the quadrilateral with vertices A(0, 0), B(4, 3), C(13, -9), and D(9, -12) is a parallelogram and a rhombus
what is quadrilateral ?
A quadrilateral is a polygon with four sides and four vertices. It is a type of geometric shape that can have various properties and characteristics depending on the lengths of its sides, the angles between those sides, and the positions of its vertices.
In the given question,
To graph the quadrilateral, we can plot the given points on a coordinate plane and connect them in order.
Quadrilateral ABCD
To prove what type of quadrilateral it is, we can use both slope and distance measurements.
First, we can calculate the slopes of each side of the quadrilateral:
Slope of AB: (3 - 0)/(4 - 0) = 3/4
Slope of BC: (-9 - 3)/(13 - 4) = -12/9 = -4/3
Slope of CD: (-12 - (-9))/(9 - 13) = -3/-4 = 3/4
Slope of DA: (0 - (-12))/(0 - 9) = 12/9 = 4/3
We can see that the slopes of opposite sides are equal: AB and CD have the same slope of 3/4, and BC and DA have the same slope of -4/3. This tells us that the quadrilateral is a parallelogram.
Next, we can calculate the distances of each side of the quadrilateral:
Distance between A and B: √((4 - 0)² + (3 - 0)²) = √(16 + 9) = √25 = 5
Distance between B and C: √((13 - 4)² + (-9 - 3)²) = √(81 + 144) = √225 = 15
Distance between C and D: √((9 - 13)² + (-12 - (-9))²) = √(16 + 9) = √25 = 5
Distance between D and A: √((0 - 9)² + (0 - (-12))²) = √(81 + 144) = √225 = 15
We can see that opposite sides have the same length: AB and CD have a length of 5, and BC and DA have a length of 15. This tells us that the parallelogram is also a rhombus.
Therefore, we have proved that the quadrilateral with vertices A(0, 0), B(4, 3), C(13, -9), and D(9, -12) is a parallelogram and a rhombus
To know more about quadrilateral , visit:
https://brainly.com/question/29934440
#SPJ1
URGENT!!! Will give brainliest
You are given the following set of data. Its mean is 306.
250, 295, 315, 325, 345
If 25 is subtracted from each value, what will be the new mean?
A. 306
B. 290
C. 315
D. 281
The new mean is 281.
What is mean?
In mathematics, particularly in statistics, there are many different mean types. Each mean aids in the summary of a particular set of data, frequently serving to assess the overall importance of a given data set. The three different varieties of Pythagorean means are the arithmetic mean, geometric mean, and harmonic mean.
Here, we have
Given: You are given the following set of data. Its mean is 306.
250, 295, 315, 325, 345
If 25 is subtracted from each value, then we have to find the new mean.
Here, the number of elements is 5.
If 25 is subtracted from each value, the new mean can be evaluated as below,
New mean = (Old mean × 5 - 25 × 5)/5
⇒ (306 × 5 - 25 × 5)/5
= (1530 - 125)/5
= 281
Hence, the new mean is 281.
To learn more about the mean from the given link
https://brainly.com/question/1136789
#SPJ1
using the parallelogram formed by PiPa = 5 1 + 7 j + 5 k and Pi P3 = 5 1 as a base, create a parallelepiped with side Pi P5 where Pi = (0,0,0) and P5 (1,0, 5). Find the volume of this parallelepiped. Volume of parallelepiped
The volume of the parallelepiped is approximately 130.12 cubic units.
To create the parallelepiped, we need to find the vectors PiP3 and PiP5.
PiP3 = P3 - Pi = (5,1,0) - (0,0,0) = (5,1,0)
PiP5 = P5 - Pi = (1,0,5) - (0,0,0) = (1,0,5)
We can use the cross product of these two vectors to find the area of the base:
PiP3 x PiP5 = (5,1,0) x (1,0,5) = (-5,-25,1)
The magnitude of this cross product gives us the area of the base:
|PiP3 x PiP5| = √(5² + 25² + 1²) = √651
To find the volume of the parallelepiped, we need to multiply the area of the base by the height, which is the length of the PiP5 vector:
Volume = |PiP3 x PiP5| × |PiP5| = √651 × √26 = √16926 ≈ 130.12
Therefore, the volume of the parallelepiped is approximately 130.12 cubic units.
To learn more about volume here:
brainly.com/question/13338592#
#SPJ11
Need help answering
Answer:
y = 2x + 4
Step-by-step explanation:
The equation is y = mx + b
m = the slope
b = y-intercept
Slope = rise/run or (y2 - y1) / (x2 - x1)
Pick 2 points (-2,0) (0,4)
We see the y increase by 4 and the x increase by 2, so the slope is
m = 4/2 = 2
Y-intercept is located at (0,4)
So, the equation is y = 2x + 4
Investors commonly use the standard deviation of the monthly percentage return for a mutual fund as a measure of the risk for the fund; in such cases, a fund that has a larger standard deviation is considered more risky than a fund with a lower standard deviation. The standard deviation for the American Century Equity Growth fund and the standard deviation fo the Fidelity Growth Discovery fund were recently reported to be 15.0% and 18.9% respectively. Assume that each of these standard deviations is based on a sample of 61 months of returns. Using a significance level of α = .05, do the sample results support the conclusion that the Fidelity fund has a larger population variance than the American Century fund? Do a complete and appropriate hypothesis test using the critical value approach.
Population variance of the Fidelity Growth Discovery Fund is larger than the population variance of the American Century Equity Growth Fund.
How to test if the Fidelity Growth Discovery Fund has a larger population variance?We will use the following null and alternative hypotheses:
Null Hypothesis: The population variance of the Fidelity Growth Discovery Fund is equal to or less than the population variance of the American Century Equity Growth Fund.
Alternative Hypothesis: The population variance of the Fidelity Growth Discovery Fund is greater than the population variance of the American Century Equity Growth Fund.
We will use a two-tailed test with a significance level of α = 0.05.
The degrees of freedom for the two samples are df1 = df2 = 61 - 1 = 60.
Using the F-distribution with degrees of freedom (df1, df2), we find the critical value for a right-tailed test to be:
Fcritical = Finv(1 - α, df1, df2) = Finv(0.95, 60, 60) = 1.577
To calculate the test statistic, we will use the formula:
F = s1² / s2²
where s1 and s2 are the sample standard deviations of the American Century and Fidelity funds, respectively.
F = (18.9%)² / (15.0%)² = 1.764
Since F = 1.764 > Fcritical = 1.577, we reject the null hypothesis. There is sufficient evidence to support the claim that the population variance of the Fidelity Growth Discovery Fund is larger than the population variance of the American Century Equity Growth Fund.
Note that we used the sample standard deviations to calculate the test statistic, but we made an assumption that the population variances of both funds have equal standard deviations.
This assumption is important in this hypothesis test since the F-distribution is used to model the ratio of two population variances. If this assumption is not reasonable, we should use a modified version of the test called Welch's test, which does not require the assumption of equal variances.
Learn more about population variance.
brainly.com/question/13708253
#SPJ11
Population variance of the Fidelity Growth Discovery Fund is larger than the population variance of the American Century Equity Growth Fund.
How to test if the Fidelity Growth Discovery Fund has a larger population variance?We will use the following null and alternative hypotheses:
Null Hypothesis: The population variance of the Fidelity Growth Discovery Fund is equal to or less than the population variance of the American Century Equity Growth Fund.
Alternative Hypothesis: The population variance of the Fidelity Growth Discovery Fund is greater than the population variance of the American Century Equity Growth Fund.
We will use a two-tailed test with a significance level of α = 0.05.
The degrees of freedom for the two samples are df1 = df2 = 61 - 1 = 60.
Using the F-distribution with degrees of freedom (df1, df2), we find the critical value for a right-tailed test to be:
Fcritical = Finv(1 - α, df1, df2) = Finv(0.95, 60, 60) = 1.577
To calculate the test statistic, we will use the formula:
F = s1² / s2²
where s1 and s2 are the sample standard deviations of the American Century and Fidelity funds, respectively.
F = (18.9%)² / (15.0%)² = 1.764
Since F = 1.764 > Fcritical = 1.577, we reject the null hypothesis. There is sufficient evidence to support the claim that the population variance of the Fidelity Growth Discovery Fund is larger than the population variance of the American Century Equity Growth Fund.
Note that we used the sample standard deviations to calculate the test statistic, but we made an assumption that the population variances of both funds have equal standard deviations.
This assumption is important in this hypothesis test since the F-distribution is used to model the ratio of two population variances. If this assumption is not reasonable, we should use a modified version of the test called Welch's test, which does not require the assumption of equal variances.
Learn more about population variance.
brainly.com/question/13708253
#SPJ11
use the graph to find the solutions of the given equation. -x squared - 6x = 0
The solutions of the equation -x squared - 6x = 0 are x = 0 and x = -6
Using graph to find the solutions of the equation.From the question, we have the following parameters that can be used in our computation:
-x squared - 6x = 0
Express properly
So, we have
-x^2 - 6x = 0
Divide through by -1
So, we have
x^2 + 6x = 0
Factor out x
This gives
x(x + 6) = 0
When solved for x, we have
x = 0 and x = -6
Hence, the solutions are x = 0 and x = -6
Read more about equations at
https://brainly.com/question/148035
#SPJ1
A certain population follows a Normal distribution, with mean μ and standard deviation σ = 2.5. You collect data and test the hypothesesH0: μ = 1, Ha: μ ≠ 1You obtain a P-value of 0.072. Which of the following is true?A. A 90% confidence interval for μ will exclude the value 1.B. A 90% confidence interval for μ will include the value 0.C. A 95% confidence interval for μ will exclude the value 1.D. A 95% confidence interval for μ will include the value 0.
The correct answer is C. A 95% confidence interval for μ will exclude the value 1.
A P-value of 0.072 means that if the null hypothesis (H0: μ = 1) is true, there is a 7.2% chance of obtaining a sample mean that is as extreme or more extreme than the one observed in the sample. This is not strong evidence against the null hypothesis at the 5% significance level (which is the standard level of significance used in hypothesis testing).
However, if we construct a 95% confidence interval for μ, we would expect the true population mean to fall within this interval 95% of the time if we were to repeat this study many times. Since the P-value is not less than 0.05, we fail to reject the null hypothesis at the 5% significance level.
Therefore, we can conclude that there is not enough evidence to suggest that the population mean is significantly different from 1.
However, a 95% confidence interval for μ will exclude the value 1, which means that we can be 95% confident that the true population mean is not equal to 1.
Know more about null hypothesis,
https://brainly.com/question/28040078
#SPJ11
complete the sentence: if logarithmic functions are defined as g(x) = loga x, then the greater the value of a,a.the log x neither increases nor decreasesb.None of thesec.the faster logax increasesd.the slower logax increases
The answer to the statement, "if logarithmic functions are defined as g(x) = loga x, then the greater the value of a.." is c. the faster logax increasesd.
What is logarithm?The power to which a number must be raised in order to obtain other numbers is referred to as a logarithm. The easiest method to express large numbers is this way. Numerous significant characteristics of a logarithm demonstrate that addition and subtraction logarithms can also be expressed as multiplication and division of logarithms.
If logarithmic functions are defined as g(x) = loga x, then the greater the value of a, the faster logax increases (option c).
Learn more about logarithm on:
https://brainly.com/question/16553502
#SPJ1
Sale
50% OFF!
The sale price of a barbecue grill is $278. What was the original price?
Answer:
%556
Step-by-step explanation:
278 times 2 cuz its 50 percent off
Answer:
$556
Step-by-step explanation:
There was a 50% sale, so the original price has to be double the sale price.
$278 x 2 = 556
So, the original price is $556
Which value makes each equation true?
Drag a correct value into the box below each equation. Not all answer choices will be used.
I +3/
69
29
⠀⠀
69
11 + z = 50
::
ola
::
elo
10
9
:: 39
:: 61
=x+²/
The value that makes each equation true include the following:
y = 2/7
b = 43
m = 3/7
How to determine the value that makes each equation true?In this scenario, you are required to determine the value of y, b, and m by evaluating and simplifying the given equation. Therefore, we would subtract 4/7 from both sides of the equation in order to determine the value of y as follows;
y + 4/7 = 6/7
y + 4/7 - 4/7 = 6/7 - 4/7
y = (6 - 4)/7
y = 2/7
17 + b = 60
By subtracting 17 from both sides of the equation, we have the following:
17 + b - 17 = 60 - 17
b = 43.
By subtracting 3/7 from both sides of the equation, we have the following:
6/7 = m + 3/7
6/7 - 3/7 = m + 3/7 - 3/7
m = (6 - 3)/7
m = 3/7.
Read more on equations here: brainly.com/question/3382177
#SPJ1
Missing information:
The question is incomplete and the complete question is shown in the attached picture.
The question is in the image
The value of f(2) of the given polynomial by direct substitution is: 45
How to solve polynomial functions?A polynomial function is defined as a function that involves only non-negative integer powers or only positive integer exponents of a variable in an equation like the quadratic equation, cubic equation, etc. For example, 2x + 3 is a polynomial that has exponent equal to 1.
We are given the polynomial function as:
f(x) = 6x³ - 2x + 1
Now, we want to find f(2) by direct substitution which means we are just going to put 2 for x directly into the polynomial to get:
f(2) = 6(2)³ - 2(2) + 1
f(2) = 48 - 4 + 1
f(2) = 45
Read more about Polynomial Functions at: https://brainly.com/question/7693326
#SPJ1
Problem 7.2. Construct concrete relations r, s, t and u from A = {3, 4} to B = {a, b}
with the following properties.
(1) relation r is not a function.
(2) relation s is a function, but not a function from A to B.
(3) relation t is a function from A to B with Rng(t) = B.
(4) relation u is a function from A to B with Rng(u) 6= B.
construct concrete relations r, s, t, and u with the specified properties as mentioned below
concrete relations :1) Relation r is not a function:
A concrete relation r that is not a function could have both elements in A related to both elements in B.
For example:
r = {(3, a), (3, b), (4, a), (4, b)}
2) Relation s is a function, but not a function from A to B:
A concrete relation s that is a function but not a function from A to B could include only one element from A.
For example:
s = {(3, a), (4, a)}
3) Relation t is a function from A to B with Rng(t) = B:
A concrete relation t that is a function from A to B with a range equal to B could include one unique element from A related to each unique element in B.
For example:
t = {(3, a), (4, b)}
4) Relation u is a function from A to B with Rng(u) ≠ B:
A concrete relation u that is a function from A to B with a range not equal to B could include both elements from A related to the same element in B.
For example:
u = {(3, a), (4, a)}
To know more about Concrete relations :
https://brainly.com/question/29144029
#SPJ11
Find the inverse laplace transform of {1/(s^2 + 9)^2}
The inverse laplace transform of [tex]{1/(s^2 + 9)^2}[/tex] is f(t) = (1/36)cos(3t) - (1/36)sin(3t) - (t/36)sin(3t) - (1/108)tcost(3t) + (1/324)sin(3t).
We can use partial fraction decomposition to express the Laplace transform of the given function as a sum of simpler terms. Let's start by factoring the denominator:
[tex]s^2[/tex] + 9 = (s + 3i)(s - 3i)
Then, we can write:
[tex]1/(s^2 + 9)^2 = A/(s + 3i) + B/(s - 3i) + C/(s + 3i)^2 + D/(s - 3i)^2[/tex]
where A, B, C, and D are constants that we need to determine. Multiplying both sides by (s + 3i)^2(s - 3i)^2, we get:
1 = [tex]A(s - 3i)^2(s + 3i) + B(s + 3i)^2(s - 3i) + C(s - 3i)^2 + D(s + 3i)^2[/tex]
Setting s = 3i, we get:
1 = 36Bi
which implies that B = -i/36. Similarly, setting s = -3i, we get:
1 = -36Ai
which implies that A = i/36.
Now, let's differentiate both sides with respect to s and set s = 3i again:
[tex]0 = 2A(s - 3i)(s + 3i) + B(s + 3i)^2 - 2C(s - 3i) + D(s + 3i)^2[/tex]
Plugging in A and B, and simplifying, we get:
C = -i/108
Similarly, differentiating both sides with respect to s and setting s = -3i, we get:
D = i/108
Therefore, we can write:
[tex]1/(s^2 + 9)^2 = (i/36)/(s + 3i) - (i/36)/(s - 3i) - (i/108)/(s + 3i)^2 + (i/108)/(s - 3i)^2[/tex]
Taking the inverse Laplace transform of each term, we get:
f(t) = (1/36)cos(3t) - (1/36)sin(3t) - (t/36)sin(3t) - (1/108)tcost(3t) + (1/324)sin(3t)
Therefore, the inverse Laplace transform of [tex]1/(s^2 + 9)^2[/tex] is:
f(t) = (1/36)cos(3t) - (1/36)sin(3t) - (t/36)sin(3t) - (1/108)tcost(3t) + (1/324)sin(3t)
For more such questions on Inverse Laplace transform.
https://brainly.com/question/31322563#
#SPJ11
12. If mSW = (12x − 6)°,mTV = (2x)°, and m
-
U
S
T
V
Answer: the measure of arc SW is 151 degrees.
Step-by-step explanation:
suppose that the true value of µ is 69 years. the probability that the architecture firm commits a type ii error is .
In general, a type II error occurs when the null hypothesis (in this case, that the true value of µ is not 69 years) is not rejected, even though it is false. This means that the architecture firm fails to detect a difference or effect that actually exists.
The probability of committing a type II error depends on various factors, such as the sample size, the significance level (alpha), the effect size, and the variability of the data. Without more information, I cannot provide a specific answer to your question. However, in general, if the architecture firm has a large sample size and a low significance level (e.g., alpha = 0.05), the probability of committing a type II error may be lower. On the other hand, if the effect size is small or the data are highly variable, the probability of committing a type II error may be higher. In any case, it is important for the architecture firm to carefully consider the power of their testing procedure (i.e., the probability of correctly rejecting the null hypothesis when it is false) and to interpret their results with caution, taking into account the potential for type II errors.
Know more about null hypothesis here:
https://brainly.com/question/28920252
#SPJ11
suppose that the true value of µ is 69 years. the probability that the architecture firm commits a type ii error is______________
find the area of the surface obtained by rotating the curve =cosh(/),−≤≤, about the -axis.
To find the surface area obtained by rotating the curve y=cosh(x/a) about the x-axis, we can use the formula:
Surface Area = 2π ∫a^b y√(1+(dy/dx)^2) dx
where a and b are the limits of integration, and dy/dx is the derivative of y with respect to x.
In this case, since we are rotating the curve about the x-axis, the formula becomes:
Surface Area = 2π ∫a^b y√(1+(dx/dy)^2) dy
where dx/dy is the derivative of x with respect to y.
To find the derivative of x with respect to y, we can use the inverse function of y=cosh(x/a), which is x=a*cosh^-1(y). Taking the derivative of this with respect to y gives:
dx/dy = a/sqrt(y^2-1)
Substituting this into the formula for surface area, we get:
Surface Area = 2π ∫a^b cosh(x/a)√(1+(a/sqrt(y^2-1))^2) dy
Simplifying the expression inside the square root, we get:
Surface Area = 2π ∫a^b cosh(x/a)√(1+a^2/(y^2-1)) dy
To evaluate this integral, we can make the substitution u^2=y^2-1, which gives:
Surface Area = 2π ∫√(a^2+u^2) cosh(x/a) du
This integral can be evaluated using trigonometric substitution or integration by parts, but the resulting expression is quite complicated. Therefore, we cannot give a simple formula for the surface area in terms of a and b.
Visit here to learn more about derivative : https://brainly.com/question/25324584
#SPJ11
Write an equation for an ellipse centered at the origin, which has foci at ( ± 13 , 0 ) (± 13 ,0)left parenthesis, plus minus, square root of, 13, end square root, comma, 0, right parenthesis and co-vertices at ( 0 , ± 11 ) (0,±11)left parenthesis, 0, comma, plus minus, 11, right parenthesis
The equation for an ellipse centered at the origin with foci at (±13, 0) and co-vertices at (0, ±11) is: [tex](x^2/169) + (y^2/121) = 1[/tex]
where the major axis is along the x-axis and the minor axis is along the y-axis.
To derive this equation, we start with the standard equation for an ellipse centered at the origin:
[tex](x^2/a^2) + (y^2/b^2) = 1[/tex]
where a and b are the lengths of the semi-major and semi-minor axes, respectively. We can use the given information to determine the values of a and b.
The distance between the foci is 2c = 26, where c is the distance from the center to each focus. Therefore, c = 13. The distance between the co-vertices is 2b = 22, where b is the length of the semi-minor axis. Therefore, b = 11.
To find a, we can use the relationship [tex]a^2 = b^2 + c^2[/tex]. Substituting in the values of b and c, we get:
a² = 121 + 169
a² = 290
a = √(290)
Substituting in the values of a, b, and c into the standard equation for an ellipse, we get:
[tex](x^2/169) + (y^2/121) = 1[/tex]
This is the equation for the ellipse centered at the origin with foci at (±13, 0) and co-vertices at (0, ±11).
Learn more about ellipse
https://brainly.com/question/16904744
#SPJ4
linear error of closure (leoc) residual for latitude = -0.0241 residual for departure = -0.0168 sum of distances around traverse = 856.67' what is the linear error of closure (leoc) = ?
If this sum is small, it indicates that the traverse is accurate, while a large sum indicates that the traverse may have significant errors.
The linear error of closure (LEOC) is the algebraic sum of the residuals in the latitude and departure directions.
Given that the residual for latitude is -0.0241 and the residual for departure is -0.0168, we can calculate the LEOC as follows:
LEOC = (residual for latitude) + (residual for departure)
= (-0.0241) + (-0.0168)
= -0.0409
Therefore, the linear error of closure is -0.0409.
Additionally, the sum of distances around traverse is 856.67', which is a measure of the accuracy of the traverse. If this sum is small, it indicates that the traverse is accurate, while a large sum indicates that the traverse may have significant errors.
To learn more about significant errors visit:
https://brainly.com/question/31012079
#SPJ11
T/F Solution that can be analytically obtained but is not an actual answer to the equation often due to restrictions in the type of function such as a negative in the log
T/F Solution that can be analytically obtained but is not an actual answer to the equation often due to restrictions in the type of function such as a negative in the log
This statement is true.
Because, Sometimes, when solving an equation using analytical methods, we may arrive at a solution that is mathematically correct but is not a valid answer due to the restrictions in the type of function used.
For example, if a negative value appears in the logarithmic function, the solution may not be valid because the logarithmic function is only defined for positive values.
In such cases, we need to go back and recheck our work and take into account the restrictions of the function to arrive at a valid solution.
Sometimes when solving an equation analytically, the resulting solution may not be a valid answer due to restrictions in the domain of the function.
For example, if we solve an equation involving a logarithmic function, we may end up with a negative value inside the logarithm, which is not defined for real numbers. In such cases, the solution obtained analytically is not a valid answer to the equation.
Another example is when solving for the roots of a quadratic equation using the quadratic formula, we may obtain complex solutions even though we are only interested in real solutions.
Thus, it is important to always check the solutions obtained to ensure that they satisfy any domain or range restrictions of the functions involved in the equation.
For similar question on analytically.
https://brainly.com/question/29179937
#SPJ11
Find the simple interest on 8000.00 for 3 years at 3.5% per annum
Answer:
1261
Step-by-step explanation:
Correct option is A)
Principal for the first year = Rs.8000, Rate = 5% per annum, T = 1 year
Interest for the first year = =
100
P×R×T
=Rs.[
100
8000×5×1
]=Rs.400
∴ Amount at the end of the first year = Rs. (8000 + 400) = Rs. 8400
Now principal for the second year = Rs.8400
Interest for the second year =
100
P×R×T
=Rs.[
100
8400×5×1
]=Rs.420
∴ Amount at the end of the second year = Rs. (8400 + 420) =Rs.8820
Interest for the third year =
100
P×R×T
=Rs.
100
8820×5×1
=Rs.441
∴ Amount at the end of the third year = Rs.(8820 + 441) = Rs. 9261
Now we know that total C.I. = Amount - Principal = Rs. (9261 - 8000) = Rs. 1261
we can also find the C.I. as follows
Total C.I. = Interest for the first year + Interest for the second year + Interest for third year = Rs. (400 + 420 + 441) = Rs.1261
PLEASE PLEASE HELP GET IT RIGHT PLEASE I BEG YOU PLEASE HELP ME
The graph-based response to the question is 5/2x + 2/3y = -4. The answer is option (c).
What is Equation?An equation in mathematics is a claim made regarding the equality of two expressions. The equal sign (=) separates it into two portions, left and right. Variables, variables, and operators may be used on the left and right sides of equations.
To find out which equation in the system of linear equations satisfies the second equation, we must insert the values of the supplied solution point (12, -39) into the potential equations.
Let's begin by entering the following values into option (A):
5/3x + 2/3y = 6
5/3(12) + 2/3(-39) = 20
Since this is untrue, equation (A) is not the right answer.
Let's attempt option (B) now.
5/2x + 2/3y = 6
5/2(12) + 2/3(-39) = 30 - 26 = 4
The equation in option (B) is incorrect because this is likewise untrue.
We then test option (C):
5/2x + 2/3y = -4
5/2(12) + 2/3(-39) = -20
Since this is the case, option (C) is the formulation of the linear equations that is correct.
Let's check option (D) last.
5/3x + 2/3y = -6
5/3(12) + 2/3(-39) = -20
Option (D) is the incorrect equation because this is not the case.
The second linear equation for the set of equations whose solution is represented by the point at (12, -39) is as a result:
5/2x + 2/3y = -4, which is option (C).
To know more about graph, visit:
https://brainly.com/question/19040584
#SPJ1
how many total parts in the ratio
The number of total parts in the ratio, given the ratio the line is divided into is a total of 7 parts .
How to find the number of parts ?When a line is divided in the ratio 3 : 4 , it means that the line is divided into 3 parts and 4 parts. The total number of parts is 3 + 4 = 7.
For example, if a line segment is 7 units long, then the part that is in the ratio of 3 : 4 would be 3 / 7 of the line segment and the other part would be 4 / 7 of the line segment.
Find out more on ratios at https://brainly.com/question/30289280
#SPJ1
Full question is:
A line is divided in the ratio 3/4. How many total parts in the ratio?
A study is conducted to compare 4 formulations of a new drug in terms of the availability of the drug in the bloodstream over time. Ten healthy subjects are selected and each subject receives each drug in random order in a randomized block design. The researcher conducts the appropriate F-test for testing for formulation differences. If the test is conducted at the =0.05 significance level, he will conclude formulation differences exist if the F-statistic falls in what range?
If the calculated F-statistic is greater than 2.90, the researcher will conclude that there are significant differences between the means at the α = 0.05 significance level.
The researcher is conducting an analysis of variance (ANOVA) test to determine whether there are significant differences between the means of four different formulations of a new drug.
The null hypothesis in this case is that there are no significant differences between the means of the four formulations. If the calculated F-statistic is large enough to reject the null hypothesis, then the researcher will conclude that there are significant differences between the means.
To determine the range of F-statistic values that would lead to rejecting the null hypothesis at the α = 0.05 significance level, the researcher needs to refer to the F-distribution table.
The degrees of freedom for this test are (4-1) = 3 for the numerator and (10*4-4) = 36 for the denominator. From the F-distribution table, the critical F-value for α = 0.05 with 3 and 36 degrees of freedom is approximately 2.90.
If the calculated F-statistic is less than or equal to 2.90, the researcher will fail to reject the null hypothesis and conclude that there are no significant differences between the means.
To learn more about test click on,
https://brainly.com/question/16008103
#SPJ4
Nutrition-Diet Planning Suppose a person has decided to include brown rice and soybeans as part of his daily diet. The goal is to design the lowest-cost diet that provides certain minimum levels of protein, calories, and vitamin B2 (or riboflavin). One cup of uncooked brown rice costs 21 cents and contains 15 grams of protein, 810 calories, and 1/9 of a milligram of riboflavin. One cup of uncooked soy beans costs 14 cents and contains 22.5 grams of protein, 270 calories, and 1/3 of a milligram of riboflavin. If minimum daily requirements are 90 grams of protein, 1620 calories, and 1 milligram of riboflavin, design the lowest-cost diet meeting these specifications.
Let r = the number of cups of brown rice, and Let s = the number of cups of soybeans
Which option (a, b, c, or d) shows the correct objective function and constraints for this application?
A.Objective Function: Minimize Cost, C = 0.21r + 0.14s Constraints: 15r + 22.5s >= 90, 810r + 270s >= 1620, (1/9)r + (1/3)s >= 1, r>= 0, s >= 0 B.Objective Function: Minimize Cost, C = 0.21r + 0.14s Constraints: 15r + 22.5s >= 90, 810r + 270s >= 1620, (1/3)r + (1/9)s <= 1, r>= 0, s >= 0 C. Objective Function: Minimize Cost, C = 0.21r + 0.14s Constraints: 22.5r + 15s <= 90, 270r + 810s <= 1620, (1/9)r + (1/3)s >= 1, r>= 0, s >= 0 D. Objective Function: Minimize Cost, C = 0.21r + 0.14s Constraints: 15r + 22.5s <= 90, 810r + 270s <= 1620, (1/9)r + (1/3)s <= 1, r>= 0, s >= 0
Option A. depicts the right goal function and restrictions for constructing the lowest-cost diet that meets the minimum daily protein, calorie, and vitamin B2 requirements. The goal function is to minimize cost, where C = 0.21r + 0.14s, where r and s are the numbers of cups of brown rice and soybeans, respectively.
The constraints are as follows: 15r + 22.5s >= 90, which ensures that the daily requirement of 90 grams of protein is met. 810r + 270s >= 1620, which ensures that the daily requirement of 1620 calories is met. (1/9)r + (1/3)s >= 1, which ensures that the daily requirement of 1 milligram of riboflavin is met.
Finally, r >= 0 and s >= 0 ensure that the number of cups of brown rice and soybeans, respectively, cannot be negative.
To tackle this problem, we may employ linear programming techniques such as the simplex method to determine the values of r and s that minimize the cost function while meeting all constraints. The minimal cost in this example is $2.70, which may be obtained by ingesting 3 cups of brown rice and 1 cup of soybeans every day.
Therefore, Option A is the correct answer.
To learn more about linear programming, visit:
https://brainly.com/question/15356519
#SPJ11
Use a Maclaurin series derived in the text to derive the Maclaurin series for the function f(x) = sin(x)/x dx, f(0) = 0. Find the first 4 nonzero terms in the series, that is write down the Taylor polynomial with 4 nonzero terms.
To derive the Maclaurin series for the function f(x) = sin(x)/x dx, we can use the Maclaurin series for sin(x), which is:
sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...
We can then divide both sides by x to get:
sin(x)/x = 1 - x^2/3! + x^4/5! - x^6/7! + ...
This is the Maclaurin series for f(x). To find the first 4 nonzero terms, we can simply truncate the series after the x^4/5! term, since the subsequent terms involve higher powers of x:
f(x) = sin(x)/x = 1 - x^2/3! + x^4/5! - ...
So the Taylor polynomial with 4 nonzero terms is:
P4(x) = 1 - x^2/3! + x^4/5!
I hope this helps! Let me know if you have any further questions.
To derive the Maclaurin series for the function f(x) = sin(x)/x, we'll first recall the Maclaurin series for sin(x), which is:
sin(x) = x - (x^3)/6 + (x^5)/120 - ...
Now, we'll divide this series by x:
f(x) = sin(x)/x = (x - (x^3)/6 + (x^5)/120 - ...)/x
Dividing each term by x, we get:
f(x) = 1 - (x^2)/6 + (x^4)/120 - ...
Now, the Taylor polynomial with 4 nonzero terms can be written as:
f(x) ≈ 1 - (x^2)/6 + (x^4)/120
Visit here to learn more about Maclaurin series brainly.com/question/31383907
#SPJ11
Question 2 of 3
Carla spent $9.75 on ingredients for cookies she's making for the school bake sale. How many cookies must
she sell at $0.10 apiece to make a profit?
O At least 98 cookies
O At most 95 cookies
O At least 1 cookies
O At most 0 cookies
Suppose that a body moves through a resisting medium withresistance proportional to its velocity v , so that dv/dt =-kv.a) show that its velocity and position at time t are given by v(t)= v0e-kt and x(t) = x0 +(v0 / k)(1-e-kt).b)Conclude that the body travels only a finite distance, and findthat distance.
The body travels a finite distance of (v0/k) before coming to a stop.
To show that the velocity and position of the body are given by v(t) = v0e^-kt and x(t) = x0 + (v0/k)(1-e^-kt), we can solve the differential equation dv/dt = -kv with the initial conditions v(0) = v0 and x(0) = x0.
a) Solving the differential equation dv/dt = -kv, we have:
dv/v = -k dt
Integrating both sides, we get:
ln|v| = -kt + C1
where C1 is the constant of integration. Applying the initial condition v(0) = v0, we get:
C1 = ln|v0|
Therefore, we have:
ln|v| = -kt + ln|v0|
Solving for v, we get:
v(t) = v0e^-kt
Next, we can integrate the velocity expression to obtain the position:
dx/dt = v(t) = v0e^-kt
Integrating both sides, we get:
x(t) = - (v0/k) e^-kt + C2
where C2 is the constant of integration. Applying the initial condition x(0) = x0, we get:
C2 = x0 + (v0/k)
Therefore, we have:
x(t) = x0 + (v0/k)(1-e^-kt)
b) Since the velocity approaches zero as t approaches infinity, the body will eventually come to a stop. The distance traveled by the body can be found by taking the limit as t approaches infinity of the position function:
lim x(t) as t->infinity = x0 + (v0/k)
Therefore, the body travels a finite distance of (v0/k) before coming to a stop.
Visit to know more about Distance:-
brainly.com/question/26550516
#SPJ11
An education researcher randomly selects 38 schools from one school district and interviews all the teachers at each of the 38 schools. Identify the type of sampling used in this example. B) Cluster sampling D) Simple random sampling A) Stratified sampling C) Systematic random sampling Solve the problem
The type of sampling used in this example is B) Cluster sampling.
In this case, an education researcher randomly selects 38 schools from one school district and interviews all the teachers at each of the 38 schools.
Cluster sampling involves dividing the population into separate groups, or clusters, and then randomly selecting entire clusters to be included in the sample. In this case, the schools are the clusters, and the researcher has randomly chosen 38 of them to interview all the teachers within those schools.
The type of sampling used in this example is B) Cluster sampling.
Learn more about "sampling": https://brainly.com/question/24466382
#SPJ11
Peter is planning to make a shed whose length is 12 inches and the ramp attached to the shed is 1 inch. He wants to convert the total length of the shed and ramp from inches to yards.
Select all of the expressions which correctly show how to convert the length of the shed and ramp from inches to yards using the ratio 36 inches to 1 yard.
a
b
c
d
e
To convert inches to yards, we need to divide by 36, since 36 inches make 1 yard. Therefore, to convert the length of the shed and ramp from inches to yards, we can use the following expressions: (12 + 1) / 36 = 0.3611... yards, (12 / 36) + (1 / 36) = 0.3611... yards, 13 / 36 = 0.3611... yards
We have,
An expression in mathematics is a grouping of variables, numbers, and actions that can be evaluated to yield a value. A wide range of mathematical notions, from basic arithmetic computations to intricate algebraic formulas and beyond, are represented by expressions.
These components can be used to combine expressions in a wide range of different ways. For instance, we can construct straightforward arithmetic phrases such as "2 + 3" or "5 * 4" or more intricate algebraic expressions such as "3x2 + 2x + 1" or "sin(x) + cos(x)". In each instance, the expression denotes a mathematical idea that may be tested to provide a certain value.
Expressions play a significant role in mathematics and are utilized in a wide range of fields in science, engineering, and finance. By being aware of how expressions work, we can better understand and solve a wide variety of mathematical problems.
To know more about expressions visit:
brainly.com/question/14083225
#SPJ1
complete question:
Conrad is reading a blue print to make a shed. On the blue print, the length of the shed is 12 inches and the ramp attached to the shed is 1 inch. He wants to convert the total length of the shed and ramp from inches to yards. Select all of the expressions which correctly show how to convert the length of the shed and ramp from inches to yards using the ratio 36 inches to 1 yard.
selection-sort sorts an array of n elements by repeating the following steps: find the next ------ item in the array and placing it ----------.
Selection-sort sorts an array of n elements by repeatedly finding the next smallest/largest item in the array and placing it in its correct position until the entire array is sorted.
Selection-sort is an algorithm for sorting an array of n elements by repeatedly finding the next smallest/largest item in the array and placing it in its correct position.
The algorithm starts by considering the entire array as unsorted and the sorted part of the array as empty.
It then iterates through the unsorted part of the array to find the smallest/largest item, depending on whether it is sorting in ascending or descending order.
Once the smallest/largest item is found, it is swapped with the first element of the unsorted part of the array, effectively placing it in its correct position in the sorted part of the array.
The algorithm then repeats steps 2 and 3, considering the remaining unsorted part of the array until the entire array is sorted.
The process continues until all elements are sorted in their correct positions, resulting in a sorted array.
Therefore, selection-sort sorts an array of n elements by repeatedly finding the next smallest/largest item in the array and placing it in its correct position until the entire array is sorted.
To learn more about array here:
brainly.com/question/30757831#
#SPJ11
flour,sugar and butter are mixed in the ratio 6:2:3
how many grams of flour and sugar are needed to mix with 180g of butter?
Answer:
Step-by-step explanation:
Flour : sugar : butter
= 6 : 2 : 3
butter = 3 part = 180 g
sugar = 2 part = 180×2/3 = 120 g
flour = 6 part = 180×6/3 = 360 g