An instructor gives four 1-hour exams and one final exam, which counts as three 1-hour exams. Find a student's grade if she received 65, 84, 98, and 91 on the 1-hour exams and 82 on the final exam.

Answers

Answer 1

The student's grade is approximately 83.43.

To calculate the student's grade, we need to consider the weight of each exam. The four 1-hour exams are worth 1 hour each, and the final exam is equivalent to three 1-hour exams.

Let's break down the calculation step by step:

Calculate the sum of the 1-hour exams:

65 + 84 + 98 + 91 = 338

Calculate the weighted sum of the exams by multiplying the sum of the 1-hour exams by 1 (since each 1-hour exam has a weight of 1):

Weighted sum of 1-hour exams = 338×1 = 338

Calculate the weighted score for the final exam by multiplying the final exam score (82) by 3 (since it counts as three 1-hour exams):

Weighted score for the final exam = 82× 3 = 246

Add the weighted sum of the 1-hour exams and the weighted score for the final exam to obtain the total weighted sum:

Total weighted sum = Weighted sum of 1-hour exams + Weighted score for the final exam

= 338 + 246 = 584

Calculate the total weight of all the exams by summing the individual weights:

Total weight = Weight of 1-hour exams + Weight of the final exam

= 4 + 3 = 7

Finally, calculate the student's grade by dividing the total weighted sum by the total weight:

Student's grade = Total weighted sum / Total weight

= 584 / 7 ≈ 83.43

Therefore, the student's grade is approximately 83.43.

Learn more about multiplication here:

https://brainly.com/question/24327271

#SPJ11


Related Questions

A student wait to see if the correct answers to multiple chole problems are evenly distributed. She heard a rumor that if you don't know the answer you should always pick C. In a sample of 100 multiple choice questions from prior tests and quickes, the distribution of correct answers are given in the table below. In all of these questions, there were four optiote (A, B, C, D) Correct Atwets (n = 100) A B C D Count 12 21 31 The Test: Tat the clinim that correct answers for all multiple choice questions are not evenly dis tributed. Test this claim at the 0.06 significance loved one population mean A sample of 38 items is chosen from a normally distributed population with a sample mean of x = 12.5 and a population standard deviation of S = 2.8. a. At the 0.05 level of significance test the null hypothesis that the population mean is less than 14. b. find a 95% confidence interval

Answers

The results of the hypothesis test and the confidence interval suggest that the correct answers for all multiple choice questions are not evenly distributed.

How to explain the hypothesis

The null hypothesis is that the correct answers for all multiple choice questions are evenly distributed. The alternative hypothesis is that the correct answers are not evenly distributed. The significance level is 0.06.

The chi-square test statistic is 12.58. The critical value for a chi-square test with 3 degrees of freedom and a significance level of 0.06 is 7.815. Since the chi-square test statistic is greater than the critical value, we reject the null hypothesis and conclude that there is enough evidence to support the claim that the correct answers are not evenly distributed.

A 95% confidence interval for the population mean is calculated as follows:

(x - 1.96 * s / ✓(n), x + 1.96 * s / ✓(n))

= (11.64, 13.36).

The results of the hypothesis test and the confidence interval suggest that the correct answers for all multiple choice questions are not evenly distributed.

Learn more about hypothesis on

https://brainly.com/question/606806

#SPJ4

what is the degree of the polynomial x6+9??

Answers

Answer: I think it's 6

Step-by-step explanation:


calculate the amount of interest that will be charged
on $5973 borrowed for 6 months at 5.1%

Answers

The amount of interest that will be charged on $5973 borrowed for 6 months at 5.1% is $15.23.

To calculate the amount of interest that will be charged on $5973 borrowed for 6 months at a rate of 5.1%, we can use the simple interest formula:

Interest = Principal × Rate × Time

Where:

Principal = $5973

Rate = 5.1% (or 0.051 in decimal form)

Time = 6 months (or 0.5 years)

Plugging in the values, we get:

Interest = $5973 × 0.051 × 0.5

Calculating this, we find:

Interest = $151.82

Therefore, the amount of interest that will be charged on the borrowed amount is $151.82.

Learn more about interest https://brainly.com/question/30393144

#SPJ11

T/F : if a set s = {u1,...., up} g has the property that ui*uj uj d 0 whenever i≠ j , then S is an orthonormal set

Answers

If a set s = {u1,...., up} g has the prοperty that ui*uj uj d 0 whenever i≠ j , then S is an οrthοnοrmal set. The given statement is false.

Analyze the cοnditiοns tο verify fοr οrthοnοrmal set?

The prοperty mentiοned in the statement, which states that the inner prοduct οf any twο distinct vectοrs in the set is zerο (i.e., ui * uj = 0 fοr i ≠ j), implies οrthοgοnality. Hοwever, fοr a set tο be cοnsidered οrthοnοrmal, it must satisfy twο cοnditiοns:

1. Orthοgοnality: Each pair οf distinct vectοrs in the set must be οrthοgοnal, meaning their inner prοduct is zerο.

2. Nοrmalizatiοn: Each vectοr in the set must have a length (οr magnitude) οf 1, which is achieved by dividing each vectοr by its nοrm.

In the given statement, οnly the οrthοgοnality cοnditiοn is satisfied, but the nοrmalizatiοn cοnditiοn is nοt mentiοned. Therefοre, we cannοt cοnclude that the set is οrthοnοrmal based οn the given prοperty alοne.

To know more about orthonormal set, refer here:

https://brainly.com/question/30549488

#SPJ4  

Determine all real values a and b such that in R. 3a (b) Determine the solution set, S, to the following system of linear equations. 2.01 -12 +2.r3 +4.64 = 0 +3:14 0 2.11 12 Express S as the span of one or more vectors.

Answers

The set of real values for a and b such that 3a(b) is defined in R can be expressed as:

S = {(a, b) | a, b ∈ ℝ}

To determine all real values of a and b such that 3a(b) is defined in R, we need to ensure that both a and b are real numbers.

Since a and b are independent variables, any real values for a and b will satisfy the condition, and there are infinitely many solutions. Therefore, the set of real values for a and b can be expressed as:

S = {(a, b) | a, b ∈ ℝ}

Now, let's determine the solution set, S, to the given system of linear equations:

2.01x - 12y + 2√3z + 4.64w = 0

0x + 3.14y + 0z + 2.11w = 12

We can rewrite the system of equations as an augmented matrix:

[ 2.01 -12 2√3 4.64 | 0 ]

[ 0 3.14 0 2.11 | 12 ]

Using row reduction operations, we can transform the augmented matrix into its reduced row-echelon form:

[ 1 0 -0.397 5.772 | 0 ]

[ 0 1 0.000 3.795 | 12 ]

From the reduced row-echelon form, we can write the system of equations in parametric form:

x - 0.397z + 5.772w = 0

y + 3.795w = 12

We can express the solution set S as the span of one or more vectors by introducing free variables. Let's set z = s and w = t, where s and t are arbitrary real numbers.

Then, the system of equations becomes:

x - 0.397s + 5.772t = 0

y + 3.795t = 12

Now, we can express the solution set S as the span of the vectors:

S = {(0.397s - 5.772t, 12 - 3.795t, s, t) | s, t ∈ ℝ}

Therefore, the solution set S is expressed as the span of the vector (0.397, 12, 1, 0) and ( -5.772, 0, 0, 1).

To know more about real values refer here:

https://brainly.com/question/12011099

#SPJ11

Suppose that G is a plane graph that has 15 edges in the boundary of its exterior region and all the other regions of G contain 4, 6, or 8 regions in their boundary. Use Grinberg's Theorem to show that G cannot contain a Hamilton circuit.

Answers

Based on Grinberg's Theorem, a plane graph with 15 edges in the exterior region and other regions containing 4, 6, or 8 edges in their boundaries cannot have a Hamilton circuit.

Grinberg's Theorem states that in a plane graph with n vertices, m edges, and r regions, the following inequality holds:

2m ≥ 3n + r - 6

Let's apply this theorem to the given situation:

Assume that G contains a Hamilton circuit. A Hamilton circuit is a closed path in a graph that visits each vertex exactly once. Since a Hamilton circuit visits each vertex once, the number of edges in the Hamilton circuit is equal to the number of vertices in G.

Let n be the number of vertices in G. Since G contains a Hamilton circuit, we have n edges.

The total number of regions in G can be determined by Euler's formula for planar graphs, which states:

n - m + r = 2

where r is the number of regions.

From the given information, we know that G has 15 edges in the boundary of its exterior region, which means there are 15 regions with a boundary of size 1.

Using the given information about the other regions, we can determine the number of regions with boundaries of size 4, 6, and 8, denoted as r4, r6, and r8, respectively.

Now, applying Grinberg's Theorem, we have:

2m ≥ 3n + r - 6

2n ≥ 3n + (15 + 4r4 + 6r6 + 8r8) - 6

2n - 3n ≥ 15 + 4r4 + 6r6 + 8r8 - 6

-n ≥ 9 + 4r4 + 6r6 + 8r8

Since the left-hand side of the inequality is negative and the right-hand side is positive (as the number of regions and boundaries are positive), the inequality is not satisfied.

Therefore, based on Grinberg's Theorem, G cannot contain a Hamilton circuit.

Learn more about the Hamilton circuit at

https://brainly.com/question/29049313

#SPJ4

A study is conducted to determine the relationship between a driver's age and the number of accidents he or she has over a one-year period. The data are shown. If there is a significant relationship,predict the number of accidents of a driver who is 64 years old.
Age No.of accidents
63 2
65 3
60 1
62 0
66 3
67 1
59 4

Answers

The number of accidents of a driver who is 64 years old is predicted to be 2.868.

A linear regression analysis is conducted to predict the number of accidents a driver aged 64 years old has to determine the relationship between a driver's age and the number of accidents he or she has over a one-year period.

A linear regression analysis is used to determine the relationship between two variables, namely x (independent variable) and y (dependent variable).

y = mx + by = the dependent variable (Number of accidents)

m = the slope of the regression line

b = y-intercept of the regression line,

x = independent variable (Driver's Age)

The following table shows the calculations required for the regression equation using a linear regression analysis.

Xi         Yi   Xi^2         XiYi
63   2    3969  126
65   3   4225  195
60   1   3600  60
62   0   3844  0
66   3   4356  198
67   1   4489  67
59   4   3481  236
∑Xi = 482

∑Yi = 14

∑Xi^2 = 27964

∑XiYi = 882

a = ∑Yi / n

= 14/7

= 2b = [∑XiYi - (∑Xi*∑Yi)/n]/[∑Xi² - (∑Xi)²/n]

b = [882 - (482*14)/7] / [27964 - (482²)/7]

b = -3.299

m = [∑Yi - a*∑Xi]/n - a*∑Xi/n

= [14 - (2*482)/7] / [7]

m = 0.942

y = mx + by = 0.942

x - 59.94

Now, if there is a significant relationship between age and the number of accidents, the number of accidents a driver who is 64 years old is likely to have is:

y = 0.942(64) - 59.94

y = 2.868

To know more about regression analysis, visit:

https://brainly.com/question/31873297

#SPJ11

14. If y = f(x) is a solution to the differential equation =et with the initial condition f(0) = 2, which of the dx
following is true?
(A) f(x)=1+e+²
(B) f(x) = 2xe¹²
(C) f(x) = [*e¹² dt
(D) f(x) = 2+ [*e²² dt
(E) f(x)=2+ fedt

Answers

The correct option is (A) f(x)=1+e+² since the value of y is obtained as et + 1, which is equal to 1+e^x 2. The other options do not satisfy the initial condition.

Given that, y = f(x) is a solution to the differential equation y' = et with the initial condition f(0) = 2. To find the correct option among the given options.

Therefore, let's solve this using the integration method. Let's integrate both sides with respect to x,y'=etdy/dx =etdy = etdx Integrating both sides, we get∫dy = ∫et dxy = ∫et dx + c ....(1) where c is the constant of integration. To find the constant c, we need to use the initial condition f(0) = 2.

Substituting x = 0 and y = f(0) = 2 in equation (1),2 = ∫e0 dx + c2 = 1 + c => c = 1. Therefore, the solution is y = ∫et dx + 1= et + 1

Therefore, the correct option is (A) f(x)=1+e+² since the value of y is obtained as et + 1, which is equal to 1+e^x 2. The other options do not satisfy the initial condition.

know more about differential equation

https://brainly.com/question/25731911

#SPJ11

Suppose the random variables X and Y have joint pdf as follows: f(x, y) = 15xy^2, 0 < y < x < 1 Find the marginal pdf f_1 (x) of X. Find the conditional pdf f_2(y | x). Find P(Y > 1/3 | X = x) for any 1/3 < x.< 1 Are X and Y independent?

Answers

The marginal pdf f₁(x) of X is given by f₁(x) = 5x⁴ for 0 < x < 1. The conditional pdf f₂(y | x) = f(x, y) / f₁(x) = (15xy²) / (5x⁴) = 3y² / x³ for 0 < y < x < 1. P(Y > 1/3 | X = x) =2/9x³. X and Y are dependent variables.

The marginal pdf f₁(x) of X can be obtained by integrating the joint pdf f(x, y) over the range of y.

Integrating f(x, y) = 15xy² with respect to y from 0 to x gives:

∫(0 to x) 15xy²

dy = 15x ∫(0 to x) y²

dy = 15x [y³/3] (0 to x)

= 15x (x³/3 - 0)

= 5x⁴.

The conditional pdf f₂(y | x) can be found by dividing the joint pdf f(x, y) by the marginal pdf f₁(x).

So, f₂(y | x) = f(x, y) / f₁(x) = (15xy²) / (5x⁴) = 3y² / x³ for 0 < y < x < 1.

To find P(Y > 1/3 | X = x) for any 1/3 < x < 1,

we integrate the conditional pdf f₂(y | x) with respect to y from 1/3 to 1:

P(Y > 1/3 | X = x)

= ∫(1/3 to 1) (3y² / x³)

dy = 3/x³ ∫(1/3 to 1) y²

dy = 3/x³ [(y³/3)] (1/3 to 1)

= 3/x³ [(1/27) - (1/81)]

= 2/9x³.

To determine if X and Y are independent,

we need to check if f(x, y) = f₁(x) × f₂(y | x).

Given f(x, y) = 15xy² and f₁(x) = 5x⁴,

we can see that f(x, y) ≠ f₁(x) × f₂(y | x). X and Y are dependent variables.

Learn more about integrating here:

https://brainly.com/question/31744185

#SPJ4

The null hypothesis is that 30% people are unemployed in Karachi city. In a sample of 100 people, 55 are unemployed. Test the hypothesis with the alternative hypothesis is not equal to 30%. What is the p-value?

Answers

The p-value for testing the hypothesis that the proportion of unemployed people in Karachi city is not equal to 30%, based on a sample of 55 unemployed individuals out of a sample of 100 people, is approximately 0.1539 (rounded to four decimal places).

To calculate the p-value, we use the z-test for proportions. Given the null hypothesis that the proportion of unemployed people is 30%, the alternative hypothesis is that it is not equal to 30%. We compare the sample proportion to the hypothesized population proportion using the standard normal distribution.

Using the formula for the z-statistic:

z = (sample proportion - hypothesized proportion) / sqrt((hypothesized proportion * (1 - hypothesized proportion)) / sample size)

z = (55/100 - 0.30) / sqrt((0.30 * 0.70) / 100)

z = (0.55 - 0.30) / sqrt(0.21 / 100)

z = 0.25 / 0.0458

z = 5.4612

To calculate the two-tailed p-value, we find the area under the standard normal curve beyond the observed z-value. In this case, the p-value is the probability of observing a z-value as extreme or more extreme than 5.4612.

Using a standard normal distribution table or statistical software, we find that the two-tailed p-value for a z-value of 5.4612 is approximately 0.1539.

Therefore, the p-value for this hypothesis test is approximately 0.1539.

To know more about hypothesis testing,  refer here:

https://brainly.com/question/24224582#

#SPJ11

what are lines created by scientists to divide the globe into sections?a) equatorsb) gridsc) meridiansd) time zones

Answers

The correct answer is option c) meridians.

The lines created by scientists to divide the globe into sections are called meridians. Meridians are imaginary lines that run from the North Pole to the South Pole and are used to measure longitude. These lines help establish a reference system on the Earth's surface, allowing us to identify specific locations and navigate accurately.

Meridians are equally spaced and are typically measured in degrees, with the Prime Meridian, located at 0 degrees longitude, serving as the reference point. The Prime Meridian runs through Greenwich, London, and divides the Earth into the Eastern Hemisphere and the Western Hemisphere.

By using a network of meridians, scientists and cartographers can create a global grid system, allowing for precise location determination and mapping. The intersection of meridians and another set of lines called parallels, which represent latitude, creates a grid-like pattern that facilitates accurate navigation and geographical referencing.

Therefore, the correct answer is option c) meridians.

Know more about Geographical  here:

https://brainly.com/question/32503075

#SPJ11


Create the Scenario and Describe with illustration and
example to explain about conditional probability

Answers

Conditional probability is a statistical concept that refers to the likelihood of an event occurring given that another event has already occurred. It is used to calculate the probability of an event based on the knowledge of another related event.

It can be calculated using Bayes' theorem, which states that the probability of an event A given that event B has occurred is equal to the probability of both events A and B occurring divided by the probability of event B occurring. This can be expressed as:

P(A|B) = P(A and B) / P(B)

To understand conditional probability better, let's take an example scenario:

Suppose there are two boxes: Box A and Box B. Box A contains 4 red balls and 6 blue balls, while Box B contains 5 red balls and 5 blue balls. You are asked to pick a ball from one of the boxes without looking and you want to know the probability of picking a red ball.

Without any additional information, the probability of picking a red ball is simply the sum of the probabilities of picking a red ball from each box:

P(Red) = P(Red from Box A) + P(Red from Box B)

= 4/10 + 5/10

= 9/20

Now, suppose you are told that the ball you picked is from Box A. This additional information changes the probability because it eliminates the possibility that the ball came from Box B. Therefore, the conditional probability of picking a red ball given that the ball came from Box A is:

P(Red|Box A) = P(Red and Box A) / P(Box A)

The joint probability can be calculated as follows:

P(Red and Box A) = P(Red from Box A) * P(Box A)

= (4/10) * (1/2)

= 2/10

Therefore, the conditional probability of picking a red ball given that it came from Box A is:

P(Red|Box A) = (2/10) / (1/2)

= 4/10

= 2/5

This means that if you know that the ball came from Box A, then there is a 2/5 chance that it is red.

To know more about Conditional probability refer here:

https://brainly.com/question/30144287#

#SPJ11

Consider the following matrices. (To make your job easier, an equivalent echelon form is given for the matrix.)
A = [1 0 −4 −6, −2 1 13, 5 0 1 5 −7] ~ [1 0 −4 −6, 0 1 5 −7, 0 0 0 0]
Find a basis for the column space of A. (If a basis does not exist, enter DNE into any cell.)
Find a basis for the row space of A. (If a basis does not exist, enter DNE into any cell.)
Find a basis for the null space of A. (If a basis does not exist, enter DNE into any cell.)

Answers

The basis for the null space of A is {(-5,0,-1,1)}.

Given matrix A = [1 0 -4 -6, -2 1 13, 5 0 1 5 -7] ~ [1 0 -4 -6, 0 1 5 -7, 0 0 0 0]The basis for the column space of matrix A is {(1,-2,5),(0,1,0),(-4,13,1),(-6,5,5)}. We can obtain the basis for the column space of matrix A by selecting the pivot columns. In this case, the pivot columns are columns 1 and 2. The non-zero columns in the row echelon form are columns 1, 2 and 3. To obtain the basis, we take columns 1 and 2 from the original matrix A, then write them in order followed by columns 3 and 4 of the original matrix A. So the basis for the column space of A is as shown below{(1,-2,5),(0,1,0),(-4,13,1),(-6,5,5)}.The basis for the row space of matrix A is {(1,0,-4,-6),(0,1,5,-7)}.

In order to find the basis for the row space, we take the nonzero rows from the row echelon form of A, which are rows 1 and 2. Then we select the corresponding rows of the original matrix A. The result is {(1,0,-4,-6),(0,1,5,-7)}.The basis for the null space of matrix A is {(-5,0,-1,1)}. We can obtain the basis for the null space of matrix A by solving the system Ax = 0. By writing this system in the form Rx = 0 where R is the row echelon form of A,

we get$$\begin{bmatrix}1&0&-4&-6\\0&1&5&-7\\0&0&0&0\end{bmatrix} \begin{bmatrix}x_1\\x_2\\x_3\\x_4\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix}.$$ Solving this system, we get the general solution as x = (-5t, 0, -t, t) where t is a scalar. Therefore, the basis for the null space of A is {(-5,0,-1,1)}.

know more about matrix A

https://brainly.com/question/28180105

#SPJ11

Find an equation of the line of intersection of planes below, and the acute angle between these two planes. P. : x + 2y – z = 1 and P2 : x + y + z = 1.

Answers

The equation of the line of intersection between planes P1 and P2 is x = 1 + 5z, y = -2z, z = z. The acute angle between the two planes is given by θ = arccos(2 / (√6 * √3)).

To determine the equation of the line of intersection between the two planes P1 and P2, we can set the equations of the planes equal to each other and solve for the variables.

First, let's set the equations equal to each other:

x + 2y - z = x + y + z

By rearranging the equation, we have:

y + 2z = 0

Now, we can express the equation in terms of a parameter. Let's choose z as the parameter:

y = -2z

Substituting this value back into the equation of P1, we have:

x + 2(-2z) - z = 1

x - 5z = 1

Therefore, the equation of the line of intersection between the two planes P1 and P2 is given by:

x = 1 + 5z

y = -2z

z = z

To determine the acute angle between the two planes, we can calculate the dot product of their normal vectors and use the formula:

cosθ = dot product of normal vectors / (magnitude of normal vector of P1 * magnitude of normal vector of P2)

The normal vector of P1 is [1, 2, -1] and the normal vector of P2 is [1, 1, 1]. Taking the dot product:

[1, 2, -1] ⋅ [1, 1, 1] = 1 + 2 - 1 = 2

The magnitude of the normal vector of P1 is √(1^2 + 2^2 + (-1)^2) = √6

The magnitude of the normal vector of P2 is √(1^2 + 1^2 + 1^2) = √3

Using the formula for the cosine of the angle:

cosθ = 2 / (√6 * √3)

θ = arccos(2 / (√6 * √3))

Thus, the acute angle between the two planes P1 and P2 is given by θ = arccos(2 / (√6 * √3)).

To know more about equation of the line refer here:

https://brainly.com/question/21511618#

#SPJ11

use the values log 48 1.68 and log 3 0.48 to find the approximate value of log 48

Answers

The approximate value of log 48 cannot be determined using the given values of log 48 1.68 and log 3 0.48.

The given values of log 48 1.68 and log 3 0.48 do not provide enough information to determine the value of log 48. The logarithm function is defined as the inverse function of the exponential function, meaning that if y = logb x, then x = by. To find the value of log 48, we would need to know the base of the logarithm and the value of x such that 48 = bx. Using the given values, log 48 ≈ log 3 + log 16 ≈ 0.48 + log 16.

To know more about logarithm here: brainly.com/question/30226560

#SPJ11

What is the probability of 3 people NOT sharing the same birthday? a. How many different pairs of people are there when there are 3 humans? (Think C or P) then use this answer and raise it tot the power of how many pairs in order to answer the overall possibility

Answers

The probability of 3 people NOT sharing the same birthday is approximately 0.973 or 97.3%.

The probability of 3 people NOT sharing the same birthday can be determined using the Birthday Problem. To solve the problem, we need to find the probability that all three people have different birthdays. Here is how to approach the problem.

a. How many different pairs of people are there when there are 3 humans? (Think C or P)

When there are 3 people, there are 3 pairs of people. We can determine this using the combination formula nCr, which is n!/r!(n-r)!, where n is the total number of items and r is the number of items being chosen. In this case, we want to choose 2 people out of 3, so n=3 and r=2. Therefore, the number of different pairs of people when there are 3 humans is:

C(3,2) = 3

b. What is the probability that any two people share a birthday?
The probability that any two people share a birthday is given by the formula:
P(A) = 1 - (365/365) x (364/365) x (363/365) ... x [(365 - n + 1)/365]

where n is the number of people and A is the event that at least two people share a birthday.
In this case, n=3, so we have:
P(A) = 1 - (365/365) x (364/365) x (363/365) = 0.0082 (rounded to four decimal places)

c. What is the probability that all three people have different birthdays?

The probability that all three people have different birthdays is the complement of the probability that at least two people share a birthday, so we have:

P(B) = 1 - P(A) = 1 - 0.0082 = 0.9918 (rounded to four decimal places)

d. What is the overall probability that 3 people do not share the same birthday?

The overall probability that 3 people do not share the same birthday is the probability that all three people have different birthdays raised to the power of the number of pairs of people. In this case, there are 3 pairs of people, so we have:

[tex]P(C) = P(B)^3 = 0.9918^3 = 0.973[/tex] (rounded to three decimal places)

Therefore, the probability of 3 people NOT sharing the same birthday is approximately 0.973 or 97.3%.

For more question on probability

https://brainly.com/question/25839839

#SPJ8

A company produces chocolates according to the following production function q = (K - 8) ^ x * L ^ x (Qa) Assuming that the unit cost of capital (r) and the unit wage (w) are both equal to 1, company's demand for inputs are L = q ^ 2 and ik = alpha ^ 2 .
(ab) company's total long run cost function is C(q) = 8 + q ^ 2
(ac) The long run price in this market is p = 4 (ad) Each firm in the long run will produce q = 2
(Qe) the number of firms in the market in the long run is 16

Answers

If the company incurs a loss of £4 when it produces a quantity of 2 and the production surplus when the company produces a quantity of 2 is £4.

(a) To calculate the profit of the company, we need to subtract the total cost from the total revenue. The total revenue is given by p * q, where p is the price and q is the quantity produced.

Total revenue = p * q = 4 * 2 = 8

The total cost function is C(q) = 8 + q^2. Substituting q = 2 into the cost function, we have:

Total cost = C(2) = 8 + 2^2 = 8 + 4 = 12

Profit = Total revenue - Total cost = 8 - 12 = -4

Therefore, the company incurs a loss of £4 when it produces a quantity of 2.

(b) The producer surplus can be calculated by subtracting the variable cost from the total revenue. Since the unit cost of capital and the unit wage are both equal to 1, the variable cost is equal to the wage cost, which is L * w. Substituting L = q^2 and w = 1, we have:

Variable cost = L * w = (q^2) * 1 = q^2

Producer surplus = Total revenue - Variable cost = p * q - q^2 = 4 * 2 - 2^2 = 8 - 4 = 4

Therefore, the producer surplus when the company produces a quantity of 2 is £4.

To learn more about “production” refer to the https://brainly.com/question/16755022

#SPJ11

I can buy a $1000 bond for $950. I get $50 a year and it matures in 20 years. How do I find the interest rate?

Answers

The formula for the present value of a bond: PV = C × (1 - (1 + r)^(-n))/r

Where:

PV = Present value of the bond ($950 in this case)

C = Annual coupon payment ($50)

r = Interest rate (unknown)

n = Number of years until maturity (20)

Rearranging the formula to solve for r, we get:

r = (C / PV) × (1 - (1 + r)^(-n))

Now we can substitute the given values into the equation and solve for r:

r = (50 / 950) × (1 - (1 + r)^(-20))

To find the interest rate, we can use numerical methods or an iterative approach. Let's use an iterative approach:

Start with an initial guess for r (e.g., 0.05 or 5%).

(1) Plug in the value of r into the equation.

(2) Calculate the right-hand side of the equation.

(3) Compare the calculated value with the left-hand side (0.05).

(4) Adjust the guess for r based on the comparison.

(5) Repeat steps 2-5 until the calculated value is close to the left-hand side.

By repeating these steps, you can converge on an approximate value for r, which will give you the interest rate of the bond.

For more questions on Interest rate

https://brainly.com/question/25720319

#SPJ8

what is the frequency of the function f(x)? f(x)=14cos(2x) 5 express the answer in fraction form.

Answers

The frequency of the function f(x) = 14cos(2x) is π/2.

In a periodic function, the frequency represents the number of complete cycles the function completes in a given interval. In the function f(x) = 14cos(2x), the coefficient of x inside the cosine function determines the frequency.

The general form of a cosine function is f(x) = A*cos(Bx), where A represents the amplitude and B represents the frequency.

In this case, the coefficient of x is 2, which means that the function completes 2 cycles within an interval of radians. Since the coefficient of x inside the cosine function is B, the frequency is equal to B.

Therefore, the frequency of the function f(x) = 14cos(2x) is 2. In fraction form, this can be expressed as π/2, since 2 can be written as 2/1 and we can multiply the numerator and denominator by π to obtain π/2.

To learn more about frequency

brainly.com/question/29739263

#SPJ11

Consider functions f(x) = x and g(x) = e-* defined on C[-1,1]. Use the inner product (f.g) = ('.f(x)g(x)dx to find: a) Distance d(f.g). b) "Angle" between f and g.

Answers

The distance between functions [tex]f(x) = x[/tex]  [tex]g(x) = e^(^-^x^)[/tex] can be calculated  [tex]d(f, g) = \sqrt{((1/3) - 2(-e^(^-^x^) + x * e^(^-^x^)) + (-1/2) * e^(^-^2^x^))}[/tex] using the given inner product, and the "angle" between f and g can be found  [tex]\theta = \arccos ((f.g) / (||f|| * ||g||))[/tex] by evaluating the inner product and dividing it by the product of their magnitudes.

a) The distance between functions [tex]f(x) = x[/tex] and [tex]g(x) = e^(^-^x^)[/tex] can be calculated using the inner product defined as [tex](f.g) = \int{f(x)g(x)} \, dx[/tex] over the interval [-1, 1].

To find the distance, we can compute the square root of the inner product of f and g:

[tex]d(f,g) = \sqrt{((f.f) - 2(f.g) + (g.g))}[/tex]

Plugging in the functions f(x) = x and g(x) = e^(-x), we have:

[tex]d(f,g) = \sqrt{(\int{x^2} \, dx - 2\int {xe^-^x^} \, dx+ \int {e^-^2^x^} \, dx)}[/tex]

Evaluating the integrals, we get:

[tex]d(f,g) = \sqrt{((1/3) - 2(-e^-^x^ + x * e^-^x) + (-1/2) * e^-^2^x)}[/tex]

Simplifying further, we obtain the distance between f and g.

b) The "angle" between functions f and g can be determined using the inner product and the concept of orthogonality. Two functions are orthogonal if their inner product is zero.

To find the angle, we can calculate the inner product (f.g) and normalize it by dividing by the product of their magnitudes:

[tex]\theta = \arccos((f.g) / (||f|| * ||g||))[/tex]

Substituting the given functions and their norms, we can find the angle between f and g.

In conclusion, the distance between functions [tex]f(x) = x[/tex] and [tex]g(x) = e^(^-^x^)[/tex] can be calculated using the inner product, while the "angle" between the two functions can be determined using the inner product and the concept of orthogonality.

To learn more about Orthogonality, visit:

https://brainly.com/question/30711536

#SPJ11

(25 points) Find two linearly independent solutions of 2x²y" − xy' + (−3x + 1)y = 0, x > 0 of the form Y₁ = x¹(1+ a₁x + a²x² + A3x³ + ...) Y₂ = x¹² (1+b₁x + b₂x² + b3x³ + …..) where r₁ r₂. Enter r1 = a1 a2 = az = r2 = b₁ = b₂ = b3 =

Answers

Therefore the solutions are: y₁ = x¹(1+ a₁x + a²x² + A3x³ + ...) and y₂ = x¹²(1+b₁x + b₂x² + b3x³ + …..).

Two linearly independent solutions of 2x²y" − xy' + (−3x + 1)y = 0, x > 0 of the form Y₁ = x¹(1+ a₁x + a²x² + A3x³ + ...) Y₂ = x¹² (1+b₁x + b₂x² + b3x³ + …..) where r₁ r₂ are to be found. Let us try solution of the form Y₁ = x¹(1+ a₁x + a²x² + A3x³ + ...) y₁' = (1+a₁x +2a²x²+3a³x³+...) + x(a₁+4a²x+9a³x²+...), y₁" = (2a²+6a³x+...) + x(2a³x+...)+x(a₁+4a²x+9a³x²+...)On substituting the above expressions in the given differential equation, we get the value of r₁ as 1/2. Hence one of the solutions is y₁ = x¹(1+ a₁x + a²x² + A3x³ + ...)For second solution, we assume Y₂ = Y₁ ln x + x¹²(1+b₁x + b₂x² + b3x³ + …..)On differentiating once and twice we get:y₂' = (1+a₁x+2a²x²+...)+x(a₁+4a²x+9a³x²+...)+x¹¹(1+b₁x+b₂x²+...)y₂" = (2a²+6a³x+...)+x(2a³x+...)+x(a₁+4a²x+9a³x²+...)+x¹¹(b₁+2b₂x+...)On substituting the value in the given differential equation, we get the value of r₂ as 3/2. Hence the second solution is y₂ = x¹²(1+b₁x + b₂x² + b3x³ + …..).

Know more about solutions here:

https://brainly.com/question/31849887

#SPJ11

Given an independent variable xy and a binary dependent variable y (y could be either black or white). The y values for data points A, B, C, D, E, F, G, H, and I are known and shown in the following figure. The value of y for the new data point is unknown and to be determined. ABC DE FGH I 000 new data point X1 Suppose that you are using k-nearest neighbours (with k=5) and applying the majority rule to classify the new data point, should the classification be black or white?

Answers

The classification of the new data point should be white.

Given an independent variable xy and a binary dependent variable y (y could be either black or white), and using k-nearest neighbors (with k=5) and applying the majority rule to classify the new data point, we have to determine whether the classification of the new data point is black or white.

For this, we first have to find the Euclidean distance between the new data point and all other points. Using the Euclidean distance formula, the distances are:

ABC DE FGH I 000 new data point X1

Euclidean distance 1.414 2.236 2.236 2.828 2.828 2.236 3.162 3.162

We take the k-nearest neighbors and count the number of black and white points. Since k=5, we have 3 white points and 2 black points. As per the majority rule, we classify the new data point to the class which has more points.

So, the new data point belongs to the white class because it has the majority of white points. Therefore, the classification of the new data point should be white.

To learn more about classification, refer below:

https://brainly.com/question/606324

#SPJ11

Find the general solution to the differential equation y′ = x − x sin²

Answers

The general solution to the differential equation y' = x - x × sin²(x) is y = x + C, where C is a constant.

To find the general solution to the given differential equation, we'll separate the variables and integrate both sides.

The differential equation is: y' = x - x×sin²(x)

Step 1: Separate the variables

We can rewrite the equation as:

dy = (x - x×sin²(x)) dx

Step 2: Integrate both sides

Integrating the left side with respect to y gives us just y:

∫dy = ∫dx

On the right side, we need to integrate the expression (x - x×sin²(x)) with respect to x. This requires a bit more work.

Step 3: Expand the integrand

x - xsin²(x) can be expanded as follows:

x - xsin²(x) = x - x×(1 - cos²(x))

= x - x + xcos²(x)

= xcos²(x)

Step 4: Integrate xcos²(x) with respect to x

To integrate xcos²(x), we'll use integration by parts. Let's choose u = x and dv = cos²(x) dx.

Differentiating u, we get du = dx, and integrating dv, we have:

∫cos²(x) dx = ∫dv = v = (1/2)(x + sin(2x)/2)

Using the formula for integration by parts:

∫u dv = uv - ∫v du

We have:

∫x×cos²(x) dx = (1/2)(x + sin(2x)/2) - ∫(1/2)(x + sin(2x)/2) dx

Simplifying:

∫x×cos²(x) dx = (1/2)(x + sin(2x)/2) - (1/2)∫(x + sin(2x)/2) dx

We can integrate the remaining term on the right side.

Step 5: Integrate (x + sin(2x)/2) with respect to x

∫(x + sin(2x)/2) dx = (1/2)x² + (1/4)sin(2x) + C

Where C is the constant of integration.

Now, let's substitute this result back into our original equation:

y = ∫dx + C

= x + C

The general solution to the given differential equation is y = x + C, where C is a constant.

Learn more about the general solution at

https://brainly.com/question/32062078

#SPJ4

Construct the scalar equation of the plane that contains the lines 1 2 1 160 - []-[:] - [10] :) ri(t) = = +t (t) = +t 5 6 5 3 Express your answer in the form Ax + By + Cy= D.

Answers

The scalar equation of the plane containing the given lines cannot be determined without additional information.

To construct the scalar equation of the plane that contains the lines represented by the given vectors, we would need additional information such as a point that lies on the plane or the direction vector of the plane.

The given lines are represented as:

Line 1: r1(t) = [1+t, 2t, 1+t]

Line 2: r2(t) = [160-5t, 6t, 5+3t]

Without knowing a specific point or direction vector on the plane, we cannot uniquely determine the equation of the plane. The scalar equation of a plane in the form Ax + By + Cz = D requires at least three independent variables (x, y, z) and additional information about the plane's position or orientation.

To learn more about “equation” refer to the https://brainly.com/question/2972832

#SPJ11

What do you think it the best central tendency measure to describe each data element and why (include data type in your answer):
LOS
Admission source
Gender

Answers

The best central tendency measure to describe each data element depends on the data type. For the Length of Stay (LOS), the mean or median is commonly used as it represents the average or typical length of time.

The choice of central tendency measure depends on the data type and the specific characteristics of the data. For the Length of Stay (LOS), which is a quantitative continuous variable, the mean and median are commonly used. The mean provides the average length of time, which can be useful in understanding the overall central tendency. The median, on the other hand, represents the middle value of the dataset and is less affected by extreme values, making it suitable when the data is skewed or has outliers. For the Admission source, which is a categorical variable, the mode is the appropriate central tendency measure. The mode identifies the most frequently occurring source, providing insight into the predominant source of admissions. For Gender, which is a binary categorical variable, the mode can also be used. It determines the most common gender category, providing information on the predominant gender category observed in the data.

To know more about central tendency here: brainly.com/question/28473992

#SPJ11

You are evaluating the possibility that your company bids $150,000 for a particular construction job. (a) If a bid of $150,000 corresponds to a relative bid of 1.20, what is the dollar profit that your company would make from winning the job with this bid? Show your work. (b) Calculate an estimate of the expected profit of the bid of $150,000 for this job. Assume that, historically, 55 percent of the bids of an average bidder for this type of job would exceed the bid ratio of 1.20. Assume also that you are bidding against three other construction companies. Show your work.

Answers

a) The company will make a profit of $120,000 from winning the job with this bid.

b) The expected profit of the bid of $150,000 for this job is $13,500.

a)Given, Bid amount = $150,000 Relative Bid = 1.20

As per the question, Relative Bid = (Total cost of construction ÷ Bid amount) + 1i.e, (Total cost of construction ÷ Bid amount) = Relative Bid - 1Total cost of construction = (Relative Bid - 1) × Bid amount

Total cost of construction = (1.20 - 1) × $150,000 = $30,000Profit = Bid amount - Total cost of construction= $150,000 - $30,000 = $120,000

Therefore, the company will make a profit of $120,000 from winning the job with this bid.

b) Given, Bid amount = $150,000Relative Bid = 1.20As per the question,

Probability of Winning the bid = 1 - 55/100 = 0.45

Probability of winning among 4 construction companies = 0.45/4 = 0.1125

Expected profit = Probability of Winning the bid × Profit

Expected profit = 0.1125 × $120,000 = $13,500

Therefore, the expected profit of the bid of $150,000 for this job is $13,500.

To learn more about profit

https://brainly.com/question/3883496

#SPJ11


Find the projection of the vector v onto the
subspace S.
Find the projection of the vector v onto the subspace S. 0 0 S = span 1 projs V = 11

Answers

Given, subspace S = span {1}, projection of vector v onto subspace S is projs V = 11.

We need to find the vector v and then find the projection of the vector v onto the subspace S. The projection of the vector v onto the subspace S is given by the formula: projS v = ((v•u)/(u•u)) * u where u is a unit vector in the direction of S. To find the vector v, we use the formula: v = projs V + v_⊥ where v_⊥ is the component of vector v that is orthogonal (perpendicular) to the subspace S and projs V is the projection of vector v onto the subspace S.

Since the subspace S is spanned by the vector 1, the unit vector in the direction of S is given by: Vu = 1/||1|| * 1 = 1/1 * 1 = 1Now, we can find the vector v using: v = projs V + v_⊥11 = projs V is given. So,11 = ((v•1)/(1•1)) * 1 => v•1 = 11v = [11]To find the projection of the vector v onto the subspace S, we use the formula: projS v = ((v•u)/(u•u)) * u, where v = [11] and u = 1/||1|| * 1 = 1/1 * 1 = 1So,projSv = (([11]•1)/(1•1)) * 1 = 11Therefore, the projection of the vector v = [11] onto the subspace S = span {1} is given by projS v = 11.

To know more about orthogonal refer to:

https://brainly.com/question/30772550

#SPJ11

Classify the following non-identity isometries of R². If the isometry is not unique, justify all possibilities. (a) Let f be an isometry, without fixed points, given by a reflection followed by a glide reflection. (b) Let g be an isometry that fixes two points, g(P) = P and g(Q) = Q. (c) Let h be the composition of three reflections, h = Fc Fy Fa. Suppose that the distinct lines a, b, c are concurrent (i.e., have a common point). (d) Now, suppose a || b and cla. Classify the isometry h. Justify.

Answers

(a) Glide reflection.

(b) Translation.

(c) Rotation.

(d) Translation.

(a) The isometry f given by a reflection followed by a glide reflection can be classified as a glide reflection. A glide reflection is a composition of a reflection and a translation parallel to the line of reflection. Since a glide reflection involves both reflection and translation, it does not have any fixed points.

(b) The isometry g that fixes two points P and Q can be classified as a translation. In an isometry that fixes two points, if the distance between the two fixed points remains the same after the transformation, it is a translation.

(c) The composition of three reflections, h = Fc Fy Fa, where the distinct lines a, b, and c are concurrent, can be classified as a rotation. When three lines are concurrent, their reflections also intersect at a common point, which forms the center of rotation. Therefore, the composition of three reflections results in a rotation around that common point.

(d) If a is parallel to b and cl(a), the isometry h can be classified as a translation. Since a is parallel to b, the composition of reflections Fa and Fb will result in a translation parallel to a and b. The composition with reflection Fc will not change the nature of the translation, and thus h remains a translation.

Learn more about isometry:

https://brainly.com/question/12600259

#SPJ11

Let k be a real number and (M) be the following system. a (x + y = k - 1 (M): 2x+y = 0 Using Cramer's Rule, the solution of (M) is ______________ a. x=k-1,y=1-k b. x=1-k, y=2-2k c. x=1-k, y=2k-2 d. None of the mentioned

Answers

The answer is (c) x=1-k, y=2k-2.

We can use Cramer's rule to solve the system of equations:

x + y = k - 1

2x + y = 0

The determinant of the coefficient matrix is:

|1 1|

|2 1|

=>  1(1) - 2(1) = -1

The determinant of the matrix obtained by replacing the first column with the column [k-1, 0]^T is:

|k-1 1|

| 0 1|

=> (k-1)(1) - 0(1) = k-1

The determinant of the matrix obtained by replacing the second column with the column [k-1, 0]^T is:

|1 k-1|

|2 0 |

=> 1(0) - 2(k-1) = -2k+2

Therefore, the solution of the system is:

x = |k-1 1| /(-1) = 1-k

     | 0 1|

y = |1 k-1| / (-1) = 2k-2

|2 0 |

Therefore, the answer is (c) x=1-k, y=2k-2.

Learn more about Cramer's rule : https://brainly.com/question/20354529

#SPJ11

Find the volume of the Triangular Pyramid given below

Answers

The volume of the triangular prism is 12 in³

What is volume of a prism?

Volume is defined as the space occupied within the boundaries of an object in three-dimensional space.

Prism is a three-dimensional solid object in which the two ends are identical.

The volume of the prism is expressed as;

V = base area × height

where v is the volume.

Base area = 1/2bh

= 1/2 × 3 × 2

= 3 in²

The height of the prism = 4in

Therefore the volume of the prism

= 3 × 4

= 12in³

Therefore the volume of the triangular prism is 12in³

learn more about volume of prism from

https://brainly.com/question/23766958

#SPJ1

Other Questions
How do the numbers in the R3 and T2 columns compare? Solve the initial-value problem I ty (3) - + 3xy(x) + 5y(x) = ln (), y(1) -1, y (1) = 1 where x is an independent variable:y depends on x, and x > 1. Then determine the critical value of x that delivers minimum to y(x) for * 1. This value of x is somewhere between 4 and 5. Round-off your numerical result for the critical value of x to FOUR significant figures and provide it below (20 points): (your numerical answer must be written here=____) What would be most appropriate for identifying the species with the most even distribution of nests? .All of the following are factors in the determination of actual cash value EXCEPT a. insurance premium paid b. type and quality of property c. age of the property d. replacement cost a) a heater supplies 1 w power to one end of a cylindrical rod of al with diameter 4 mm and length 20 cm. the other end is held at room temperature (20c). find the temperature at the hot end.b) Find the temperature of the hot end if the rod is copper. c) Assume that the aluminum and copper rods (each with length 20 cm, diameter 4 mm") are connected together with a joint of perfect thermal conductance. One end of the Cu is held at 0 degree C and one end of the AI is held at 50 degree C. Find the heat current through the rod and the temperature of the joint, T_joint. 14-39. Evaluate E' for the half-reaction 1 (CN)2(3)+2H+ + 2e = 2HCN(aq) Cyanogen Hydrogen cyanide 1 14-40. Calculate E' for the reaction H2C2O4 + 2H+ +2e = 2HCO2H E = 0.204 V Oxalic acid Formic acid All the following statements about process capability are true, EXCEPT for:O The process is capable if Cp > 1.0 even when the mean is not centeredO Cp and Cpk are exactly the same when the process is centeredO With a non-centered mean a process may be capable to one specification limit even if not capable overallO Centering improves the capability of the process why did the fulani and the habe peoples respond in different ways to the arrival of the europeans use a pro-rated methodology to dispose of the variance? Waht isthe adjustated gross profit after accounting for the variance? What does General Zaroff do to prove that he is civilized?He shows that he is angry.He lets his eyes go black.He pauses for a second.He speaks in a pleasant manner.A trace of anger was in the general's black eyes, but it was there for but a second, and he said, in his most pleasant manner: "Dear me, what a righteous young man you are! I assure you I do not do the thing you suggest. That would be barbarous. I treat these visitors with every consideration. They get plenty of good food and exercise. They get into splendid physical condition. You shall see for yourself tomorrow." Jordan has taken a student loan and is required to pay $2500annually for the next 12 years to pay it off in full. The lender ischarging 9.75%/ a compounded annually . a) How much did Jordanborrow? PT Ebony Furniture is a company that manufactures modern furniture made from light wood. The most selling product at this time is a mini bar stool table for housing/apartments. The Production Division makes mini bars from wood cutting to ready-to-assemble. Meanwhile the Marketing Division completes the assembly and installation process at the customer's site. Data for Production Division: Product selling price to Marketing Division = Rp11,000,000/set. Currently the Production Division produces 700 mini bars per year with a maximum capacity of 1,000. Variable costs are IDR 7,300,000/set and annual fixed costs are IDR 1,200,000,000. Data for Marketing Division: The selling price of the product to residential customers = IDR 17,000,000/set. Variable costs are IDR 1,250,000/set and annual fixed costs are IDR 600,000,000. The Marketing Division is currently expanding its business into the restaurant/cafe sector. The Marketing Division wants to buy 100 mini bars at a price of Rp. 6,500,000 from the Production Division for this new customer segment. The selling price for the restaurant sector is set at 20% higher than the price for residential customers, and there is an additional marketing fee of IDR 100,000/set (this additional fee is only for restaurant customers). The Marketing Division Manager believes that the Production Division should accept the offer, because it can reduce fixed costs per unit. Question: a. What is the minimum transfer price that the Production Division can charge? b. From the perspective of the company as a whole (Ebony), is the Marketing Division's plan profitable? Give the calculations and analysis! c. Do you think the Production Division will accept the transfer pricing scheme decision? Tell? d. Assume that the maximum capacity of the Production Division is 700 mini bars (full capacity). The Ebony Business Director decided to carry out the Marketing Division's plan by setting a transfer price of Rp. 9,500,000,- specifically for restaurant orders (100 units), with the reason that this was an opportunity to develop the business. d.1. What is the minimum transfer price that the Production Division can charge? d.2. Give calculations and analyze how it affects the total profit/loss for each division! d.3. What do you think about the transfer pricing decision for the company as a whole? Consumer Behaviour Question: What are the differences between aconsumers evoked, inert andinept sets? As part of your response, provide andexplain examples of brands that would fall under each s q10 fast pleaseFriends Partnership has three partners. The balance of each partner' capital is: Alia $48,000; Mariam $50,000 and Fatima $52,000. Alia withdraws from the Partnership. The remaining partners, Mariam an write the full groundstate electron configuration for that element.a. S: b. Kr :c. Cs : The incident response team can assist the legal department with investigations, and the legal department can be very involved in protecting the organization from which of the following?Question 9 options:A.LiabilityB.Asset lossC.RetributionD.Network breaches How many solutions does the following system of linear equations have? 2x-3y = 4 4x - 6y = 8 Mannix Corporation stock currently sells for $105 per share. The market requires a return of 12 percent on the firm's stock. If the company maintains a constant 4 percent growth rate in dividends, wha Question #3 (24 Marks) XYZ Company manufactures ice cream for the grocery store retail market. The make over 57 varieties of ice cream available in one-liter tubs. XYZ Company uses standard costing an In the market for money, when the price level falls, the ________ curve for nominal money ________, and interest rates ________, everything else held constant.