Answer:
0.28
Step-by-step explanation:
Answer:
0.20
Step-by-step explanation:
i got it right on edge 2022
The table below gives the distribution of milk
chocolate M&M's
Color
NA
DO
Probability
0.13
0.13
0.14
0.16
0.20
0.24
If a candy is drawn at random, what is the probability
that it is not orange or red?
Answer: .67
Step-by-step explanation:
got it right on acellus
Please just give me the equation no one helped me last time
The length of a rectangle is two more than triple the width. If the perimeter is 166 inches, what are the dimensions of the rectangle?
The dimensions of the rectangle are length = 62.75 inches and width = 20.25 inches.
The given problem states that the length of a rectangle is two more than triple the width.
If the perimeter is 166 inches, what are the dimensions of the rectangle? Let's solve the problem,
Step 1
Given, The length of the rectangle = l
Width of the rectangle = w
The perimeter of the rectangle = 166 inches
The formula for the perimeter of a rectangle is,
Perimeter = 2(l + w)
So, 166 = 2(l + w)166/2 = l + w83 = l + w ----(1)
Step 2
According to the given problem, The length of a rectangle is two more than triple the width
Therefore,
l = 2 + 3w
Substitute this value in equation (1)
83 = (2 + 3w) + w
83 = 2 + 4w
83 - 2 = 4w
81 = 4w
w = 81/4
w = 20.25 (approx)
Step 3
We have width w = 20.25 inches.
We can find the length l by substituting w in l = 2 + 3w
So,
l = 2 + 3(20.25)
= 2 + 60.75
= 62.75
To know more about rectangle visit:
https://brainly.com/question/15019502
#SPJ11
AHH HELP ME PLS
Choose the values of x that are solutions to the inequality 5 <,
Select all that apply
Ax=2
= 6
E *=-7
F1 = 10
Answer:
x = 5
x = 6
x = 10
Step-by-step explanation:
NOTE: IT HAS TO BE MORE THAN 5 OR EQUAL TO 5
Please mark as brainliest
Have a great day, be safe and healthy
Thank u
XD
For which the value of f(x) = 2x^2 + 9 will be the same as g(x) = 3^x?
Answer:
For [tex]x = 3[/tex] the value of [tex]f(x) = 2\cdot x^{2}+9[/tex] will be the same of [tex]g(x) = 3^{x}[/tex].
Step-by-step explanation:
To determine for which value of [tex]x[/tex], we need to apply the following identity ([tex]f(x) = g(x)[/tex]) and solve numerically the resulting expression:
[tex]2\cdot x^{2}+9 = 3^{x}[/tex]
[tex]3^{x}-2\cdot x^{2}-9=0[/tex] (1)
A quick approach is using graphic tool and looking for the value of [tex]x[/tex] such that [tex]3^{x}-2\cdot x^{2}-9=0[/tex]. The result of the analysis is included below in the attached image. We find the following result:
[tex]x = 3[/tex]
For [tex]x = 3[/tex] the value of [tex]f(x) = 2\cdot x^{2}+9[/tex] will be the same of [tex]g(x) = 3^{x}[/tex].
A circuit containing an electromotive force (a battery), a capacitor with a capacitance of C farads (F), and a resistor with a resistance of R ohms (Ω). The voltage drop across the capacitor is Q/C, where Q is the charge (in coulombs), so in this case Kirchhoff's Law gives
RI+(Q/C)=E(t).
Since the current is I=dQ/dt, we have
R(dQ/dt)+(1/C)Q=E(t).
Suppose the resistance is 20Ω, the capacitance is 0.1F, a battery gives a constant voltage of E(t)=60V, and the initial charge is Q(0)=0C.
Find the charge and the current at time t.
Q(t)= ,
I(t)= .
The charge on the capacitor at time t is given by Q(t) = 6C - 6C * e^(-t/2)---- Eqn. (1) and the current at time t is given by I(t) = 3A * e^(-t/2) --- Eqn. (2).
How to determine the charge on the capacitorR(dQ/dt) + (1/C)Q = E(t)
The general solution of the above equation (when E(t) is a constant E) is:
Q(t) = CE + (Q(0) - CE)e^(-t/RC)
Plugging in the given values:
Q(t) = 0.1F * 60V + (0C - 0.1F * 60V)e^(-t/(20Ω * 0.1F))
Simplify this to get:
Q(t) = 6C - 6C * e^(-t/2) Eqn. (1)
The current is the derivative of the charge with respect to time:
I(t) = dQ(t)/dt = d/dt [6C - 6C * e^(-t/2)]
Taking the derivative and simplifying gives:
I(t) = 3A * e^(-t/2) Eqn. (2)
So the charge on the capacitor at time t is given by Eqn. (1) and the current at time t is given by Eqn. (2).
Read mroe on charge on the capacitor here: https://brainly.com/question/27393410
#SPJ1
What is the area?
O 90 square kilometers
O 45 square kilometers
O 27 square kilometers
O 36 square kilometers
The graph compares the heights and arm spans of players on a basketball team. The equation of the trend line that best fits the data is y = x + 2. Predict the arm span for a player who is 66 inches tall.
A. 69 inches
B. 67 inches
C. 64 inches
D. 68 inches
The correct answer is D. 68 inches. The trend line equation y = x + 2 indicates that there is a linear relationship between height and arm span. The coefficient of 1 on x suggests that, on average, for every increase of 1 inch in height, the arm span increases by 1 inch as well.
The intercept of 2 indicates that even at a height of 0 inches, there is a minimum arm span of 2 inches. By substituting the given height value into the equation, we can accurately predict the corresponding arm span
The equation of the trend line given is y = x + 2, where y represents the arm span and x represents the height of the players. We need to predict the arm span for a player who is 66 inches tall.
To make the prediction, we substitute x = 66 into the equation and solve for y:
y = 66 + 2
y = 68
Therefore, the predicted arm span for a player who is 66 inches tall is 68 inches.
For more such questions on equation
https://brainly.com/question/17145398
#SPJ8
Which one of these is in scientific notation?
(47 points)
Answer:
8.98 * 10^6 is the scientific notation
Step-by-step explanation:
Suppose f(x,y,z) = In(x + 2y2 + 3z"). Find the following partial derivatives. a. fx b. fz c.d2f/dzdx.
The partial derivatives are as follows :
(a) fx = 1 / (x + 2y^2 + 3z^3)
(b) fz = 3z^2 / (x + 2y^2 + 3z^3)
(c) d^2f/dzdx = -3z^2 / (x + 2y^2 + 3z^3)^2
To find the partial derivatives of the function f(x, y, z) = ln(x + 2y^2 + 3z^3), we differentiate with respect to each variable while treating the other variables as constants.
(a) Partial derivative with respect to x (fx):
To find fx, we differentiate the function f(x, y, z) with respect to x while treating y and z as constants. The derivative of ln(u) with respect to u is 1/u, so we have:
fx = d/dx ln(x + 2y^2 + 3z^3) = 1 / (x + 2y^2 + 3z^3)
(b) Partial derivative with respect to z (fz):
To find fz, we differentiate the function f(x, y, z) with respect to z while treating x and y as constants. Again, applying the derivative of ln(u), we get:
fz = d/dz ln(x + 2y^2 + 3z^3) = 3z^2 / (x + 2y^2 + 3z^3)
(c) Second partial derivative with respect to z and x (d^2f/dzdx):
To find d^2f/dzdx, we differentiate fz with respect to x while treating y and z as constants. We differentiate fx with respect to z while treating x and y as constants, and then take the derivative of the result with respect to z. It can be written as:
d^2f/dzdx = d/dx (d/dz ln(x + 2y^2 + 3z^3)) = d/dx (3z^2 / (x + 2y^2 + 3z^3))
= -3z^2 / (x + 2y^2 + 3z^3)^2
To learn more about partial derivatives visit : https://brainly.com/question/31280533
#SPJ11
Find all the missing sides and angles of this triangle.
A
7
B
70°
C
Which graph shows a function where f(2)=4?
Answer:
A
Step-by-step explanation:
Answer:
the one that is a horizontal straight line on x axis that lies on 2
Guess the rule and add the next number in the sequence.
1 6 16 31 51
Proving a parallelogram side theorem.
Given ABCD is a parallelogram.
Prove: AB≈CD and BC ≈ DA
Answer:
just did it on edg, 2021
Hence, AB≈CD and BC ≈ DA
What is a parallelogram?
A four sided closed figure with all its sides parallel to its opposite side.
Consider two triangles ΔABD and ΔBCD
∠BCD=∠BCA( opposite angles are always equal)
∠ABD=∠BDC (AD||BC)
∠ADB=∠DBC(AD||BC)
ΔABD ≅ ΔBCD
AB≈CD by CPCTC
BC ≈ DA by CPCTC
Hence, proved
Learn more about triangles
https://brainly.com/question/1058720
#SPJ2
Select all the correct answers. 6^3×2^6 Which expressions are equal to 2^3 ? 2^6×3^3; 6^3; 12^3; 2^3×3^3; 12^6
Answer:
12^3
Step-by-step explanation:
Answer:
12 ^3
Step-by-step explanation:
Find the eighth term of a geometric sequence for which a,3 = 35 and r= 7.
Answer:
588245.
Step-by-step explanation:
nth term = an = a1 r^(n-1) where a1 = the first term
a3 = 35 = a1 7^(3 - 1)
35 = a1* 49
a1 = 35/49 = 5/7
So the 8th term = (5/7)* (7)^7
= 588245
How do I solve this problem. I have to find the missing side lengths and lease my sender as radicals in simplest form
Answer:
x = y = 2√2
Step-by-step explanation:
Find the diagram attached
To get the unknown side x and y, we need to use the SOH CAH TOA identity
Opposite side = x
Adjacent = y
Hypotenuse = 4
Sin theta = opposite/hypotenuse
sin 45 = x/4
x = 4 sin 45
x = 4 * 1/√2
x = 4 * 1/√2 * √2/√2
x = 4 * √2/√4
x = 4 * √2/2
x = 2√2
Similarly;
cos theta = adjacent/hypotenuse
cos 45 = y/4
y = 4cos45
y = 4 * 1/√2
y = 4 * 1/√2 * √2/√2
y = 4 * √2/√4
y = 4 * √2/2
y = 2√2
The amount of carbon-14 in an object is given by y = ae– 0.00012t where a is the initial amount of carbon and t is the age in years. A fossil bone contains 25% of its original carbon-14. What is the approximate age of the bone?
Answer:
The approximate age of the bone is approximately 11552 years.
Step-by-step explanation:
The current proportion of carbon-14 with respect to its original amount is defined by following formula:
[tex]\frac{y}{a} = e^{-0.00012\cdot t}[/tex] (1)
Where:
[tex]y[/tex] - Current amount of carbon-14, no unit.
[tex]a[/tex] - Initial amount of carbon-14, no unit.
[tex]t[/tex] - Time, in years.
If we know that [tex]\frac{y}{a} = 0.25[/tex], then the approximate age of the bone is:
[tex]t = -8333.333\cdot \ln \frac{y}{a}[/tex]
[tex]t\approx 11552.453\,yr[/tex]
The approximate age of the bone is approximately 11552 years.
Test the claim that the proportion of people who own cats is significantly different than 90% at the 0.02 significance level.
The null and alternative hypothesis would be:
H0:μ≥0.9H0:μ≥0.9
H1:μ<0.9H1:μ<0.9
H0:p=0.9H0:p=0.9
H1:p≠0.9H1:p≠0.9
H0:μ=0.9H0:μ=0.9
H1:μ≠0.9H1:μ≠0.9
H0:p≥0.9H0:p≥0.9
H1:p<0.9H1:p<0.9
H0:μ≤0.9H0:μ≤0.9
H1:μ>0.9H1:μ>0.9
H0:p≤0.9H0:p≤0.9
H1:p>0.9H1:p>0.9
The test is:
left-tailed
right-tailed
two-tailed
Based on a sample of 500 people, 82% owned cats
The p-value is:__________ (to 2 decimals)
Based on this we:
Fail to reject the null hypothesis
Reject the null hypothesis
The null and alternative hypotheses for testing the claim that the proportion of people who own cats is significantly different from 90% at the 0.02 significance level are:
H0: p = 0.9 (proportion of cat owners is 90%)
H1: p ≠ 0.9 (proportion of cat owners is not equal to 90%)
Based on a sample of 500 people, where 82% owned cats, we can conduct a hypothesis test to determine the p-value at the 0.02 significance level. The p-value is the probability of obtaining a sample proportion as extreme as the observed proportion (82%) assuming the null hypothesis is true.
The p-value for this test is the probability of observing a sample proportion as different from 90% as 82%. Since the p-value is not provided in the question, it needs to be calculated based on the sample data and the assumed null distribution.
If the p-value is less than 0.02, we would reject the null hypothesis and conclude that the proportion of cat owners is significantly different from 90%. However, if the p-value is greater than or equal to 0.02, we would fail to reject the null hypothesis and conclude that there is not enough evidence to suggest a significant difference in the proportion of cat owners from 90%.
Without the calculated p-value, we cannot make a definitive conclusion about rejecting or failing to reject the null hypothesis.
To learn more about null hypothesis click here: brainly.com/question/30821298
#SPJ11
jada says she can write an equivalent fraction with a denominator of 100 by multiplying 5 by 5, then writing the number of hundredths as a decimal
Managers rate employees according to job performance and attitude. The results for several randomly selected employees are given below. Performance (x) / 8/3/8/8/3/5/1/9/ 5 / 8 Attitude (y) / 4 / 9 / 10 / 3 / 4 / 4 / 10 / 9/6/7 Use the given data to find the equation of the regression line. Enter the slope. (Round your answer to nearest thousandth.)
The equation of the regression line for the relationship between job performance (X) and attitude ratings (Y) is Y = 57.124 + 0.352X.
To find the equation of the regression line, we will use a technique called simple linear regression. This method allows us to model the relationship between two variables using a straight line equation. In our case, the variables are job performance (denoted as Perf) and attitude ratings (denoted as Att).
The equation of a regression line is typically represented as: Y = a + bX
To find the equation of the regression line, we need to calculate the values of 'a' and 'b' using the given data points. Let's go step by step:
Mean of Perf (X): (59 + 63 + 65 + 69 + 58 + 77 + 76 + 69 + 70 + 64) / 10 = 66.0
Mean of Att (Y): (75 + 64 + 81 + 79 + 78 + 84 + 95 + 80 + 91 + 75) / 10 = 80.2
Perf differences:
(59 - 66.0), (63 - 66.0), (65 - 66.0), (69 - 66.0), (58 - 66.0), (77 - 66.0), (76 - 66.0), (69 - 66.0), (70 - 66.0), (64 - 66.0)
Att differences:
(75 - 80.2), (64 - 80.2), (81 - 80.2), (79 - 80.2), (78 - 80.2), (84 - 80.2), (95 - 80.2), (80 - 80.2), (91 - 80.2), (75 - 80.2)
Squared Perf differences:
(-7)², (-3)², (-1)², (3)², (-8)², (11)², (10)², (3)², (4)², (-2)²
Squared Att differences:
(-5.2)², (-16.2)², (0.8)², (-1.2)², (-2.2)², (3.8)², (14.8)², (-0.2)², (10.8)², (-5.2)²
Step 3: Calculate the sum of the squared Perf differences and the sum of the squared Att differences.
Sum of squared Perf differences:
7² + 3² + 1² + 3² + 8² + 11² + 10² + 3² + 4² + 2² = 369
Sum of squared Att differences:
5.2² + 16.2² + 0.8² + 1.2² + 2.2² + 3.8² + 14.8² + 0.2² + 10.8² + 5.2² = 734.72
Sum of Perf differences multiplied by Att differences:
(-7)(-5.2) + (-3)(-16.2) + (-1)(0.8) + (3)(-1.2) + (-8)(-2.2) + (11)(3.8) + (10)(14.8) + (3)(-0.2) + (4)(10.8) + (-2)(-5.2) = 129.8
Calculate the slope (b) using the following formula:
b = sum of Perf differences multiplied by Att differences / sum of squared Perf differences
b = 129.8 / 369 = 0.352
a = Mean of Att (Y) - b * Mean of Perf (X)
a = 80.2 - 0.352 * 66.0 = 57.124
Y = a + bX
Y = 57.124 + 0.352X
To know more about regression here
https://brainly.com/question/14184702
#SPJ4
Find the solution of the initial-value problem y'" – 84" + 16Y' – 128y = sec 4t, y(0) = 2, y'(0) = 2, y"0) = 88. A fundamental set of solutions of the homogeneous equation is given by the functions: yı(t) = eat, where a = yz(t) = yz(t) = A particular solution is given by: Y(t) = ds-yi(t) to + ]) •yz(t) + • Y3(t) t) Therefore the solution of the initial-value problem is: y(t)=___ +Y(t).
The solution of the initial-value problem is:
y(t) = C1e^(-4t) + C2e^(4t) + Y(t)
where C1 and C2 are constants determined by the initial conditions, and Y(t) is the particular solution given by the formula provided.
To find the solution of the initial-value problem, we can use the given fundamental set of solutions of the homogeneous equation and the particular solution.
The fundamental set of solutions is y1(t) = e^at, where a = -4 and y2(t) = e^bt, where b = 4.
The particular solution is Y(t) = ds-y1(t) to + y2(t) • y3(t), where y3(t) is another function that satisfies the non-homogeneous equation.
Combining the solutions, the general solution of the non-homogeneous equation is y(t) = C1e^(-4t) + C2e^(4t) + Y(t), where C1 and C2 are constants
To determine the specific solution, we need to use the initial conditions. Given y(0) = 2, y'(0) = 2, and y''(0) = 88, we can substitute these values into the general solution and solve for the constants C1 and C2.
Finally, the solution of the initial-value problem is y(t) = C1e^(-4t) + C2e^(4t) + Y(t), where C1 and C2 are the constants determined from the initial conditions and Y(t) is the particular solution.
Learn more about initial-value problem:
https://brainly.com/question/30782698
#SPJ11
A Ferris wheel has a radius of 65 feet. What is the circumference of the wheel? (This is the distance each passenger will travel in one complete revolution.)
Group of answer choices
408.2 ft
204.1 ft
102.05 ft
304.6 ft
A population of beetles are growing according to a linear growth model. The initial population (week 0) is Po 4, and the population after 7 weeks is Pr = 67. Find an explicit formula for the beetle population after n weeks. Pn = After how many weeks will the beetle population reach 256? ___ weeks
The explicit formula for the beetle population after n weeks can be determined using the given data. The formula is Pn = 4 + (n - 0) * ((67 - 4) / (7 - 0)), where Pn represents the population after n weeks. It will take 28 weeks for the beetle population to reach 256.
The linear growth model assumes that the beetle population increases by a fixed amount each week. To find the explicit formula, we start by calculating the growth rate per week. We know that in 7 weeks, the population increased from 4 to 67. The change in population is 67 - 4 = 63, and the change in weeks is 7 - 0 = 7. Therefore, the growth rate per week is (67 - 4) / (7 - 0) = 9.
Using this growth rate, we can express the population after n weeks using the formula Pn = 4 + (n - 0) * 9. This simplifies to Pn = 4 + 9n. Now, to determine how many weeks it takes for the population to reach 256, we substitute Pn = 256 into the formula. Solving for n, we get 256 = 4 + 9n. By rearranging the equation, we find 9n = 252, and dividing both sides by 9 yields n = 28. Therefore, it will take 28 weeks for the beetle population to reach 256.
Learn more about linear here:
https://brainly.com/question/31510526
#SPJ11
Can someone plz help me with this I need to get an 92 choose all that apply
Step-by-step explanation:
54, 54, 72
[tex]180 - 2 \times 54 = \\ = 180 - 108 = \\ = 72[/tex]
Write the equation of the line in slope- intercept form(y=mx+b)
Answer:
-1/3x + 5 = y
Step-by-step explanation:
Which of the following is the first step in the decision-making process?
a. Analyze the problem and its causes
b. Generate alternatives
c. Solicit and analyze feedback
d. Identify the problem
The correct answer is D to identify the problem.
What is the decision-making process?
The decision-making process is the method by which a judgment or a decision is reached. It involves identifying the problem or decision to be made, analyzing potential courses of action, evaluating alternatives, and selecting the best possible solution.
It's a structured process that assists in making effective decisions, and it can be useful in both personal and professional contexts. What is the first step in the decision-making process?
The first step in the decision-making process is to identify the problem. This entails defining the issue that requires a decision to be made. It's a crucial step because without accurately identifying the issue or problem, it's impossible to make the best decision.
Analyzing the problem and its causes (A), generating alternatives (B), and soliciting and analyzing feedback (C) are all critical components of the decision-making process, but they come after the problem has been identified.
As a result, option D, identifying the problem, is the first step in the decision-making process.
To know more about the decision-making process visit :
https://brainly.in/question/13545487
#SPJ11
8. (08.02 lc)complete the square to transform the expression x2 6x 5 into the form a(x − h)2 k. (1 point)(x 6)2 4(x 6)2 − 4(x 3)2 − 4(x 3)2 4
The expression [tex]x^{2}[/tex] + 6x + 5 can be completed by transforming it into the form a(x - h)^2 + k.
To complete the square, we want to rewrite the quadratic expression x^2 + 6x + 5 in a perfect square trinomial form. We can achieve this by adding and subtracting a constant term inside the parentheses.
Starting with the given expression: x^2 + 6x + 5
To complete the square, we need to take half of the coefficient of x and square it. Half of 6 is 3, and squaring 3 gives us 9. So, we add and subtract 9 inside the parentheses:
x^2 + 6x + 5 = (x^2 + 6x + 9 - 9) + 5
Now, we can group the first three terms as a perfect square trinomial and simplify:
(x^2 + 6x + 9 - 9) + 5 = (x + 3)^2 - 9 + 5
Simplifying further, we have:
(x + 3)^2 - 4
Therefore, the expression x^2 + 6x + 5 can be written in the form a(x - h)^2 + k as (x + 3)^2 - 4.
Learn more about quadratic expression here:
https://brainly.com/question/10025464
#SPJ11
Determine whether true or false
(i) Let X be a random variable, then Cov (X,X) = VAR(X).
(ii) The mean and standard deviation of an exponential random
variable are equal.
(iii) The joint PDF fXY(x,y)
(i) True.
(ii) False.
The first statement is true.
It is a well-known fact that for any random variable X, the covariance of X with itself is equal to the variance of X. This can be easily shown by applying the definition of covariance and variance and using the fact that the correlation between X and X is always 1.
The second statement is false. The mean of an exponential random variable is equal to 1/λ, where λ is the rate parameter. On the other hand, the standard deviation of an exponential random variable is equal to 1/λ as well. These two values are not equal, unless λ=1. Therefore, the statement is false.
In summary, the first statement is true, while the second statement is false. The covariance of a random variable with itself is equal to its variance, but the mean and standard deviation of an exponential random variable are not equal unless λ=1.
To learn more about standard deviations click brainly.com/question/14747159
#SPJ11
Suppose a brewery has a filing machine that is 12 ounce bottles of beer, it is known that the amount of beer poured by this filing machine follows a normal dutiniowa mean of 12.10 and a standard deviation of .05 ounce. Find the probability that the bottle contains between 12.00 and 12.06 ounces
Answer:
Let X be the random variable representing the amount of beer poured by the filling machine. Since X follows a normal distribution with mean μ = 12.10 and standard deviation σ = 0.05, we can use the standard normal distribution to find the probability that a bottle contains between 12.00 and 12.06 ounces.
First, we need to standardize the values 12.00 and 12.06 by subtracting the mean and dividing by the standard deviation:
z1 = (12.00 - 12.10) / 0.05 = -2 z2 = (12.06 - 12.10) / 0.05 = -0.8
Now we can use a standard normal distribution table to find the probability that a standard normal random variable Z is between -2 and -0.8:
P(-2 < Z < -0.8) = P(Z < -0.8) - P(Z < -2) ≈ 0.2119 - 0.0228 ≈ 0.1891
So, the probability that a bottle contains between 12.00 and 12.06 ounces of beer is approximately 0.1891.
Step-by-step explanation: