg

Therefore, the molality of the solution is 0.356 mol/kg.

PLS HELP!!!!!
Convert the following measurements. Show all work, including units that cancel.
9.3 mol SO3 -> liters

Answers

Answer: 9.3 mol of SO3 at STP occupies 20.2 liters.

Explanation: To convert from moles of a gas to liters, we need to use the ideal gas law:

PV = nRT

where:

P = pressure in atm

V = volume in liters

n = number of moles

R = gas constant (0.08206 L·atm/mol·K)

T = temperature in Kelvin

We can rearrange this equation to solve for V:

V = (nRT)/P

First, let's calculate the volume of 9.3 mol of an ideal gas at standard temperature and pressure (STP). STP is defined as 0°C (273.15 K) and 1 atm.

V = (9.3 mol * 0.08206 L·atm/mol·K * 273.15 K) / 1 atm

V = 20.2 L

Therefore, 9.3 mol of SO3 at STP occupies 20.2 liters.

Note that this assumes SO3 is an ideal gas, which may not be the case in reality.

A sample of sodium azide (NaN3), a compound used in automobile air bags, was thermally decomposed, and 15.3 mL nitrogen gas was collected over water at 25°C and 755 torr. Given the vapour pressure of water at 25°C is 23.6 torr, how many grams of nitrogen were collected? ​

Answers

A sample of sodium azide (NaN3), a compound used in automobile air bags, was thermally decomposed, and 15.3 mL nitrogen gas was collected over water at 25°C and 755 torr. 131.1g is the mass of nitrogen.

In physics, mass is a quantitative measurement of inertia, a basic characteristic of all matter. It essentially refers to a body of matter's resistance to changing its speed or location in response to the application for a force.

The change caused by a force being applied is smaller the more mass a body has. The kilogramme, which is defined approximately equal to 6.62607015 1034 joule second in terms of Planck's constant, is the unit of mass within the Internacional System of Units (SI).

P×V = n×R×T  

755×15.3 = n×0.0821×300

11551.5=n×24.63

n= 46.9

mass =  46.9×28=131.1g

To know more about mass, here:

https://brainly.com/question/19694949

#SPJ1

Explain to me please????​

Answers

Answer:Non polar.

Explanation:because water is polar because of its shape

Show that the following reaction obeys zero order kinetics, and find the rate constant and half-life. 10²x[A]/mol dm-3 13.80 11.05 8.43 5.69 3.00 Time/hr 0 10 20 30 40

Answers

The half life for the given reaction is 20s. The rate constant for the given zero order reaction can be given as 0.5mol L⁻¹s⁻¹.

According to the definition of a zero-order reaction, it is "a chemical reaction that occurs when the rate of response remains unchanged whether the percentage of the reactants increases or decreases." Since the rate increases according in proportion to the 0th magnitude of the reactant concentration, the rate at which these responses is always equivalent to the constant rate for the particular reactions.

k = 0.5mol L⁻¹s⁻¹

Half life is a/2K=3/2×40

                        = 20s

To know more about zero order reaction, here:

https://brainly.com/question/29811492

#SPJ1

Other Questions
The circumference of a circle is 137 in. What is the area, in square inches?Express your answer in terms of pi. suppose that na a changing by a = 12 j mol1 e5a.3(b) suppose that na a changing by a = 15 j mol1 . = 0.10nb and a small change in composition results in , by how much will b change? write the statement to display the name, breed and type of the pets sorted by the type in ascending order and breed in descending order within the breed. 1.2 g of the strong base naoh are dissolved in water and diluted to 50ml. what is the ph of this solution? The sale price of a bond issued at a premium is the present value of its principal amount at the market (effective) rate of interest.a. plus the present value of all future interest payments at the market (effective) rate of interestb. plus the present value of all future interest payments at the rate of interest stated on the bondc. minus the present value of all future interest payments at the market (effective) rate of interestd. minus the present value of all future interest payments at the rate of interest stated on the bond what is the probability that the mean play time in a random sample of 100 songsis less than 240 seconds (4 minutes)?round your answer to 4 decimal places.leave your answer in decimal form. if the downward-directed electric field of the earth is 150 n/c , how many excess electron charges must the water droplet have? Select the reagent for the following reaction. ? benzoic anhydride propyl benzoate Acid halide Anhydride Ester Amide Alcohol Amine Carboxylic acid or carboxylate (the conjugate base of carboxylic acid) A hanging Slinky toy is attached to a powerful battery and a switch. When the switch is closed so that the toy now carries current, does the Slinky compress or expand? Four regional less-than-truckload (LTL) carriers handle shipments traveling from Lexington, Kentucky to Springfield, Illinois. All four companies say that their normal service time to deliver these shipments is two business days. The four carriers compete with each other on the basis of price and service quality rating, as shown in the following table. The price reported in the table is the (oandiscounted) cost per hundredweight (cwt) of sending a 600-pound shipment from Lexington to Springfield at freight class 70. The service quality rating measures a carrier's loss and damage record and goes from 0 (poor quality) to 100 (high quality). Carrier Price $103.90 $98.50 $127.20 $11140 Service Quality Rating 95 91 98 94 Which of these LTL carriers are on the efficient frontier? a die is rolled 2 times and the sum of the spots is counted. this corresponds to drawing Types of South African Businesses and Market Share Omar is a potato farmer and the world potato market is perfectly competitive. The market price is $10 a basket. Omar sells 700 baskets a week and his marginal cost is $15 a basket. The market price falls to $4 a basket, and Omar cuts his output to 438 baskets a week. Omar's average variable cost and marginal cost fall to $4 a basket. Omar is _____.a. not maximizing profit because marginal revenue does not equal marginal cost,b. maximizing profit and he is making an economic profit,c. not maximizing profit because he is incurring an economic loss,d. maximizing profit and he is incurring an economic loss,e. not maximizing profit because he has cut his potato production. Mea drove 180 miles in 3 hourse if she continues at this rate how far will she drive in 12 hourse if u(t) = sin(9t), cos(9t), t and v(t) = t, cos(9t), sin(9t) , use formula 5 of this theorem to find d dt u(t) v(t) . the fact that 6-month-olds will look for long periods of time at toys they previously had only been able to touch suggests that infants The monthly charge (in dollars) for x kilowatt hours (kWh) of electricity used by a commercial customer is given by the following function. C(x) = 7.52 + 0.1079x if 0 x 10 19.22 + 0.1079x if 10 < x 750 20.795 + 0.1058x if 750 < x 1500 131.345 + 0.0321x if x > 1500 Find the monthly charges for the following usages. (Round your answers to the nearest cent.) (a) 10 kWh $ (b) 27 kWh $ (c) 9000 kWh the sudden comprensjhion of the double meaning of a humorous pun best illustrates Did you notice that the two methyl groups give separate signals in the spectrum. That must mean that the protons are not equivalent between these groups. Why is that? a) Because they have different chemical environments b) Because they are far away from each other in the molecule c) Because there's a ketone group in the molecule d) Because separate groups will give separate signals . find a formula for the general term an of the sequence a1 = 3 16, a2 = 5 25, a3 = 7 36, a4 = 9 49 assuming that the pattern continues.