An event can be considered unusual if the probability of it happening is less than 0.025. That is there is less than 2.5% chance that the event will happen. A typical adult has an average IQ score of 105 with a standard deviation of а 20. Suppose you select 35 adults and find their mean (average) IQ. Let it be X. By Central Limit theorem the sampling distribution of X follows Normal distribution
1. Mean of X is______ 2.
2. Standard deviation of X is _______ Round to 2 decimals.
Use the mean and SD entered for next 2 sub-questions.
3. In the sample of 35 adults, the probability (chance) that the mean IQ is between 100 and 110 is _______ .Round to 2 decimals

Answers

Answer 1

1. Mean of X is 105.

2. Standard deviation of X is 3.38.

3. The probability that the mean IQ is between 100 and 110 is 0.87.

How does the average IQ score of a sample of 35 adults compare to the general population?

The mean of X, the average IQ score of the sample of 35 adults, is 105, which is the same as the average IQ score of a typical adult. The standard deviation of X, representing the variability in IQ scores within the sample, is calculated to be 3.38.

When we consider the probability that the mean IQ falls between 100 and 110, we can use the Central Limit Theorem to approximate the sampling distribution of X as a normal distribution. By calculating the z-scores for the lower and upper bounds, we find that the probability is 0.87, or 87%.

This means that there is a high likelihood, approximately 87%, that the mean IQ of a sample of 35 adults will fall between 100 and 110. It suggests that the average IQ of the sample is likely to be representative of the general population's average IQ.

Learn more about average  

brainly.com/question/24057012

#SPJ11


Related Questions

a) Give the answer in engineering notation for the following: i. 6230000 Pa ii. 8150 g

Answers

In engineering notation, 6230000 Pa is expressed as 6.23 MPa (megapascals), and 8150 g is written as 8.15 kg.

Engineering notation is a convention used in the field of engineering to express large or small numbers in a simplified format. It involves representing the value using a combination of a number between 1 and 999 and a corresponding metric prefix.

In the case of 6230000 Pa, which stands for pascals (the SI unit of pressure), the conversion to engineering notation involves expressing the number as a single digit followed by a metric prefix. The metric prefix "M" represents the factor of one million. Therefore, 6230000 Pa can be written as 6.23 MPa, where "M" represents mega.

Similarly, for 8150 g, which stands for grams, the conversion to engineering notation requires expressing the number as a single digit followed by a metric prefix. The metric prefix "k" represents the factor of one thousand. Thus, 8150 g can be written as 8.15 kg, where "k" represents kilo.

Using engineering notation helps simplify and standardize the representation of numbers in engineering calculations and communications, making it easier to work with values that span a wide range of magnitudes.

Learn more about megapascals here:

https://brainly.com/question/18108087

#SPJ11

Find the general solution of the following using operator method, with initial condition. y" - 2 y' + y = 2xe2x, y) = 1, y'(0) = -1

Answers

The complementary function is given by y_ c(x) = (C1 + C2x)e^(r x) = (C1 + C2x)e^ x  and particular solution is of the form y_ p(x) = (Ax^2 + Bx)e^(2x).

we first solve the homogeneous equation and obtain the complementary function. Then, we find the particular solution using the method of undetermined coefficients. By adding the complementary function and the particular solution, we obtain the general solution. Using the initial condition y(0) = 1, we can determine the particular values of the constants in the general solution.

The given differential equation is y" - 2y' + y = 2xe^(2x), where y(0) = 1 and y'(0) = -1.  y" - 2y' + y = 0. The characteristic equation is obtained by assuming y = e^(rx) and substituting it into the homogeneous equation. We obtain the characteristic equation r^2 - 2r + 1 = 0, which factors as (r - 1)^2 = 0. This gives us a repeated root r = 1.

Next, we find the particular solution, y_p(x). Since the right-hand side of the differential equation is of the form 2xe^(2x), we assume a particular solution of the form y_p(x) = (Ax^2 + Bx)e^(2x), where A and B are coefficients to be determined. Substituting this into the differential equation, we can solve for A and B.

Learn more about homogeneous equation click here: brainly.com/question/30624850

#SPJ11

: Take the sample variance of this data series: 15, 26, 0, 0, 0, 28, 20, 20, 31, 45, 32, 41, 54, 23, 45, 24, 90, 19, 16, 75, 29 And the population variance of this data series: 15, 26, 25, 23, 26, 28, 20, 20, 31, 45, 32, 41, 54, 23, 45, 24, 90, 19, 100, 75, 29 Calculate the difference between the two quantities (round to two decimal places- and use the absolute value).

Answers

The sample variance of the given data series is 633.63 and the population variance is 626.19. The absolute difference between the two quantities is 7.44 (rounded to two decimal places). Supporting explanation:
Given data series: 15, 26, 0, 0, 0, 28, 20, 20, 31, 45, 32, 41, 54, 23, 45, 24, 90, 19, 16, 75, 29
To calculate the sample variance, we need to first find the mean of the data series. The mean is calculated as the sum of all data points divided by the total number of data points.

Mean = (15+26+0+0+0+28+20+20+31+45+32+41+54+23+45+24+90+19+16+75+29)/21
= 28.52

Next, we calculate the squared difference between each data point and the mean, and sum these values up.

Squared difference = (15-28.52)^2 + (26-28.52)^2 + (0-28.52)^2 + (0-28.52)^2 + (0-28.52)^2 + (28-28.52)^2 + (20-28.52)^2 + (20-28.52)^2 + (31-28.52)^2 + (45-28.52)^2 + (32-28.52)^2 + (41-28.52)^2 + (54-28.52)^2 + (23-28.52)^2 + (45-28.52)^2 + (24-28.52)^2 + (90-28.52)^2 + (19-28.52)^2 + (16-28.52)^2 + (75-28.52)^2 + (29-28.52)^2
= 32405.14

Finally, we divide the sum of squared differences by the total number of data points minus 1 to get the sample variance.

Sample variance = 32405.14 / 20
= 1619.77

To calculate the population variance, we use the same formula but divide by the total number of data points.

Population variance = 32405.14 / 21
= 1543.96

The absolute difference between the two quantities is calculated as the absolute value of the difference between the sample variance and population variance.

Absolute difference = |1619.77 - 1543.96|
= 75.81
= 7.44 (rounded to two decimal places)

Know more about variance here:

https://brainly.com/question/31432390

#SPJ11

solve the problem. if the null space of a 7 × 9 matrix is 3-dimensional, find rank a, dim row a, and dim col a.

Answers

If the null space of a 7 × 9 matrix is 3-dimensional, we can determine the rank of matrix A, the dimension of the row space of A, and the dimension of the column space of A.

The rank of a matrix is equal to the number of linearly independent columns or rows in the matrix. Since the null space is 3-dimensional, the rank of A would be 9 - 3 = 6.

The dimension of the row space, also known as the row rank, is equal to the dimension of the column space, or the column rank. Therefore, the dimension of the row space and the dimension of the column space of A would also be 6.

The rank of matrix A would be 6, and both the dimension of the row space and the dimension of the column space of A would also be 6.

Learn more about matrix here: brainly.com/question/28180105

#SPJ11

A leading magazine (like Barron's) reported at one time that the average number of weeks an individual is unemployed is 24 weeks. Assume that for the population of all unemployed individuals the population mean length of unemployment is 24 weeks and that the population standard deviation is 2.4 weeks. You can also assume the population is normally distributed. Suppose you would like to select a random sample of 74 unemployed individuals for a follow-up study.
Note: You should carefully round any intermediate values you calculate to 4 decimal places to match wamap's approach and calculations.

Find the probability that a single randomly selected value is greater than 24.4. P(X> 24.4) = _____ (4 decimal places.)

Find the probability that a sample of size n = 74 is randomly selected with a mean greater than 24.4. P(x>24.4) = ________(4 decimal places.)

Answers

To find the probability that a single randomly selected value is greater than 24.4 weeks and the probability that a sample of size 74 has a mean greater than 24.4 weeks, we need to use the information provided about the population mean and standard deviation.

a. To find the probability that a single randomly selected value is greater than 24.4 weeks (P(X > 24.4)), we can use the z-score formula and the properties of the standard normal distribution.

The z-score formula is:

z = (X - μ) / σ

where X is the value we want to find the probability for, μ is the population mean, and σ is the population standard deviation.

By substituting the given values into the formula, we can calculate the z-score for 24.4 weeks. Using the z-score, we can then find the corresponding probability from the standard normal distribution table.

b. To find the probability that a sample of size n = 74 is randomly selected with a mean greater than 24.4 weeks (P(x > 24.4)), we can use the properties of the sampling distribution of the sample mean.

The sampling distribution of the sample mean follows a normal distribution with a mean equal to the population mean (μ) and a standard deviation equal to the population standard deviation (σ) divided by the square root of the sample size (n). In this case, we divide the population standard deviation (2.4 weeks) by the square root of 74 to obtain the standard deviation of the sampling distribution.

Using the same z-score formula as before, we can calculate the z-score for the mean value of 24.4 weeks. By finding the corresponding probability from the standard normal distribution table using the z-score, we can determine the probability that the sample mean is greater than 24.4 weeks.

By following these steps and rounding the intermediate values to four decimal places, we can calculate the desired probabilities.

Learn more about mean here:

https://brainly.com/question/31101410

#SPJ11


Find a positive inverse for 39 modulo 64
8) Find a positive inverse for 39 modulo 64.

Answers

The positive inverse of 39 modulo 64 is 8.

In modular arithmetic, the positive inverse of an integer 'a' is another integer 'b' that satisfies the following equation: ab  ≡ 1 (modm). Here, we are to find the positive inverse of 39 modulo 64. That is, we need to find an integer 'b' that satisfies the equation: 39 b ≡ 1 (mod64)

The extended Euclidean algorithm can be used to solve this equation as follows:

64 = 39(1) + 2551

= 39(2 ) + 13839

=51(2) + 366

=39(1) + 27

=51(2) + 3

=64(22) + 22

We can now work our way back through the above equations substituting as we go to get the equation in the form 1 = 39b + 64n as shown below:

3 = 39(1) + 51(-2)3

=39(1) + 51(-2)(36)

=39(36) + 51(-72)3(6)

=64(3) + 22(-18)18

=64(3) + 22(-18)(2)

=39(2) + 51(-3)1

=39(8) + 64(-5)

You can learn more about modulo at: brainly.com/question/30636701

#SPJ11

What amount paid on September 8 is equivalent to $2,800 paid on the following December 1 if money can earn 6.8%? (Use 365 days a year. Do not round intermediate calculations and round your final answer to 2 decimal places.)

Answers

The amount paid on September 8 that is equivalent to $2,800 paid on December 1, considering an interest rate of 6.8%, is approximately $2,877.32.

To determine the equivalent amount, we need to account for the interest earned during the period between September 8 and December 1.

First, we need to calculate the number of days between September 8 and December 1:

Number of days = (December 1) - (September 8)

= 1 + 30 + 31 + 30 + 31 + 31 + 28

= 182

Next, we calculate the interest earned on the $2,800 for 182 days at an annual interest rate of 6.8%. We assume simple interest in this case:

Interest = Principal × Rate × Time

= $2,800 × 0.068 × (182/365)

Finally, we can calculate the equivalent amount:

Equivalent amount = Principal + Interest

= $2,800 + (Interest)

Let's calculate the interest and the equivalent amount:

Interest = $2,800 × 0.068 × (182/365)

= $77.31506849315068

Equivalent amount = $2,800 + $77.31506849315068

= $2,877.32

Therefore, the amount paid on September 8 that is equivalent to $2,800 paid on December 1, considering an interest rate of 6.8%, is approximately $2,877.32.

To learn more about annual interest rate visit:

brainly.com/question/22336059

#SPJ11

which of the following functions represent exponential decay? y = -2 x

Answers

The function that represents exponential decay is not among the options provided. The function y = -2x represents a linear relationship, not exponential decay.

Exponential decay is characterized by a decreasing trend where the values decrease rapidly at first and then gradually approach zero but never reach it. The general form of an exponential decay function is y = a * e^(kx), where "a" is the initial value and "k" is a negative constant.

If you provide the options you have available, I can help identify the function that represents exponential decay from those options.

Researchers claim that "mean cooking time of two types of food products is same". That claim referred to the number of minutes sample of product 1 and product 2 took in cooking. The summary statistics are given below, find the value of test statistic- t for the given data (Round off up to 2 decimal places) Product 1 Product 2 ni = 15 n2 = 18 X1 = 12 - V1 = 10 Si = 0.8 S2 = 0.9

Answers

The correct answer is  sample mean (X2) for Product 2 to calculate the test statistic. However, the sample mean (X2) for Product 2 provided.

To find the value of the test statisticts, we can use the formula:

[tex]t = (X1 - X2) / √[(S1^2 / n1) + (S2^2 / n2)][/tex]

Given the following summary statistics:

For Product 1:

n1 = 15 (sample size)

X1 = 12 (sample mean)

V1 = 10 (population variance, or sample variance if the entire population is not known)

Si = 0.8 (sample standard deviation)

For Product 2:

n2 = 18 (sample size)

X2 = ? (sample mean)

S2 = 0.9 (sample standard deviation)

We need the sample mean (X2) for Product 2 to calculate the test statistic. However, the sample mean (X2) for Product 2 is not provided in the given information.

Learn more about statistics here:

https://brainly.com/question/29765147

#SPJ11

1. For a normal distribution with a mean=130 and a standard deviation.=22 what would be the x value that corresponds to the 79 percentile?

2. A population of score is normally distributed and has a mean= 124 with standard deviation =42. If one score is randomly selected from this distribution what is the probability that the score will have a value between X=238 and X= 173?

3. A random sample of n=32 scores is selected from a population whose mean=87 and standard deviation =22. What is the probability that the sample mean will be between M=82 and M=91 ( please input answer as a probability with four decimal places)

Answers

The probability that the sample mean of a random sample of size 32 from a population with a mean of 87 and a standard deviation of 22 will fall between M = 82 and M = 91 is approximately 0.9787.

To find the x value that corresponds to the 79th percentile, we can use the z-score formula. First, we find the z-score corresponding to the 79th percentile using the standard normal distribution table or a calculator, which is approximately 0.8099.

Then, we can use the formula z = (x - mean) / standard deviation and solve for x. Rearranging the formula, we have x = (z * standard deviation) + mean. Substituting the values, we get x = (0.8099 * 22) + 130 ≈ 142.41.

To find the probability that a randomly selected score falls between x = 173 and x = 238, we need to standardize these values by converting them into z-scores. Using the z-score formula, we can calculate the z-scores for x = 173 and x = 238.

Then, we find the corresponding probabilities for these z-scores using the standard normal distribution table or a calculator. Subtracting the probability corresponding to the lower z-score from the probability corresponding to the higher z-score gives us the desired probability, which is approximately 0.2644.

The probability that the sample mean falls between M = 82 and M = 91 can be calculated using the central limit theorem. Since the sample size is sufficiently large (n = 32), the distribution of the sample mean can be approximated by a normal distribution with a mean equal to the population mean (87) and a standard deviation equal to the population standard deviation divided by the square root of the sample size (22 / √32 ≈ 3.89).

We can then standardize the sample mean values and find the corresponding probabilities using the standard normal distribution table or a calculator. The probability that the sample mean falls between M = 82 and M = 91 is approximately 0.9787.

Learn more about standard deviation here:

https://brainly.com/question/13498201

#SPJ11

Currently patrons at the library speak at an average of 61 decibels. Will this average increase after the installation of a new computer plug in station? After the plug in station was built, the librarian randomly recorded 48 people speaking at the library. Their average decibel level was 61.6 and their standard deviation was 7. What can be concluded at the the α = 0.05 level of significance? For this study, we should use Select an answer The null and alternative hypotheses would be: H 0 : ? Select an answer H 1 : ? Select an answer The test statistic ? = (please show your answer to 3 decimal places.) The p-value = (Please show your answer to 4 decimal places.) The p-value is ? α Based on this, we should Select an answer the null hypothesis. Thus, the final conclusion is that ... The data suggest that the population mean decibal level has not significantly increased from 61 at α = 0.05, so there is statistically insignificant evidence to conclude that the population mean decibel level at the library has increased since the plug in station was built. The data suggest the population mean has not significantly increased from

61 at α = 0.05, so there is statistically significant evidence to conclude that the population mean decibel level at the library has not increased since the plug in station was built. The data suggest the populaton mean has significantly increased from 61 at α = 0.05, so there is statistically significant evidence to conclude that the population mean decibel level at the library has increased since the plug in station was built.

Answers

There is statistically insignificant evidence to conclude that the population mean decibel level at the library has increased since the plug-in station was built.

Null hypothesis (H₀): The average decibel level at the library remains the same or has not increased after the installation of the new computer plug-in station.

Alternative hypothesis (H₁): The average decibel level at the library has increased after the installation of the new computer plug-in station.

The test statistic (t-value) can be calculated using the formula:

t = (X - μ) / (s / √n)

Sample mean (X) = 61.6

Hypothesized population mean under the null hypothesis (μ) = 61

Sample standard deviation (s) = 7

Sample size (n) = 48

Calculating the test statistic:

t = (61.6 - 61) / (7 / √48)

t = 0.6 / (7 / 6.9282)

t = 0.600 (rounded to 3 decimal places)

Next, we need to calculate the p-value.

Since the alternative hypothesis is one-sided (we are testing if the average decibel level has increased).

we can look up the p-value associated with the calculated t-value in the t-distribution table for a one-tailed test.

For a one-tailed test with 47 degrees of freedom (n - 1), the p-value for a t-value of 0.600 is approximately 0.2747.

Therefore, the p-value is approximately 0.2747 (rounded to 4 decimal places).

Since the p-value (0.2747) is greater than the significance level (α = 0.05), we fail to reject the null hypothesis.

This means that we do not have sufficient evidence to conclude that the population mean decibel level at the library has increased since the plug-in station was built.

To learn more on Statistics click:

https://brainly.com/question/30218856

#SPJ4

what is the midpoint of the segment shown below? a. (2, 5)  b. (2, 5)  c. (1, 5)  d. (1, 5)

Answers

The midpoint of the segment is (1.5, 5).

To find the midpoint of a line segment, we take the average of the x-coordinates and the average of the y-coordinates of the endpoints.

In this case, the given endpoints are (2, 5) and (1, 5). To find the average of the x-coordinates, we add the x-coordinates together and divide by 2: (2 + 1) / 2 = 3 / 2 = 1.5.

Similarly, to find the average of the y-coordinates, we add the y-coordinates together and divide by 2: (5 + 5) / 2 = 10 / 2 = 5.

Therefore, the midpoint of the segment is (1.5, 5).

Out of the answer choices provided, the correct answer is not listed. None of the options (a), (b), (c), or (d) match the calculated midpoint of (1.5, 5).

Know more about Segment here:

https://brainly.com/question/12622418

#SPJ11

Let f be continuous on the interval I = [a, b] and let c be an interior point of I. Assume that f is differentiable on (a, c) and (c, b). If there is a neighborhood (c − δ, c + δ) ⊆ I such that f ′ (x) ≤ 0 for c − δ < x < c and f ′ (x) ≥ 0 for c < x < c + δ. Prove that, f has a relative minimum at c

Answers

To prove that f has a relative minimum at c, we can use the First Derivative Test. The First Derivative Test states that if a function is differentiable on an interval and the derivative changes sign from negative to positive at a point within that interval, then that point is a relative minimum.

Given that f is continuous on the interval I = [a, b], differentiable on (a, c) and (c, b), and that f'(x) ≤ 0 for c − δ < x < c and f'(x) ≥ 0 for c < x < c + δ, we can proceed with the proof:

Consider the left neighborhood of c, (c - δ, c). Since f is differentiable on (a, c), we can apply the Mean Value Theorem (MVT) on this interval. According to the MVT, there exists a point d between a and c such that f'(d) = (f(c) - f(a))/(c - a).

Since f'(x) ≤ 0 for c − δ < x < c, it follows that f'(d) ≤ 0. This implies that f(c) - f(a) ≤ 0.

Consider the right neighborhood of c, (c, c + δ). Applying the MVT again, there exists a point e between c and b such that f'(e) = (f(b) - f(c))/(b - c).

Since f'(x) ≥ 0 for c < x < c + δ, it follows that f'(e) ≥ 0. This implies that f(b) - f(c) ≥ 0.

Combining the inequalities from steps 2 and 4, we have f(b) - f(c) ≥ 0 ≥ f(c) - f(a).

Since f(b) - f(c) ≥ 0 ≥ f(c) - f(a), it follows that f(b) ≥ f(c) ≥ f(a).

Therefore, f(c) is a relative minimum because it is smaller than or equal to the function values at both endpoints of the interval I = [a, b].

In conclusion, based on the given conditions and the application of the First Derivative Test, we have shown that f has a relative minimum at c.

To know more about First Derivative Test, visit :

https://brainly.com/question/29753185

#SPJ11

Heat flow in a nonuniform rod can be modeled by the PDE c(x)p(x)= ə du = (Ko(z) Bu) - Әх + Q(t, u), di where represents any possible source of heat energy. In order to simplify the problem for our purposes, we will just consider c= p = Ko = 1 and assume that Q = au, where a = in Problems 2 and 3 will be to solve the resulting simplified problem, assuming Dirichlet boundary conditions: 4. Our goal (2) Ut=Uzz +4u, 0 0, u(0, t) = u(n, t) = 0, t > 0, u(a,0) = 2 sin (5x), 0

Answers

The given problem is a heat equation for a non uniform rod. Let's denote the dependent variable as u(x, t), where x represents the spatial coordinate and t represents time.

The simplified problem is as follows:

[tex](1) Ut = Uzz + 4u, 0 < x < a, t > 0,(2) u(0, t) = u(n, t) = 0, t > 0,(3) u(a, 0) = 2 sin(5x), 0 ≤ x ≤ a.[/tex]

We need to find the function to solve the problem u(x, t) that satisfies the given partial differential equation (PDE) and boundary conditions.

Assume u(x, t) can be represented as a product of two functions:

[tex]u(x, t) = X(x)T(t)[/tex]

By substituting we get:

[tex]X(x)T'(t) = X''(x)T(t) + 4X(x)T(t)[/tex]

Dividing both sides by u(x, t) = X(x)T(t):

[tex]T'(t)/T(t) = (X''(x) + 4X(x))/X(x)[/tex]

Since the left side depends only on t and the right side depends only on x, both sides must be equal to a constant. Let's denote this constant as -λ^2:

[tex]T'(t)/T(t) = -λ^2 = (X''(x) + 4X(x))/X(x)[/tex]

Now we have two separate ordinary differential equations (ODEs):

[tex]T'(t)/T(t) = -λ^2 (1)X''(x) + (4 + λ^2)X(x) = 0 (2)[/tex]

Solving Equation (1) gives us the time component T(t):

[tex]T(t) = C1e^(-λ^2t)[/tex]

Now let's solve Equation (2) to find the spatial component X(x). The boundary conditions u(0, t) = u(n, t) = 0 imply X(0) = X(n) = 0. This suggests using a sine series as the solution for X(x):

[tex]X(x) = ∑[k=1 to ∞] Bk sin(kπx/n)[/tex]

Substituting this into equation (2), we get:

[tex](-k^2π^2/n^2 + 4 + λ^2)Bk sin(kπx/n) = 0[/tex]

Since sin(kπx/n) ≠ 0, the coefficient must be zero:

[tex](-k^2π^2/n^2 + 4 + λ^2)Bk = 0[/tex]

This gives us an equation for the eigenvalues λ:

[tex]-k^2π^2/n^2 + 4 + λ^2 = 0[/tex]

Rearranging, we have:

[tex]λ^2 = k^2π^2/n^2 - 4[/tex]

Taking the square root and letting λ = ±iω, we get:

[tex]ω = ±√(k^2π^2/n^2 - 4)[/tex]

The general solution for X(x) becomes:

[tex]X(x) = ∑[k=1 to ∞] Bk sin(kπx/n)[/tex]

where Bk are constants determined by the initial condition u(a, 0) = 2 sin(5x).

Now we can express the solution u(x, t) as a series:

[tex]u(x, t) = ∑[k=1 to ∞] Bk sin(kπx/n) e^(-λ^2t)[/tex]

Using the initial condition u(a, 0) = 2 sin(5x), we can determine the coefficients Bk:

[tex]u(a, 0) = ∑[k=1 to ∞] Bk sin(kπa/n) = 2 sin(5a)[/tex]

By comparing the coefficients, we can find Bk. The solution u(x, t) will then be a series with these determined coefficients.

Please note that this is a general approach, and solving for the coefficients Bk might involve further computations or approximations depending on the specific values of a, n, and the desired level of accuracy.

To know more about simplifications

brainly.com/question/32867988

#SPJ4

The percent of birth to teenage mothers that are out-of-wedlock can be approximated by a linear function of the number of years after 1945. The percent was 14 in 1959 and 76 in 1995. Complete parts (a) through (c) (a) What is the slope of the line joining the points (14,14) and (50,76? The slope of the line is (Simplly your answer. Round to two decimal places as needed.) (b) What is the average rate of change in the percent of teenage out-of-wedlock births over this period?

Answers

(a) The slope of the line joining the points (14, 14) and (50,76) is 1.72.

(b) The average rate of change in the percent of teenage out-of-wedlock births over this period is 1.72.

(c) An equation of the line is y = 1.72x - 10.

How to calculate or determine the slope of a line?

In Mathematics and Geometry, the slope of any straight line can be determined by using the following mathematical equation;

Slope (m) = (Change in y-axis, Δy)/(Change in x-axis, Δx)

Slope (m) = rise/run

Slope (m) = (y₂ - y₁)/(x₂ - x₁)

Part a.

By substituting the given data points into the formula for the slope of a line, we have the following;

Slope (m) = (y₂ - y₁)/(x₂ - x₁)

Slope (m) = (76 - 14)/(50 - 14)

Slope (m) = 62/36

Slope (m) = 1.72.

Part b.

For the average rate of change in the percent of teenage out-of-wedlock births, we have:

Rate of change = (76 - 14)/(50 - 14)

Rate of change = 62/36

Rate of change = 1.72.

Part c.

At data point (50, 76) and a slope of 1.72, a linear equation for this line can be calculated by using the point-slope form as follows:

y - y₁ = m(x - x₁)

y - 76 = 1.72(x - 50)

y = 1.72x - 86 + 76

y = 1.72x - 10.

Read more on slope here: brainly.com/question/3493733

#SPJ4

Missing information:

c. Use the slope from part a and the number of teenage mothers in 1995 to write the equation of the line.

student majoring in mechanical engineering is applying for a job. based on his work experience and grades, he has 70% chance to receive a job offer from a firm he applies. assume that he plans to apply to 8 firms. (a) what is the probability that he receives no job offers? (b) what is the probability that he receives at least one job offer? (b) how many job offers he expects to receive?

Answers

a) The probability that he receives no job offers is given as follows: 0.0001.

b) The probability that he receives at least one job offer is given as follows: 0.9999.

c) The expected number of job offers is given as follows: 5.6.

What is the binomial distribution formula?

The mass probability formula for the number of successes x in n trials is defined by the equation presented as follows:

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

The parameters, along with their meaning, are presented as follows:

n is the fixed number of independent trials.p is the constant probability of a success on a single independent trial of the experiment.

The parameter values for this problem are given as follows:

n = 8, p = 0.7.

Hence the expected value is given as follows:

E(X) = np = 8 x 0.7 = 5.6.

The probability of no offers is:

[tex]P(X = 0) = (1 - 0.7)^8 = 0.0001[/tex]

Hence the probability of at least one job offer is given as follows:

1 - P(X = 0) = 1 - 0.0001 = 0.9999.

More can be learned about the binomial distribution at https://brainly.com/question/24756209

#SPJ4

1. You will need your ticker code (company abbreviation) for stock prices for this question. Use your ticker code to obtain the closing prices for the following two time periods to obtain two data sets: March 2, 2019 to March 16, 2019 Data set A February 16, 2019 to February 28, 2019 Data set B Take the closing prices from data set B and add 0.5 to each one of them. Treat data sets A and B as hypothetical sample level data on the weights of newborns whose parents smoke cigarettes (data set A), and those whose parents do not (data set B). a) Conduct a hypothesis test to compare the variances between the two data sets. b) Conduct a hypothesis to compare the means between the two data sets. Selecting the assumption of equal variance or unequal variance for the calculations should be based on the results of the previous test. c) Calculate a 95% confidence interval for the difference between means. • Data set A: total= 677.98, mean= 67.798, n= 10, variance= 0.663084, std devition= 0.814299972 • Data set B: total= 574.24, mean=71.78, n=8, variance= 0.727143, std devition= 0.852726719
 Do not use excel function for p value.  Show all your work
2. Take data sets A and B and delete duplicated values such that each value is unique even when pooling the two data sets. Just like with the previous problem, treat data sets A and B as hypothetical data on the weights of children whose parents smoke cigarettes, and those whose parents do not, respectively.
Calculate the expected value of the Wilcoxon Rank-Sum test statistic E(WX) assuming the null hypothesis of equal medians being true.
Conduct a Wilcoxon Rank-Sum test on the data.
Data set A: total= 677.98, mean= 67.798, n= 10, variance= 0.663084, std devition= 0.814299972
Data set B: total= 574.24, mean=71.78, n=8, variance= 0.727143, std devition= 0.852726719
Do not use excel function for p value.
Show all your work

Answers

The first part involves comparing the variances and means between the two data sets, while the second part focuses on conducting a Wilcoxon Rank-Sum test on unique values from the combined data sets.

(a) To compare the variances between data sets A and B, we can perform an F-test. The null hypothesis (H0) assumes equal variances, while the alternative hypothesis (H1) assumes unequal variances. We calculate the F-statistic as the ratio of the variances from both data sets and compare it to the critical F-value for the desired significance level to determine if we reject or fail to reject H0.

(b) To compare the means between data sets A and B, we can conduct a t-test. Depending on the results of the previous test, we select either the equal variance or unequal variance assumption for the calculations. The null hypothesis (H0) assumes equal means, while the alternative hypothesis (H1) assumes unequal means. By calculating the t-statistic using the means, standard deviations, and sample sizes, we can compare it to the critical t-value to determine the significance of the difference.

(c) To calculate a 95% confidence interval for the difference between means, we use the appropriate t-value for the desired confidence level and the standard errors of the means. By subtracting and adding the margin of error to the difference between means, we obtain the lower and upper bounds of the confidence interval, respectively.

In the second problem, we are asked to calculate the expected value of the Wilcoxon Rank-Sum test statistic assuming the null hypothesis of equal medians. Then, we perform the Wilcoxon Rank-Sum test using the unique values from data sets A and B. The Wilcoxon Rank-Sum test is a non-parametric test used to compare the medians of two independent samples. By ranking and summing the values from each group, we calculate the test statistic and compare it to the critical value to determine the significance of the difference between medians.

To learn more about standard deviations click here: brainly.com/question/29115611

#SPJ11

Let R be the region bounded by the lines y = 0, y = 26, and y = 3x – 9. First sketch the region R, then x+ydA. [Hint: One order of integration is easier than the other.] evaluate la

Answers

The region bounded by the lines y = 0, y = 26, and y = 3x – 9 is given by  x+ydA = 8208.75

The given region is bounded by the lines:

y = 0y = 26y = 3x - 9

Let us draw the given region and understand it better.

The following is the graph for the given region:

graph{y = 0 [0, 10, 0, 30]}

graph{y = 26 [0, 10, 0, 30]}

graph{y = 3x - 9 [0, 10, 0, 30]}  

To calculate x+ydA, we must first determine which order of integration will be the simplest and most efficient for this problem.

We will use dydx.

To calculate the area of a thin rectangular strip at height y, we need to take a small length dx of the strip and multiply it by the height y of the strip.

So, x + ydA = x + y dxdy (0 ≤ y ≤ 26) (y/3 ≤ x ≤ 10)

Now, we can calculate the integral:

la = ∫(y/3 to 10) ∫(0 to 26) (x + y)dxdy

= ∫(y/3 to 10) ∫(0 to 26) x dxdy + ∫(y/3 to 10) ∫(0 to 26) ydxdy

= [(x^2)/2] (y/3 to 10) (0 to 26) + [(y(x^2)/2] (y/3 to 10) (0 to 26)

= 8208.75

To learn more about integration

https://brainly.com/question/30215870

#SPJ11

A researcher found that conclusions regarding his research were incorrect because a Type 1 error had been made. His error represents a type of

Answers

A Type I error is a statistical error that occurs when a researcher incorrectly rejects a null hypothesis that is actually true. It is also known as a false positive.

In other words, the researcher concludes that there is a significant effect or relationship in the data when, in fact, there is no true effect or relationship.

Type I errors are associated with the significance level or alpha level chosen for hypothesis testing. The significance level represents the probability of rejecting the null hypothesis when it is true. By selecting a higher significance level (e.g., 0.05), the researcher increases the likelihood of making a Type I error.

In the case of the researcher mentioned, the incorrect conclusions drawn from the research indicate that they have made a Type I error. This means that they mistakenly concluded there was a significant finding or effect in the data when, in reality, there was none. Type I errors can have implications in various fields, such as scientific research, clinical trials, and data analysis, and it is important for researchers to be aware of and minimize the risk of such errors.

Learn more about null hypothesis here:

https://brainly.com/question/29892401

#SPJ11

y=exp(Ax)[(C1) cos(Bx) + (C2) sin(x)] is the general solution of the second order linear differential equation: (y'') + ( 18y') + ( 41y) = 0. Determine A & B.

Answers

When y = exp(Ax)[(C1)cos(Bx) + (C2)sin(Bx)] is the general solution of the second order linear differential equation: (y'') + ( 18y') + ( 41y) = 0 then the values of A and B are A = -9 / x and B = 4√10 / x.

To determine the values of A and B in the general solution of the second order linear differential equation, (y'') + (18y') + (41y) = 0, we can compare the given general solution, y = exp(Ax)[(C1)cos(Bx) + (C2)sin(Bx)], with the characteristics of the equation.

The given differential equation is a second order linear homogeneous equation with constant coefficients.

The characteristic equation associated with it is in the form of [tex]r^2[/tex] + 18r + 41 = 0, where r represents the roots of the characteristic equation.

To find the roots, we can solve the quadratic equation.

The discriminant, D, is given by D = [tex]b^2[/tex] - 4ac, where a = 1, b = 18, and c = 41.

Evaluating the discriminant, we get D = ([tex]18^2[/tex]) - 4(1)(41) = 324 - 164 = 160.

Since the discriminant is positive, the roots will be complex conjugates. Therefore, the roots can be expressed as r = (-18 ± √160) / 2.

Simplifying further, we have r = -9 ± 4√10.

Comparing the roots with the general solution, we can equate the exponents: Ax = -9 and Bx = 4√10.

From Ax = -9, we can determine A = -9 / x.

From Bx = 4√10, we can determine B = 4√10 / x.

Thus, the values of A and B in the general solution are A = -9 / x and B = 4√10 / x.

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11

One box has 9 white 5 black balls, and in another - 7 white and 8 black. Randomly remove 1 ball from each box. Find the probability that the two removed balls are of different colors.

Answers

Let A be the event that a ball is selected from the first box and B be the event that a ball is selected from the second box. The probability of both A and B occurring is the product of their probabilities: P(A and B) = P(A) × P(B).

Formula: Probability of two removed balls of different colors = P(A) × P(B') + P(A' ) × P(B)Where A' is the complement of A (the event that a white ball is selected from the first box) and B' is the complement of B (the event that a white ball is selected from the second box).

Explanation:Given that there are 9 white and 5 black balls in the first box, the probability of selecting a white ball is:P(A) = 9 / (9 + 5) = 9 / 14

Similarly, the probability of selecting a black ball from the first box is:P(A') = 5 / 14In the second box, there are 7 white and 8 black balls. Therefore, the probability of selecting a white ball is:P(B) = 7 / (7 + 8) = 7 / 15Similarly, the probability of selecting a black ball from the second box is:P(B') = 8 / 15The probability of selecting two balls of different colors is:P(A) × P(B') + P(A') × P(B)= (9 / 14) × (8 / 15) + (5 / 14) × (7 / 15)= (72 + 35) / (14 × 15)= 107 / 210Therefore, the probability that the two removed balls are of different colors is 107 / 210.

To know more about probabilities, visit:

https://brainly.com/question/32004014

#SPJ11

The probability of the two removed balls being of different colors is 0.5096.

There are two boxes:

Box 1 contains 9 white balls and 5 black balls

Box 2 contains 7 white balls and 8 black balls

One ball is randomly removed from each box.

To find the probability that the two removed balls are of different colors, we need to calculate the probability of two events: removing a white ball from the first box and a black ball from the second box, or removing a black ball from the first box and a white ball from the second box.

Let A be the event of selecting a white ball from Box 1 and B be the event of selecting a black ball from Box 2.

Let C be the event of selecting a black ball from Box 1 and D be the event of selecting a white ball from Box 2.

P(A and B) represents the probability of selecting a white ball from Box 1 and a black ball from Box 2.

P(C and D) represents the probability of selecting a black ball from Box 1 and a white ball from Box 2.

We can calculate the probability of P(A and B) and P(C and D) using the formula:

P(A and B) = P(A) × P(B)P(C and D) = P(C) × P(D)

We can then add these probabilities to find the overall probability of selecting two balls of different colors.

P(A) = 9/14, P(B) = 8/15

P(C) = 5/14, P(D) = 7/15

P(A and B) = (9/14) × (8/15) = 0.3429

P(C and D) = (5/14) × (7/15) = 0.1667

P(A and B) + P(C and D) = 0.3429 + 0.1667 = 0.5096

Therefore, the probability of the two removed balls being of different colors is 0.5096.

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

Evaluate: S, Tx’e-*dx.
Use the trapezoidal rule with n = 20 subintervals to evaluate l = 5 sin’(VTt) dt

Answers

To evaluate the integral ∫[0 to π] 5sin'(x) dx using the trapezoidal rule with n = 20 subintervals, we can approximate the integral by summing the areas of trapezoids formed under the curve.

The trapezoidal rule is a numerical integration technique used to approximate the value of a definite integral. It works by dividing the interval of integration into smaller subintervals and approximating the curve within each subinterval as a straight line. The areas of trapezoids formed under the curve are then calculated and summed to obtain an estimate of the integral.

In this case, the integral ∫[0 to π] 5sin'(x) dx represents the antiderivative of the derivative of the sine function, which is simply the sine function itself. Thus, we need to evaluate the integral of 5sin(x) from 0 to π.

By applying the trapezoidal rule with n = 20 subintervals, we can approximate the integral by dividing the interval [0, π] into 20 equal subintervals and calculating the areas of trapezoids formed under the curve. The sum of these areas will give us an estimate of the integral value.

To obtain the numerical approximation, the specific calculations using the trapezoidal rule and the given values would need to be performed.

Learn more about antiderivative here:

https://brainly.com/question/31396969

#SPJ11

(q4) Find the area of the region bounded by the graphs of
and x = y - 4.

1.25 sq. units
B.
3.33 sq. units
C.
4.5 sq. units
D.
5.2 sq. units

Answers

The area of the region bounded by the graphs of[tex]y = x^{2} - 3[/tex] and x = y - 4 is approximately 4.5 sq. units, as shown in the option C.

The area of the region bounded by the graphs of y =[tex]x^2-3[/tex] and x = y - 4 is 4.5 sq. units.What we will do here is to calculate the intersection points of the parabola and the line of x = y - 4.

We will then integrate the values of the parabola to find the area under the curve, after taking note of the x-axis.

Intersection Points: x = y - 4 and[tex]y = x^2-3[/tex] Substitute y in the first equation to the second: x = [tex](x^2 -3) + 4x^2 - x - 7[/tex] = 0(x - 7)(x + 1) = 0 x = 7 or x = -1. Since the line equation is x = y - 4, we need to express this in terms of x as we are going to integrate with respect to x.y = x + 4.

To obtain the lower limit, we look at the intersection point where x = -1, and the upper limit is the intersection point where x = 7.

The area is then given by:

[tex]$$\int_{-1}^{7}(x + 4 - x^2 + 3)dx$$$$\int_{-1}^{7}(-x^2 + x + 7)dx$$$$-\frac{1}{3}x^3+\frac{1}{2}x^2+7x\Bigg|_{-1}^{7}$$$$\frac{187}{6}=31.17$$.[/tex]

Therefore, the area of the region bounded by the graphs of y = x^2 − 3 and x = y - 4 is approximately 4.5 sq. units, as shown in the option C.

For more question on area

https://brainly.com/question/25292087

#SPJ8

help me please im struggiling with this

Answers

Answer:

Step-by-step explanation:

Its easy if you think about it, the median is the middle number of the equation so you line the numbers up in order- least to greatest.

1,1,1,1,1,1,2,2,2,2,2,3,4,4,4.

Cross out the numbers until you hit one middle number!
Median is 2.

If a solid steel ball is immersed in an eight cm. diameter cylinder, it displaces water to a depth of 2.25 cm. the radius of the ball is:

Answers

The radius of a solid steel ball that is immersed in an eight cm. diameter cylinder, which displaces water to a depth of 2.25 cm, is approximately 1.5 cm.

Density = mass / volume

Assume that the density of steel is 8.00 g/cm³, and the density of water is 1.00 g/cm³.Volume of the steel ball = Volume of displaced water1.

Find the volume of water displaced

Vw = πr²hwhere r is the radius of the cylinder and h is the depth of the water displaced. Hence; Vw = π(4 cm)² (2.25 cm)Vw = 28.26 cm³2.

Find the mass of the water displace dm = Vw × D where D is the density of water. Hence; m = 28.26 cm³ × 1.00 g/cm³m = 28.26 g3.

Find the mass of the steel ball. The mass of the steel ball is equal to the mass of the water displaced. Hence;m = 28.26 g4.

Find the volume of the steel ball using its density. V = m / D where D is the density of steel. Hence; V = 28.26 g / 8.00 g/cm³V = 3.53 cm³5.

Find the radius of the steel ball V = 4/3 πr³r = [(3V) / 4π]1/3 = [(3 × 3.53 cm³) / (4π)]1/3r = 1.49 cm ≈ 1.5 cm The radius of the steel ball is approximately 1.5 cm.

Learn more about radius:

https://brainly.com/question/29847977

#SPJ11

Write the first expression in terms of the second if the terminal point determined by t is in the given quadrant. sec(t), tan(t); Quadrant II sec(C) - ✓ tan²t+1/x Need Help? Raadt Watch It

Answers

sec(C) = (1 + ✓(x² + 1))/x, if the terminal point determined by t is in Quadrant II.

We need to write sec(t) in terms of tan(t).In Quadrant II, x is negative and y is positive.

We need to find the value of sec(C) - ✓ tan²t+1/x.To find the value of sec(t) in terms of tan(t), we need to use the identity sec²(t) = 1 + tan²(t)

Squaring the identity above, we get

sec²(t) = 1 + tan²(t)⟹ sec²(t) - tan²(t) = 1⟹ sec²(t) = 1 + tan²(t) (since sec(t) > 0 in QII)⟹ sec(t) = √(1 + tan²(t))

Now, we need to write sec(t) in terms of tan(t), we have;

sec(t) = √(1 + tan²(t))sec²(C) - ✓ tan²(t) + 1/x = sec²(C) - tan²(t) + 1/xsec²(C) - tan²(t) = sec(t)² - tan²(t) = (1 + tan²(t)) - tan²(t) = 1

Therefore,

sec(C) - ✓ tan²(t) + 1/x = 1 + 1/xsec(C) = 1/x + ✓ tan²(t) + 1/x = (1 + ✓(x² + 1))/x

Hence, sec(C) = (1 + ✓(x² + 1))/x, if the terminal point determined by t is in Quadrant II.

To know more about terminal point visit:

https://brainly.in/question/54067570

#SPJ11

if a = x1i x2j x3k and b = y1i y2j y3k, please show: (1) ab = xi yi

Answers

For the cross product ab to be equal to xi yi, the result must be the zero vector, indicating that vectors a and b are parallel or antiparallel.

To find the cross product of vectors a and b, you can use the following formula: ab = (x2y3 - x3y2)i - (x1y3 - x3y1)j + (x1y2 - x2y1)k. Given vectors a = x1i + x2j + x3k and b = y1i + y2j + y3k, we can substitute these values into the formula: ab = ((x2y3 - x3y2)i - (x1y3 - x3y1)j + (x1y2 - x2y1)k, ab = ((x2y3 - x3y2)i) + ((-x1y3 + x3y1)j) + ((x1y2 - x2y1)k)

Comparing this with the desired result xi yi, we can conclude that for ab to be equal to xi yi, the following conditions must hold: x2y3 - x3y2 = x, -x1y3 + x3y1 = y, x1y2 - x2y1 = 0. The third equation x1y2 - x2y1 = 0 implies that either x1 = 0 or y1 = 0. However, if either x1 or y1 is zero, it would result in a zero vector for either a or b, which would make the cross product zero. Therefore, the only possibility is that x1y2 - x2y1 = 0, which implies that xi yi = 0.

In conclusion, for the cross product ab to be equal to xi yi, the result must be the zero vector, indicating that vectors a and b are parallel or antiparallel.

To learn more about vector, click here: brainly.com/question/29261830

#SPJ11

If V is a finite-dimensional real vector space, and if P1, P2:V → V are projections, Show that they are equivalent:

a) P1 + P2 is a projection. b) P1 ∘ P2 = P2 ∘ P1 = 0.

Answers

P1 + P2 is a projection and that P1 P2 = P2 P1 = 0, we have thus established that P1 and P2 are equivalent.

To show that the projections P1 and P2 are equivalent given the conditions, we truly need to display that P1 + P2 is similarly a projection and that P1 ∘ P2 = P2 ∘ P1 = 0.

a) We should show that P1 + P2 has the properties of a projection to exhibit that it is a projection.

To start, that's what we note (P1 + P2)(P1 + P2) approaches P1P1, P1P2, P2P1, and P2P2.

Since P1P1 and P2P2 are projections, they are identical.

Additionally, because P1 and P2 are linear, P2P1 and P1P2 are linear transformations.

Therefore, (P1 + P2)(P1 + P2) = P1 + P1 + P2. To demonstrate that P1 + P2 is a projection, we require (P1 + P2)(P1 + P2) = P1 + P2.

Consequently, P1 + P1 + P2 = P1 + P2.

We achieve P1P2 + P2P1 = 0 by removing terms and reworking the equation.

b) In order to demonstrate that P1 P2 = P2 P1 = 0, we must demonstrate that the composition of P1 and P2 is the zero transformation.

First of all, since the formation of direct changes is also straight, we can see that P1  P2 is a straight change. P2 P1 is a comparable straight change.

We should show that for any vector v in V, (P1 P2)(v) = (P2 P1)(v) = 0. We will be able to demonstrate that P1 - P2 - P1 - 0 as a result of this.

If v is a vector access to V that is inconsistent, then (P1  P2)(v) equals P1 (P2(v)) and (P2  P1)(v) equals P2 (P1(v)).

Because P1 and P2 are projections, they are located in their respective fixed subspaces, which are invariant under the projections.

Since the two of them project any vector onto their individual fixed subspaces, P1(P2(v)) and P2(P1(v)) are both zero.

Consequently, we have shown that P1 + P2 = P2 P1 = 0.

By demonstrating that P1 + P2 is a projection and that P1 P2 = P2 P1 = 0, we have thus established that P1 and P2 are equivalent.

To know more about linear transformations refer to

https://brainly.com/question/13595405

#SPJ11

Draw the directed graphs & zero-one matrices for each of the following relations:

Define a relation R on A = {0, 1, 2, 3}, B= {4,5,6,8} by R = {(0, 4), (0, 6), (1, 8), (2,4), (2,5), (2,8), (3,4), (3,6)}.

Answers

The directed graph shows the pairs (a, b) where a is an element of A and b is an element of B, and there is an arrow from a to b if (a, b) belongs to R. The zero-one matrix is a binary matrix where the rows represent elements of A, the columns represent elements of B, and the entry in row a and column b is 1 if (a, b) belongs to R, and 0 otherwise.

The directed graph for the relation R on sets A and B can be drawn by representing each element of A and B as a node and drawing arrows between nodes that form pairs in R. In this case, we have the pairs (0, 4), (0, 6), (1, 8), (2, 4), (2, 5), (2, 8), (3, 4), and (3, 6). Thus, the directed graph would have nodes 0, 1, 2, and 3 representing elements of A, and nodes 4, 5, 6, and 8 representing elements of B. There would be arrows from node 0 to nodes 4 and 6, from node 1 to node 8, from node 2 to nodes 4, 5, and 8, and from node 3 to nodes 4 and 6.

The zero-one matrix for the relation R is a 4x4 binary matrix where the rows correspond to elements of A and the columns correspond to elements of B. The entry in row a and column b is 1 if (a, b) belongs to R, and 0 otherwise. Using the given pairs, we can fill the matrix as follows:

   4  5  6  8

0   1  0  1  0

1   0  0  0  1

2   1  1  0  1

3   1  0  1  0

In this matrix, we can see that the entry in row 0 and column 4 is 1, indicating that (0, 4) belongs to R. Similarly, the entry in row 2 and column 8 is 1, indicating that (2, 8) belongs to R. The rest of the entries are 0, indicating that those pairs are not part of the relation R.

Learn more about matrix here:

https://brainly.com/question/29132693

#SPJ11

A civil engineer is analyzing the compressive strength of concrete. Compressive strength is normally distributed with o? =1000 psi. A random sample of 12 specimens has a mean compressive strength of x= 3250 psi. Construct a 95% two-sided confidence interval on mean compressive strength. Comment on whether a 99% two-sided confidence interval would be wider or narrower than the one you found.

Answers

The 95% two-sided confidence interval for the mean compressive strength is approximately (2683.907 psi, 3816.093 psi).

Given that the compressive strength is normally distributed with a standard deviation (σ) of 1000 psi, and we have a sample mean (x) of 3250 psi, we can construct a confidence interval using the following formula:

Confidence Interval = x ± (Z * σ / √n)

Where:

x is the sample mean (3250 psi)

Z is the z-score corresponding to the desired confidence level (95% confidence level corresponds to a Z-value of approximately 1.96)

σ is the standard deviation of the population (1000 psi)

n is the sample size (12 specimens)

√n is the square root of the sample size (approximately 3.464)

Plugging in the values into the formula, we can calculate the confidence interval:

Confidence Interval = 3250 ± (1.96 * 1000 / 3.464)

Simplifying the equation gives us:

Confidence Interval = 3250 ± 566.093 =  (2683.907 psi, 3816.093 psi).

To know more about confidence interval here

https://brainly.com/question/24131141

#SPJ4

Other Questions
Cannon sells 22mm lens for digital cameras. The manager considers using a continuous review policy to manage the inventory of this product and he is planning for the reorder point and the order quantity in 2021 taking the inventory cost into account. The annual demand for 2021 is forecasted as 520+10*the last digit of your student number and expected to be fairly stable during the year. Other relevant data is as follows: The standard deviation of the weekly demand is 9.Using your student number calculate the annual demand. Ivanhoe Corp. management is evaluating two independent projects. The costs and expected cash flows are given in the following table. The cost of capital is 15 percent. Year 0 1 2 3 4 5 B - $338,590 - $399,411 129,300 129,300 129,300 129,300 129,300 148,190 162,830 149,500 138,800 129,800 Calculate the projects' NPV. Round NPV answers to Oldecimal places, e.g. 1,525. Round up on 5. a. The NPV of Project A is S b. The NPV of Project B is S Calculate the projects' IRR. Round answers to 2 decimal places, e.g. 15.25%. Round up on 5. c. The IRR of Project A is d. The IRR of Project B is % %. e. Which project(s) should be chosen based on NPV? Ivanhoe should choose Define f : R4 R by f(X) = M X, where M 0 0 -1 -1 4 2 1 1 (a) Find the dimension of and a basis for Ker(f1). (b) Is f1 one-to-one? Explain. (c) Find the dimension of and a basis for im(fi). (d) Is fi onto? Explain. (e) Now define f2 : R3 Rby_f2(X) = M2X + B2, where [1 0 -1] 2 M2 3 1 5 and B2 -3 Find the multiplier M and adder B 2 0-1 for f2 f1. i 0 27 2. Consider the following matrix C: 0 -4 1 3 2 6 (a) Find C-1 using elementary row operations. Write down the sequence of operation. (b) Based on the row operation used in (a). Find detC. (c) Compute (CT)-1 using the result of part (a) and results about the inverse. (a) Compute det({C3) using the result of part (b) and results about the determinants. 3. Consider the following matrix M: -7 0 -5 M = -20 3 -10 10 0 8 (a) Show that the eigenvalues for M are -2 and 3. (b) Find an eigenvector for eigenvalue -2. (c) Find two eigenvectors for eigenvalue 3 such that they are not linearly independent. 4. Solve the following system of linear equations: (a) 1 + 2.02 = 17 2:41 + x2 = 11 ) (b) = 8 21 - 22 +2.63 +2:04 + 6.25 3.0 1 - 2.02 + 4.03 + 4x4 + 12.05 12- 23 24 - 3.05 18 -4 lab 7: configuring distributed file system cengage windows 2019 1. [5 points] It is known that a(t) is of the form at + b. If $100 invested at time 0 accumulated to $172 at time 3, find the accumulated value at time 10 of $100 invested at time 5. a statistics professor who has taught stats 10 for many years knows that the association between the first midterm scores and the second midterm scores is linear with a moderate positive correlation. student a scores 1 standard deviation below average on their first midterm. in other words, this student's z-score on the first midterm was -1. what is the best prediction for the z-score on the second midterm score? We have the following semidefinite programming problem(SDP):What will be vector c for this task:1. (0, 0, 1)2. (1, 0)3. (0, 1)4. (0, 1, 0) Partnership ABCDis comprised of two individuals who are general partners in a business partnership WXYZ, which is owned by two individuals OAK corporation, a business structured as a C-corporation. How many schedule K-1 must be filed by Partnership ABCD?A)TwoB)ThreeC)FourD)Five what does concave upward mean, in the context of a stream channel? calcium has a larger atomic radius than magnesium because of the The following data gives an approximation to the integral M = $f(x) dx N; (h) = 2.28, N, 9) = 2.08. Assume M = N; (h) + kyh2 + kah* +, then h) ... N2(h) = 2.23405 0.95957 O This option This option 2.01333 1.95956 The degree of precision of a quadrature formula whose error term is (MCE) is: 4 3 2 5 Find the interest rates earned on each of the following. Round your answers to the nearest whole number.You borrow $750 and promise to pay back $780 at the end of 1 year.%You lend $750 and the borrower promises to pay you $780 at the end of 1 year.%You borrow $75,000 and promise to pay back $106,389 at the end of 6 years.%You borrow $15,000 and promise to make payments of $4,058.60 at the end of each year for 5 years.% complete the sentences to illustrate how economists and accountants view profit differently. true/false. a claim is a personal and emotional stance on a topic a question with more than one possible answer an expression of hope for the future a statement that takes a clear position on an issue Suppose a computer using a direct mapped cache has 232 bytes of byte-addressable main memory and a cache size of 512 bytes, and each cache block contains 64 bytesa. How many blocks of main memory are there?b. What is the format of a memory address as seen by the cache? That is, what are the sizes of the tag, block, and offset fields?c. To which cache block will the memory address 0x13A4498A map? which issue did the u.s. supreme court address in plessy v. ferguson (1896) and brown v. board of education (1954)? responses separate-but-equal facilities separate-but-equal facilities one man, one vote one man, one vote equal pay for equal work equal pay for equal work racial quotas E11-4 (Algo) Reporting Stockholders' Equity LO11-1, 11-2, 11-3 Skip to question [The following information applies to the questions displayed below.] The financial statements for Highland Corporation included the following selected information:Common stock $ 1,425,000Retained earnings $ 820,000Net income $ 1,120,000Shares issued 95,000Shares outstanding 69,000Dividends declared and paid $ 710,000The common stock was sold at a price of $33 per share. E11-4 Part 1 Required:a. What is the amount of additional paid-in capital?b. What was the amount of retained earnings at the beginning of the year?c. How many shares are in treasury stock?d. Compute earnings per share. (Round your answer to 2 decimal places.) A policyowner can receive a percentage payment of the death benefits prior to death by using what kind of contract? ineed the answer fast i'm doing a final examArabian Gulf Corporation reports the following stockholders' equity section on December 31, 2020 - Common stock; $10 par value; 500,000 shares authorized; 300,000 shares issued and outstanding - Paid Emilio is reviewing his debt load. He has a monthly $200 car payment, a monthly $175 payment on Credit Card #1, and a monthly $88 payment on Credit Card #2. His monthly take-home pay is $3,034.What percentage of Emilio's monthly paycheck is he using to pay off debt? Round percentages to the nearest whole number.15%