Answer:
[tex]u_2 = -5m/s[/tex]
Explanation:
Given
Before Collision
Toyota
[tex]mass = m_1 = 400kg[/tex]
[tex]iniital\ velocity = u_1 =10m/s[/tex]
Chevy
[tex]mass = m_2=800kg[/tex]
[tex]initial\ velocity = u_2 = ??[/tex]
After Collision
Both Toyota and Chevy
[tex]final\ velocity = v = 0m/s[/tex]
Required
Determine the initial velocity of Chevy
This question will be answered using the following law of conservation of momentum which states that:
[tex]m_1u_1 + m_2u_2 = (m_1 + m_2)v[/tex]
Substitute values for m1, m2, u1 and v
[tex]400 * 10 + 800 * u_2 = (400 + 800) * 0[/tex]
[tex]4000 + 800u_2 = (1200) * 0[/tex]
[tex]4000 + 800u_2 = 0[/tex]
Collect Like Terms
[tex]800u_2 = 0 - 4000[/tex]
[tex]800u_2 = -4000[/tex]
Divide through by 800
[tex]\frac{800u_2 = -4000}{800}[/tex]
[tex]u_2 = \frac{-4000}{800}[/tex]
[tex]u_2 = -5m/s[/tex]
The velocity of Chevy before collision was 5m/s in the opposite direction of Toyota
I WOULD GIVE BRAINLIEST TO ANYONE THAT ANSWERS :) ✌
How would you build a device to convert the blowing of the wind into a form a car could use to drive down the street on regular tires and wheels?
Answer:
I would add a higher center of gravity, and make the car shaped in a way where wind could hit it, and the wind won't affect the car's movement whatsoever.
Explanation:
A higher center of gravity ensures that your car will take less effects from the wind, and the shape would make it barely noticeable.
It is simpler to maintain your balance the lower your center of gravity is. You can lean over more if you're sitting down than if you're standing. You can lean further to one side or the other when your center of gravity is low.
What device to convert the blowing wind to a form of a car?From a handling perspective, lower is better since it lessens weight transfer during cornering and braking and lessens the tendency to roll over.
For safe handling, the height of the vehicle's center of gravity is crucial. You are more likely to go over if your center of gravity is high, like in the case of having large or stacked-high cargo on top.
It is especially hazardous when driving around curves or when swerving to avoid hazards.
Increase the center of gravity of the vehicle and shape it so that it can be hit by wind without the wind having any impact on how the vehicle moves.
Therefore, Your car will be less affected by the wind if it has a higher center of gravity, and the shape would barely be evident.
Learn more about blow here:
https://brainly.com/question/10750178
#SPJ2
An object is in projectile motion if it?
Answer:
A projectile is an object upon which the only force is gravity. ... The horizontal motion of the projectile is the result of the tendency of any object in motion to remain in motion at constant velocity. Due to the absence of horizontal forces, a projectile remains in motion with a constant horizontal velocity.
6th grade science I mark as brainliest.
Answer:
[tex]\huge\boxed{\sf Speed = 2 \ m/s}[/tex]
Explanation:
Given:
Time = t = 45 seconds
Distance = S = 90 meters
Required:
Speed = v = ?
Formula:
v = S / t
Solution:
v = 90 / 45
Speed = 2 m/s
[tex]\rule[225]{225}{2}[/tex]
Hope this helped!
~AnonymousHelper1807Select the correct answer.
Which equation correctly relates kinetic energy, mass, and velocity?
Answer:
B
Explanation:
I just took the test and got 100%
The largest acceleration that a human has ever endured occurred when a race car accidentally crashed into a wall. The car was traveling at a speed of 172.8 km/h when it hit the wall. The car came to a complete stop 2.72 ´ 10–2 s later.
a. Calculate the acceleration of the car using the acceleration formula. Express your answer in both m/s2 and in “g’s.” One g is equal to the free-fall acceleration of 9.8 m/s2.
b. Suppose the driver of the car had a mass of 70.0 kg. What was the unbalanced force on his body as the car underwent negative acceleration?
Answer:
(a) The acceleration oF the car is [tex]-1764.7 m/s^2[/tex] or -180.1 g’s.
(b) The magnitude of the force on the driver's body is 123529 Newtons
Explanation:
Given that:
The initial velocity of the car before the impact, u=172.8 km/h
Or, [tex]u =172.8 \times \frac {1000}{3600} m/s= 48m/s[/tex]
As the car came to a complete stop after the collision, so the final velocity of the car, v=0.
The time required to stop the car completely, [tex]t=2.72\times 10^{-2} s[/tex]
(a) Assuming the acceleration is constant, so
Acceleration, [tex]a= (v-u)/t[/tex]
So, [tex]a=\frac {0-48}{2.72\times 10^{-2}}=-1764.7 m/s^2[/tex]
Now, expressing the acceleration in the unit od "g's",
[tex]a=-1764.7\times \frac{g}{g} \\\\\Rightarrow a=-1764.7 \;m/s^2\times \frac{g}{9.8\; m/s^2} \\\\\Rightarrow a=-180.1 g[/tex]
Hence, the acceleration od the car is -1764.7 [tex]m/s^2[/tex] or -180.1 g’s.
(b) Mass of the driver of the car, m=70.0 kg
The acceleration of the body of the driver is the same as the acceleration of the car.
So, the acceleration faced by the driver, [tex]a= -1764.7 m/s^2[/tex]
As forec = mass x acceleration, so
The force on the driver's body = 70 x (-1764.7)= -123529 Newtons.
The negative sign means the force is in the opposite direction of the direction of motion of the car.
Hence, the magnitude of the force on the driver's body is 123529 Newtons
What is the matter made of
Answer:
Matter is made of atoms which are in turn made up of protons, nuetrons and electrons. Atoms come together to form molecules which is the building block for all matter.
Explanation:
I feel like this question is like What is the meaning of life. Matter is made up of Matter. i don't know man
what makes up a atom
Answer:
They're typically made up of three main parts: protons, neutrons and electrons. Think of the protons and neutrons as together forming a “sun”, or nucleus, at the centre of the system. The electrons orbit this nucleus, like planets. If atoms are impossibly small, these subatomic particles are even more so.
Explanation:
hope i helped.
Answer:
Atoms consist of a nucleus made of protons and neutrons orbited by electrons. ... We now know that atoms are made up of three particles: protons, neutrons and electrons — which are composed of even smaller particles, such as quarks.
Explanation:
In which of the following situations would there be initial energy in the system?
An apple sits motionless on the ground near a tree
A spring is compressed and held at compression by a person before releasing it
A bowstring is neither pulled nor stretched on a bow
An object rests at a velocity of 0 on a flat surface at ground level
Answer:
A spring is compressed and held at compression by a person before releasing it
Explanation:
All the other answers are showing things that are at rest and have no energy starting nor going through them. This answer show how the energy is starting and being released.
can someone pls help me answer both of these (its ok if u only do one). ILL GIVE A BRANIEST TO WHOEVER CAN GET IT RIGHT. thank you! :)
Answer:
for number 1 i got 100
Explanation:
A ferry approaches shore moving north waith a speed of 6.1 m/s relative to the dock. A person on the feery walks from one side of the ferry to the other moving east with a speed of 1.0 m/s relative to the feery
Answer:
6.18 m/s
Explanation:
Given that a ferry approaches shore, moving north with a speed of 6.1 m/s relative to the dock. A person on the ferry walks from one side of the ferry to the other, moving east with a speed of 1.0 m/s relative to the ferry Part. What is the speed of the person relative to the dock?
The speed of the person can be calculated by using pythagorean theorem.
Let the speed of the person = S
S^2 = 6.1^2 + 1^2
S^2 = 38.21
S = sqrt ( 38.21)
S = 6.18 m/s
Therefore, the speed of the person relative to the dock is 6.18 m/s
Which point has the most Potential energy? [Select]
Which point has the most Kinetic energy? [ Select ]
Answer:
Most potential energy: A
Most kinetic energy: D
Explanation:
Kinetic Energy is the type of energy an object has due to its state of motion. It's proportional to the square of the speed.
The equation for the kinetic energy is:
[tex]\displaystyle K=\frac{1}{2}mv^2[/tex]
Where:
m = mass of the object
v = speed at which the object moves
The gravitational potential energy is the energy stored in an object because of its height h in a gravitational field.
It can be calculated with the equation:
U=m.g.h
The point where the object has the most potential energy is that where it has more height. It corresponds to point A.
When the object is at zero height, all of its potential energy was transformed to kinetic, thus the point where the kinetic energy is D.
Most potential energy: A
Most kinetic energy: D
Answer:
potentail enegry at point a and kinetic enegy at point c
Explanation:
i did this i fourth grade please mark brainlist
; use three examples of how dance can be used in somebody creating a fitness plan
1 class comment
Answer: Physical fitness can be defined as the ability of a person to perform daily routine tasks without any ailment.
Explanation:
Dance workouts can help in improving the physical fitness of the person.
This may involve improvement of the cardiovascular strength.
This may also help in improving the strength and endurance of a person.
This improves the stamina, flexibility, and composition of the body.
The dance also helps in maintaining balance and attaining the correct posture.
Question 5 (1 point)
A child kicks a ball horizontally with a speed of 4.8 m/s off a deck 3.5 m off the
ground. How far, in meters, from the deck does the ball land on the ground?
Answer:
The horizontal distance the ball travels is approximately 4.055 meters
Explanation:
The given parameters are;
The height from which the child kicks the ball = 3.5 m
The horizontal speed of the ball = 4.8 m/s
Therefore, we have;
The time it takes the ball to hit the ground is given by the relation;
h = u·t + 1/2·g·t²
Where;
u = The initial vertical velocity of the ball = 0 m/s
t = The time it takes the ball to hit the ground
g = The acceleration due to gravity = 9.81 m/s²
h = The height of the ball = 3.5 m
3.5 = 0 × t + 1/2 × 9.81 × t²
3.5 = 1/2 × 9.81 × t²
∴ t² = 3.5/(1/2 × 9.81)
∴ t = √(3.5/(1/2 × 9.81) = 0.8447 s
t ≈ 0.8447 s
The time the ball takes in flight = t ≈ 0.8447 s
Therefore;
The horizontal distance the ball travels = The horizontal velocity × The time of flight
∴ The horizontal distance the ball travels = 4.8 × 0.8447 ≈ 4.055
The horizontal distance the ball travels ≈ 4.055 meters.
A river flows due east at 1.50 m/s. A boat crosses the river from the south shore to the north shore by maintaining a constant velocity of 10.0 m/s due north relative to the water. If the river is 325 m wide, how far downstream is the boat when it reaches the north shore?
Answer:
Explanation:
Given that the velocity of the river is 1.50m/s due east.
The velocity of the boat with respect to the river is 10.0 m/s due north .
The width of the river is 325 m.
Note that the velocity of the boat will help in crossing the river.
Hence, speed = distance/time
Speed = 10.0 m/s
Distance = 325 m
Time = ?
10 = 325/time
Time = 325/10
Time = 32.5s
Hence in 32.5s the horizontal distance traveled by boat will be
= 1.50m/s × 32.5s
= 48.75m
A car of mass 1500 kg starting from rest can reach a speed of 20
m/s within 10 seconds. Calculate the accelerating force of the car
engine.
Explanation:
F=MA
F=1500 * 2
F=3000N
When momentum is conserved it is called _____. (multiple choice)
A.) Conservation of Momentum
B.) The Law of Momentum
C.) The Physics of Momentum
D.) The Rules of Momentum
Answer:
Based off the word "conserved" I would say
A. Conservation of Momentum.
Explanation:
Answer:
A.) Conservation of Momentum
3. A cart with mass of 30 kg is traveling with a velocity of 4.0 m/s. The
cart then gains speed, achieving a new velocity of 10 m/s after 4
seconds. Calculate the magnitude of the net force acting on the cart.
Answer:
39 m/s
Explanation:
Answer:
39 m/s
Explanation:
Could somebody please explain the Coriolis effect? Thank you! (also the subject is physical science but that wasn't an option so I just put physics)
Answer:
The Coriolis Effect makes things appear to move in a curve around our planet, like, for example, a plane. This is also due to the fact that our Earth is round, so nothing really moves in a straight line. It is "an effect whereby a mass moving in a rotating system experiences a force (the Coriolis force ) acting perpendicular to the direction of motion and to the axis of rotation."
Explanation:
A car accelerates from rest at a constant acceleration of 25.0 m/s^2. At some point, it then turns off its engine, letting the car decelerate slowly from the force of friction at a constant deceleration of 3 m/s^2 until it is at rest again. The total speed the car moves in this time is 200 meters. What is the minimum time needed for the car to move 200 meters given that it both starts and ends at rest?
Answer:
t = 9.14 s
Explanation:
We first analyze the accelerating motion by applying first equation of motion:
Vf₁ = Vi₁ + a₁t₁
where,
Vf₁ = Final Speed of Car before turning off engine
Vi₁ = Initial Speed of Car = 0 m/s
a₁ = acceleration of car = 25 m/s²
t₁ = time taken in accelerating motion
Therefore,
Vf₁ = 25t₁ ---------- equation (1)
Now, we apply second equation of motion:
s₁ = Vi₁ t₁ + (1/2)a₁t₁²
where,
s₁ = distance covered during accelerating motion
Therefore,
s₁ = (0)t₁ + (1/2)(25)t₁²
s₁ = 12.5 t₁² ----------- equation (2)
Now, we analyze the decelerating motion by applying first equation of motion:
Vf₂ = Vi₂ + a₂t₂
where,
Vf₂ = Final Speed of Car = 0 m/s
Vi₂ = Initial Speed of Car after turning off engine
a₂ = deceleration of car = - 3 m/s²
t₂ = time taken in decelerating motion
Therefore,
Vi₂ = 3t₂ ---------- equation (3)
Now, we apply second equation of motion:
s₂ = Vi₂ t₂ + (1/2)a₂t₂²
where,
s₂ = distance covered during decelerating motion
Therefore,
s₂ = (Vi₂)t₂ + (1/2)(-3)t₂²
s₂ = Vi₂ t₂ - 1.5 t₂²
using equation (3):
s₂ = 3 t₂² - 1.5 t₂²
s₂ = 1.5 t₂² ------------ equation (4)
Now, we know that the Final Velocity of accelerating motion (Vf₁) is equal to the initial velocity of decelerating motion (Vi₂):
Vf₁ = Vi₂
using equation (1) and equation (3):
25 t₁ = 3 t₂
t₁ = 0.12 t₂ ------------ equation (5)
Also, we know that sum of the distances is 200 m:
s₁ + s₂ = 200
using equation (2) and equation (4):
12.5 t₁² + 1.5 t₂² = 200
using equation (5):
12.5 (0.12 t₂²) + 1.5 t₂² = 200
3 t₂² = 200
t₂² = 200/3
t₂ = 8.16 s
substitute this in equation (5):
t₁ = 0.12(8.16 s)
t₁ = 0.97 s
Hence, the minimum time required for this motion is:
t = t₁ + t₂ = 0.97 s + 8.16 s
t = 9.14 s
A 2450 kg stunt airplane accelerates from 120 m/s to 162 m/s in 2.10s. If the airplane is putting out an average force of 5.8810x10^4 N during this time, what is the average friction force exerted on the airplane by the air?
Given :
A 2450 kg stunt airplane accelerates from 120 m/s to 162 m/s in 2.10 s.
If the airplane is putting out an average force of [tex]5.8810\times 10^4 \ N[/tex].
To Find :
The average friction force exerted on the airplane by the air.
Solution :
Acceleration is given by :
[tex]a = \dfrac{162-120}{2.10}\ m/s^2\\\\a = 20 \ m/s^2[/tex]
Now, force equation is given by :
[tex]F - F_{friction} = ma\\\\F_{friction} = F-ma\\\\F_{friction} = 58810 - (2450\times 20 )\\\\F_{friction} = 9810\ N[/tex]
Therefore, frictional force exerted in the airplane by the air is 9810 N.
One of the major differences between our common Physics models of energy change and realistic models of them is
In the Physics models, the acceleration due to gravity is rounded to a non-exact but easier to use number
In the Physics models, the velocities are only calculated at set intervals of time, instead of continuously
In the Physics models, the objects are assumed to have simplified shapes in order to make motion by acceleration easier to calculate
In the Physics models, we do not take into account the energy change by the friction of moving components
Answer: In the Physics models, we do not take into account the energy change by the friction of moving components
Explanation:
Matt is driving his car around a curve that has a radius of 40 m. If his speed is 25 m/s as he negotiates the curve, find the centripetal acceleration for the curve.
A- 13.9 m/s2
B- 24.6 m/s2
C- 15.6 m/s2
D- 7.25 m/s2
Answer:
[tex]\huge\boxed{\sf a_{c} = 15.6\ m/s^2}[/tex]
Explanation:
Given Data:
Radius = r = 40 m
Speed = v = 25 m/s
Required:
Centripetal Acceleration = [tex]\sf a_{c}[/tex] = ?
Formula:
[tex]\sf a_{c} = \frac{v^2 }{r}[/tex]
Solution:
[tex]\sf a_{c} = \frac{v^2}{r} \\\\a_{c} = \frac{(25)^2}{40} \\\\a_{c} = \frac{625}{40} \\\\a_{c} = 15.6 m/s^2\\\\\rule[225]{225}{2}[/tex]
Hope this helped!
~AH1807Starting from rest, a spinning disk accelerates constantly to a final rotational speed, ω , in a period of time, Δ Δ t. What expression best represents the revolutions the disk has turned through? A) ω Δ Δ t /2 π B) Δ4 ω Δ t 4 π C)Δ22 ω Δ t 2 2 D) Δ ω Δ t E) 2Δ 2 π ω Δ t
Answer:
the correct one is B, θ = [tex]\frac{1}{4\pi }[/tex] w t [rev]
Explanation:
This is a rotational kinematics exercise
w = w₀ + α t
w² = w₀² + 2 α θ
indicate that part of rest whereby the initial angular velocity is zero
w = α t -> α = w/t
w² = 2 α θ
we substitute
w² = 2 (w / t) θ
w = 2 θ / t
θ = w t / 2
This angle is given in radians, let's reduce to revolutions = 2π rad = 1 rev
θ = w t / 2 rad (1 rev / 2π rad)
θ = [tex]\frac{1}{4\pi }[/tex] w t [rev]
when checking the answers, the correct one is B, even though he has some mistakes in his writing
6th grade science I mark as brainliest.
Answer:
divide 10 by 50.
Explanation:
Because its time over speed 10/50
5 meter/ second
I think it's helpful
follow me and don't forget to Mark me as brainlist please
What causes electric current to flow in the loop of wire that turns between an
electric generator's two permanent magnets?
A. Electric charges in the wire loop flow when the magnetic fields of
the magnets frequently switch direction.
B. The magnetic field of the magnets causes a mechanical force to
act on the electric charges within the moving loop of wire.
C. Electrons that flow from the magnets into the loop of wire carry
mechanical energy to the electric charges within the wire.
D. The magnetic fields of the magnets attract the magnetic field of
each of the atoms that make up the loop of wire.
Answer:
B. The magnetic field of the magnets causes a mechanical force to
act on the electric charges within the moving loop of wire.
The magnetic field of the magnets causes a mechanical force to
act on the electric charges within the moving loop of the wire causes an electric current to flow in the loop of wire that turns between an electric generator's two permanent magnets, therefore the correct option is B.
What is a magnetic field?
A magnetic field could be understood as an area around a magnet, magnetic material, or an electric charge in which magnetic force is exerted. The SI unit of the magnetic field is tesla.
the magnetic field can also be generated as the magnetic effect of electric current for example when current is flown through an electrical wire there is the generation of the magnetic field around the conducting wire
For a simple bar magnet, N-pole and S-pole are the points on a magnet that have the strongest magnetic field. The magnetic field originates from the north pole and terminates in the south pole of a magnet.
The magnetic field of the magnets causes a mechanical force to act on the electric charges within the moving loop of the wire responsible for the electric current to flow in the loop of wire that turns between an
electric generator's two permanent magnets.
Learn more about the magnetic fields from here
brainly.com/question/23096032
#SPJ5
Can someone help me in this please any one good in science.
Let's calculate the equivalent resistances on both circuits.
On Diagram A we have a series connection of the resistors. The equivalent resistance will be the sum of all resistances:
[tex]R_{eq}=1+1+1\\\\\boxed{R_{eq}=3\Omega}[/tex]
On diagram B we have a parallel connection of the resistors. The reciprocal of the equivalent resistance will be the sum of the reciprocals of all the resistances:
[tex]\frac{1}{R_{eq}} = \frac{1}{1} +\frac{1}{1} +\frac{1}{1} \\\frac{1}{R_{eq}}=3\\\\\boxed{R_{eq}=\frac{1}{3}}[/tex]
Therefore, the larger resistance occurs on diagram A.
For the current, recall
[tex]V=IR[/tex]
Where [tex]I[/tex] stands for current [tex]R[/tex] is the resistance and [tex]V[/tex] is the voltage. Rearranging the equation we have
[tex]I = \frac{V}{R}[/tex]
We can see that the larger the resistance, the smaller the current gets. So the larger current must happen in the diagram with smaller resistance. Therefore, the larger current occurs on diagram B.
Glad to help, wish you great studies ;)
Mark brainliest if you deem the answer worthy
A 125,000 kg locomotive is traveling south at 1.0 m/s through a switching yard. A connected set of parked gondola cars weighing 1,750,000 kg are directly ahead. Determine the speed and direction of the completed train after the locomotive has been coupled to the cars.
Answer:
The speed of the completed train is 0.0[tex]\bar 6[/tex] m/s
The direction of the completed train is South
Explanation:
The given parameters are;
The mass of the locomotive, m₁ = 125,000 kg
The initial speed of the locomotive, v₁ = 1.0 m/s
The mass of the gondola cars, m₂ = 1,750,000 kg
The initial sped of the gondola cars, v₂ = 0
Let v₃ represents the speed of the completed train. From the principle of conservation of linear momentum, we have;
m₁·v₁ + m₂·v₂ = (m₁ + m₂)×v₃
Substituting the known values, gives;
125,000 × 1.0 + 1,750,000 × 0 = (125,000 + 1,750,000) × v₃
∴ v₃ = (125,000 × 1.0 + 1,750,000 × 0)/(125,000 + 1,750,000) = 1/15 = 0.0[tex]\bar 6[/tex]
v₃ = 0.0[tex]\bar 6[/tex] m/s
The speed of the completed train = 0.0[tex]\bar 6[/tex] m/s
The direction of the completed train = The direction of the locomotive = South.
NEN
How many electrons are being shared in the molecule above?
Spreading my love to everyone, <3
Arrange Kepler's laws in order: a. The ratio of the squares of the periods of any two planets revolving around the sun is equal to the ratio of the cubes of their average distance from the sun. b. The path of each planet around the sun is an ellipse with the sun at one focus. c. As a planet moves in its orbit, a line from the sun to the planet sweeps out equal areas in equal times. a. 3, 2, 1 b. 2, 3, 1 c. 3, 1, 2 d. 1, 2, 3
Answer:
2,3,1
Explanation:
There are 3 laws of Kepler.
First law = The path of each planet around the sun is an ellipse with the sun at one focus.
Second law = As a planet moves in its orbit, a line from the sun to the planet sweeps out equal areas in equal times.
Third law = The ratio of the squares of the periods of any two planets revolving around the sun is equal to the ratio of the cubes of their average distance from the sun.
Hence, the correct order for Kepler's law is: 2,3,1
A lava lamp is a decorative item found in some homes. The lamp portion contains a waxy substance in a liquid medium. When the lamp is plugged in, a bulb at the base of the lamp slowly heats the waxy substance sitting at the bottom of the liquid. Eventually, the waxy substance will separate into globs that quickly rise to the top of the lamp where the surrounding liquid cools them and causes them to fall back to the bottom. Based on the information provided, a lava lamp could be used to provide an example of which process of thermal energy transfer?
Answer:
Conduction, convection, and radiation
Explanation:
Conduction is the process in which energy is transferred from a hot body to a cooler body. Convection is a process by which heat is transferred as a result of the movement of heated fluid in the form of air or water. Radiation refers to the transmission of energy through a material medium.
Based on the information provided, a lava lamp could be used to provide an example of conduction, convection, and radiation.