Answer:
C = 25.12
Step-by-step explanation:
C = 2πr
C = 2(3.14)(4)
C = 6.28(4)
C = 25.12
Find the length of side x in simplest radical form with a rational denominator
Answer:
x = 6
Step-by-step explanation:
We solve that above question using the trigonometric function of Tangent
Tan theta = Opposite/Adjacent
Theta = 45°
Opposite = 6
Adjacent = x
tan 45° = 6/x
tan 45 in rational form = 1
1 = 6/x
Cross Multiply
x = 6
Quadrilateral ABCD is reflected across line m to create quadrilateral A'B'C'D',
What is the length of segment
Answer:
41
Step-by-step explanation:
Its correct ^^
pls answer this i have no clue
Answer:
90 degrees
Step-by-step explanation:
The three angles of a triangle always add up to 180 degrees, so knowing this, all three of the measures given should add up to 180.
First, you need to solve for x:
S(x+10) + R(2x+60) + T(50+x) = 180
Add up all of the like terms:
10 + 60 + 50 = 120
x + 2x + x = 4x
So now you are left with 4x + 120 = 180
And solve for x:
4x/4 + 120/4 = 180/4
x + 30 = 45
x + 30-30 = 45-30
x = 15
Now that we have the value of x, plug it into the measure given for angle R:
(2x+60)
= (2(15)+60)
= (30 + 60)
= 90
So the measure of angle R is 90 degrees.
I hope this helped! :)
if (x+2)^2=49, then x + 2 = 7. True or False
Suppose that the individuals are divided into groups j = 1, ...,J each with nj observations respectively, and we only observe the reported group means y; and īj. The model becomes y; = Ba; +ūj, - with error terms ū; = ; Uij, where Ui; indicates error term ui of individual i belonging to group Show that the error terms ūj are heteroskedastic.
The error terms are heteroskedastic
Suppose that the individuals are divided into groups j = 1, ...,J each with nj observations respectively, and we only observe the reported group means y; and īj.
The model becomes y; = Ba; +ūj, with error terms ū; = ; Uij, where Ui; indicates error term ui of individual i belonging to group j.
Now we have to demonstrate that the error terms ūj are heteroskedastic.
The model becomes: y; = Ba; + ūj;
For each group j, the estimated variance of the error term is given by the sum of squared deviations divided by the sample size, and we can write it as follows:
S_j^2 = sum ( yij - īj )^2 / ( nj - 1 ) where yij denotes the observation for the ith individual in the jth group.
The variance of the error term is therefore different for each group j. In other words, the error terms ūj are heteroskedastic.
To learn more about heteroskedastic
https://brainly.com/question/31545767
#SPJ11
PLS HELP ME ASAP PLS PLS PSL
Answer:
25
Step-by-step explanation:
Which golf ball went higher, and how many feet? (Desmos!) - Just added the answer choices!
Answer:
Max height: 64 feet, and the socond one was higher.
Step-by-step explanation:
The max height is the y value of the vertex, because that’s when the graph peaks.
we can already very clearly see the vertex on the graph, so we don’t need to calculate it.
the max height of the second golf ball is 64 feet.
Now let’s look at the max height on the first golf ball.
we get the equation
h=-16t squared + 48t
to find the vertex of this, we can use the formula -b/2a
-48/-32 = 1.5
1.5 is the t value of this vertex.
to find the h value, we plug it in.
h = -16 (1.5) squared + 48(1.5)
h =2.25 times -16 + 72
h = -36 +72
h = 36
the first one is 36 max height, and the second is 64. The second one is bigger.
Two sides of a right triangle have lengths of 46 centimeters and 23 centimeters. The third side is not the hypotenuse. How long is the third side? Round your answer to the nearest centimeter.
Answer:
about 40 cm.
Step-by-step explanation:
I know the length of the third side is 40cm because I used the Pythagorean theorem.
a^2+b^2=c^2 The "a" and "b" values are the lengths of the legs of the triangle, while "c" is the length of the hypotenuse. We know the third side of this triangle is not the hypotenuse.
* The longest side of a right triangle is the hypotenuse, so we know the length of the hypotenuse is 46cm.
Therefore, we plug our values into the Pythagorean theorem.
23^2+b^2=46^2
529+b^2=2116
Next, we subtract 529 on both sides.
b^2=1587
Next, find the square root of 1587, so we can find the true value of b.
b=39.8371685741
Rounded to the nearest centimeter is 40.
In conclusion, the length of the third side is 40cm.
Why is convenience sampling biased? a. It takes too long to obtain b. none of the above c. The sample does not represent the population d. is too easy
Answer:
A
Step-by-step explanation:
Answer:
A)
Step-by-step explanation:
What is this just just look at it HOW!
Answer:
WOAH!!!!
Step-by-step explanation:
Thx for sharing that!
Mark as brainlist plssss.
Answer:
Wow
Step-by-step explanation:
Help is much needed pls. I can only put 15 points.
Answer:
9.2
Step-by-step explanation:
first i added 5 + 3 = 8
then i did 1 1/5 + 8=9 1/5
Alright here is a repost
Answer:
50 degrees
Step-by-step explanation:
180-130=50
Answer:
The answer was already given(50°), but I can explain it further.
Step-by-step explanation:
These are supplementary angles, two angles that, together, make 180 degrees.
We know the angle of one of them, 130°, and in order to find the other one, x, we have to subtract what the entire this equals, 180°:
180° - 130° = x
50° = x
x = 50°
I hope this helped you, even if this was two hours ago.
help pleaseee, no links!
Mark each! Of the following equations as true or false. Explain or showing your reasoning!
Answer:
False
True
True
Step-by-step explanation:
Multiplying add exponents
Divide subtract exponents
Exponent multiply exponents
The statement and reason for each equation is written below:
False (Multiplication law and exponential law)True (Multiplication law and exponential law)True (division law and exponential law)Meaning of Multiplication and division lawMultiplication law is a law of indices that governs the multiplication of variable. if they are of the same base they add up their powers.
Division law is also a law of indices that governs division of variables, and it states that for every division the bases are equal we subtract their powers
In conclusion, The statement and reason for each equation is written above.
Learn more about Multiplication and division law :https://brainly.com/question/1129236
Determine L {f(t)} for f (t) = sin (V24) + te- T sin (T) dr. S Ts +1 Fully explain your reasoning to receive full credit. Is it possible for F(s) = 1 + 1 to be the Laplace transform of some function f (t)?
The Laplace transform of [tex][f(t) = \sin{\sqrt{24}} + te^{-t}\sin{t} \implies L{f(t)} = \frac{\sqrt{24}}{s^2 + 24} + \frac{1}{(s + 1)^2 + 1}][/tex] . However, F(s) = 1 + 1 cannot be the Laplace transform of any valid function f(t) because it does not satisfy the properties and rules of Laplace transforms.
To determine the Laplace transform of the function [tex]\[f(t) = \sin{\sqrt{24}} + te^{-t}\sin{t}\][/tex], we need to apply the properties and formulas of Laplace transforms.
1. Laplace Transform of sin(√24):
The Laplace transform of sin(at) is given by [tex]\[F(s) = \frac{a}{s^2 + a^2}\][/tex]. In this case, a = √24.
So, the Laplace transform of [tex]\[\sin{\sqrt{24}} \implies F(s) = \frac{\sqrt{24}}{s^2 + 24}\][/tex].
2. Laplace Transform of [tex]\[te^{-t}\sin{t}\][/tex]:
To find the Laplace transform of this term, we can use the product rule and the Laplace transform of each component.
The Laplace transform of t is given by [tex]\[F(s) = \frac{1}{s^2}\][/tex], and the Laplace transform of e^(-t)sin(t) can be found using the table of Laplace transforms.
Using the table, the Laplace transform of [tex]\begin{equation}\mathcal{L}(e^{-t}\sin(t)) = \frac{1}{(s + 1)^2 + 1}[/tex].
3. Adding the Laplace transforms:
Since the Laplace transform is a linear operator, we can add the individual Laplace transforms of [tex]sin(\sqrt{24})[/tex] and [tex]te^{-t}\sin(t)[/tex] to obtain the Laplace transform of the whole function f(t).
Therefore, [tex]L\{f(t)\} = \frac{\sqrt{24}}{s^2 + 24} + \frac{1}{(s + 1)^2} + 1[/tex]
Now, to address the second part of the question:
Is it possible for F(s) = 1 + 1 to be the Laplace transform of some function f(t)?
No, it is not possible for F(s) = 1 + 1 to be the Laplace transform of a valid function f(t). The Laplace transform is a mathematical operation that converts a function of time (f(t)) into a function of the complex variable s (F(s)). The Laplace transform must follow specific properties and rules, and it is not possible for F(s) = 1 + 1 to satisfy these properties and correspond to a valid function f(t).
To know more about the Laplace transform refer here :
https://brainly.com/question/30765521#
#SPJ11
The Laplace transform of
L {f(t)} for f (t) = sin (V24) + te- T sin (T) => Lf(t) = √24/s²+24 + 1/(s+1)²+1 .
However, F(s) = 1 + 1 cannot be the Laplace transform of any valid function f(t) because it does not satisfy the properties and rules of Laplace transforms.
Here, we have,
To determine the Laplace transform of the function
f (t) = sin (V24) + te- T sin (T) , we need to apply the properties and formulas of Laplace transforms.
1. Laplace Transform of sin(√24):
The Laplace transform of sin(at) is given by F(s)= a/s²+a².
In this case, a = √24.
So, the Laplace transform of sin(√24) => F(s)= √24/s²+24 .
2. Laplace Transform of te- T sin (T):
To find the Laplace transform of this term, we can use the product rule and the Laplace transform of each component.
The Laplace transform of t is given by F(s)=1/s², and the Laplace transform of e^(-t)sin(t) can be found using the table of Laplace transforms.
Using the table, the Laplace transform of L(e^(-t)sin(t)) = 1/(s+1)²+1.
3. Adding the Laplace transforms:
Since the Laplace transform is a linear operator, we can add the individual Laplace transforms ofsin(√24) and e^(-t)sin(t) to obtain the Laplace transform of the whole function f(t).
Therefore,
Lf(t) = √24/s²+24 + 1/(s+1)²+1
Now, to address the second part of the question:
Is it possible for F(s) = 1 + 1 to be the Laplace transform of some function f(t)?
No, it is not possible for F(s) = 1 + 1 to be the Laplace transform of a valid function f(t). The Laplace transform is a mathematical operation that converts a function of time (f(t)) into a function of the complex variable s (F(s)). The Laplace transform must follow specific properties and rules, and it is not possible for F(s) = 1 + 1 to satisfy these properties and correspond to a valid function f(t).
To know more about the Laplace transform refer here :
brainly.com/question/30765521
#SPJ4
what is the solution of x equals 2 + sqrt x - 2
a.) x=2
b.)x=3
c.)x=2 or x=3
d.) no solution
Answer:
x = 2 or x = 3
Step-by-step explanation:
x = 2 + sqrt(x - 2)
x - 2 = sqrt(x - 2) You could divide both sides by sqrt(x - 2)
sqrt(x - 2) = 1 Square both sides
x - 2 = 1 Add 2 to both sides
x = 3
There is a second way.
x - 2 = sqrt(x - 2) Square
x^2 - 4x + 4 = x - 2 Transfer x - 2 to the left
x^2 - 5x + 6 = 0 Factor
(x - 2)(x-3) = 0 Find the roots.
x - 2 = 0
x = 2
x - 3 = 0
x = 3
We have to check both results.
x = 2 + sqrt(x - 2)
2 = 2 + sqrt(2 -2)
2 = 2 + 0
2 = 2 This seems to work.
x = 2 + sqrt(x - 2)
3 = 2 + sqrt(3 - 2)
3 = 2 + sqrt(1)
3 = 2 + 1
3 = 3 And this works.
A country has 40 parks that alllow camping and 107 parks that have playground. Of those, 32 parks both allow camping and have playgrounds. The country has a total of 252 parks. What is the probability of randomly selecting a park that neither allows camping nor has a playground? Write your answer as a fraction.
Answer:
Let’s use the formula for the probability of the complement of an event: P(A') = 1 - P(A), where A is the event and A' is the complement of the event. In this case, the event A is selecting a park that either allows camping or has a playground. The complement of this event, A', is selecting a park that neither allows camping nor has a playground. We can use the formula for the probability of the union of two events to find P(A): P(A ∪ B) = P(A) + P(B) - P(A ∩ B), where A and B are two events and A ∩ B is the intersection of the two events. Let’s let event C represent selecting a park that allows camping and event P represent selecting a park that has a playground. Then, we have: P(C ∪ P) = P(C) + P(P) - P(C ∩ P) The probability of each event is equal to the number of parks with that characteristic divided by the total number of parks. We are given that there are 40 parks that allow camping, 107 parks that have playgrounds, and 32 parks that both allow camping and have playgrounds. The country has a total of 252 parks. So we have: P(C) = 40/252 P(P) = 107/252 P(C ∩ P) = 32/252 Substituting these values into our formula for P(C ∪ P), we get: P(C ∪ P) = (40/252) + (107/252) - (32/252) = (40 + 107 - 32)/252 = 115/252 Now we can use our formula for the probability of the complement of an event to find P(A'): P(A') = 1 - P(A) = 1 - P(C ∪ P) = 1 - (115/252) = (252/252) - (115/252) = (252 - 115)/252 = **137/252** So the probability of randomly selecting a park that neither allows camping nor has a playground is 137/252.
Step-by-step explanation:
Answer:
Ermm, hey Vivi, give me a sec
Step-by-step explanation:
To find the probability of randomly selecting a park that neither allows camping nor has a playground, we need to determine the number of parks that fit this criteria and divide it by the total number of parks.
Let's denote:
A = Number of parks that allow camping (40)
B = Number of parks that have a playground (107)
C = Number of parks that both allow camping and have a playground (32)
T = Total number of parks (252)
To find the number of parks that neither allow camping nor have a playground, we can use the principle of inclusion-exclusion:
Number of parks that neither allow camping nor have a playground = T - (A + B - C)
Substituting the given values, we have:
Number of parks that neither allow camping nor have a playground = 252 - (40 + 107 - 32)
= 252 - 147
= 105
Therefore, there are 105 parks that neither allow camping nor have a playground.
To calculate the probability, we divide this number by the total number of parks:
Probability = Number of parks that neither allow camping nor have a playground / Total number of parks
= 105 / 252
The probability of randomly selecting a park that neither allows camping nor has a playground is 105/252.
What is the interest for a $6,700 loan at 13.5 percent for 5 years?
$154.17
$2,550.20
$9,045.00
$9,250.20
Answer:
$2,550.20
Step-by-step explanation:
just took the test and got it right!
How to write the equation for ¨The quotient of x and three increased by 12 is 20. What is x?
Answer:
x/3 + 12 = 20
Step-by-step explanation:
Let * be an operation defined on the real numbers R by x*y = x +y - ry. Please answer the following questions and explain your answers. (a) Is * closed on the real numbers? (b) Is * commutative? (c) Is * associative? (d) Does * have an identity element? If so, does every integer have an inverse? (e) Is (R, *) a group?
(a) No, the operation * is not closed on the real numbers.
To determine closure, we need to check if for any two real numbers x and y, xy is also a real number. However, if we choose r to be any real number other than 1, the result of xy will involve a term (-ry) that may not be a real number, breaking closure.
(b) No, the operation * is not commutative.
Commutativity requires that xy = yx for all real numbers x and y. However, in this case, xy = x + y - ry, while yx = y + x - rx. Since ry and rx are not generally equal, the operation is not commutative.
(c) No, the operation * is not associative.
Associativity requires that (xy)z = x(yz) for all real numbers x, y, and z. However, if we substitute the definition of * into both sides of the equation, we get different expressions that are generally not equal. Therefore, the operation * is not associative.
(d) Yes, the operation * has an identity element.
The identity element e is a real number such that for any real number x, xe = ex = x. In this case, choosing e = 0 satisfies the identity condition, as x0 = x + 0 - r0 = x. However, not every real number has an inverse since there are values of x for which xy = e has no solution, violating the requirement for every element to have an inverse.
(e) No, (R, *) is not a group.
A group requires closure, associativity, an identity element, and every element having an inverse. Since the operation * fails to satisfy closure and does not have inverses for all real numbers, it cannot form a group.
LEARN MORE ABOUT real numbers here: brainly.com/question/31715634
#SPJ11
Need help on this one too
Answer:
Step-by-step explanation:
Use the Pythagorean Theorem. The hypotenuse, 14 square should be equal to the sum of x squared + 10 squared.
14^2 = 196
10^2 = 100.
So, 196 = 100 + x^2
[tex]x = \sqrt{96}[/tex]
A researcher wanted to determine the number of televisions in households. He conducts a survey of 40 randomly selected households and obtains the data in the accompanying table. Complete parts (a) through (h) below. 囲 (a) Are these data discrete or continuous? Explain O A. The given data are discrete because they can take on any real value. Click the icon to view the table of television counts. Table of television counts B. ° C. O D. The given data are discrete because they can only have whole number values. The given data are continuous because they can take on any real value. The given data are continuous because they can only have whole number values. 0 3 2 211 1 3P 3 21 3 21 3 2 2 1 1 3 1 11 2
The correct statement regarding the variable in this problem is given as follows:
D. The given data are discrete because they can only have whole number values.
What are continuous and discrete variables?Continuous variables: Can assume decimal values.Discrete variables: Assume only countable values, such as 0, 1, 2, 3, …In the context of this problem, the variable is the number of televisions, which must be a whole number, such as 0, 1, 2, ..., 10, ..., hence option D is the correct option for this problem.
More can be learned about discrete and continuous variables at brainly.com/question/16978770
#SPJ4
f(1) = -6
f(2) = -4
f(n) = f(n − 2) + f(n − 1)
f(3) =
Answer:
-10
Step-by-step explanation:
f(n)= f(n-2)+f(n-1)
• Put n = 3
=> f(3) = f(3-2) + f(3-2)
=> f(3) = f(1) + f(2)
=> f(3) = -6 + -4
=> f(3) = -10
Answer:
it in a file here
Step-by-step explanation:
xycba.com/file
Kenzie will save 15% if she opens a credit card. She wants to buy a jacket for $120. How much will she save if she opens a credit card?
Answer:
i think its 102 or 120-18
Step-by-step explanation:
i think cauee 10% of 120 is 12 and half of ten percent is 5 and 5% is 6
Answer:
she will save $18
Step-by-step explanation:
find 10% of the number. then find 5%. add the two answers together and you get $18.
10% of $120 = $12
5% of $120 = $6. (half 10%)
$12 + $6 = $ 18
The profit function in dollars, is given by P(x)= -0.02x² + 44x - 1750, where x is the number of wireless headphones sold. (a) How many headphones must be sold in order to maximize profit? (b) What is the maximum profit?
To determine the number of headphones that must be sold to maximize profit and the maximum profit, we can analyze the profit function P(x) = -0.02x² + 44x - 1750. The number of headphones sold to maximize profit is 1100, and the maximum profit is $17,050.
(a) To find the number of headphones that maximize profit, we need to identify the x-value at which the profit function reaches its maximum. The maximum point occurs at the vertex of the quadratic function. The x-coordinate of the vertex can be found using the formula x = -b / (2a), wherea and b are the coefficients of the quadratic function. In this case, a = -0.02 and b = 44. Plugging these values into the formula, we find x = -44 / (2 * -0.02) = 1100. Therefore, 1100 headphones must be sold to maximize profit.
(b) To calculate the maximum profit, we substitute the value of x = 1100 into the profit function P(x). P(1100) = -0.02(1100)² + 44(1100) - 1750 = -24200 + 48400 - 1750 = 17050. Hence, the maximum profit is $17,050.
In conclusion, in order to maximize profit, 1100 headphones must be sold, resulting in a maximum profit of $17,050.
Learn more about profit here
https://brainly.com/question/29662354
#SPJ11
The area of the shaded sector is 5 pi square meters. What is the area of the entire circle? Express your answer in terms of Pi.
A circle. The shaded section has an angle measure of 100 degrees.
Recall that StartFraction Area of sector over area of circle EndFraction = StartFraction n degrees over 360 degrees EndFraction.
A) 12 pi
B) 14 pi
C) 18 pi
D) 20 pi
Answer:
C - 18 pi
Step-by-step explanation:
edge
Answer:
5/18
108
A sector has an area of 30π in.2. The radii containing the sector form an angle of 100°. What is the area of the circle?
The ratio of the angle of the sector to the entire circle is
✔ 5/18
.
Area of the sector = StartFraction n degrees over 360 degrees EndFraction (pi) (r squared). 30 pi = StartFraction 100 degrees over 360 degrees EndFraction (pi) (r squared). (StartFraction 18 over 5 EndFraction) 30 pi = (pi) r squared.
The area of the entire circle is
✔ 108
Pi in.2
Maria is decorating her school's cafeteria for the end- of- year dance. The dimensions of the room are labelled below. What is the smallest length of streamer that will go around the entire perimeter of the room? Round your answer to the nearest foot.
Answer:
59 feets
Step-by-step explanation:
The length of bottom base = (8 + 2 + 2) = 12
Circumference of semicircle : 2πr/2 ; r = 4/2 = 2
Circumference of semicircle = π * 2 = 6.28
Length of streamer that will go around the entire perimeter :
From the figure attached :
Circumference of semicircle = 6.28
6.28 + 6 + 2(down) + 2(right) + 8(down) + 2(left) + 2(up) + 2(left) + 2(down) + 8(left) + 10
6.28 + 6 + 2 + 2 + 8 + 2 + 2 + 2 + 2 + 8 + 10 = 50.28 feets = 50 ft (nearest whole number)
Viking Voyager specializes in the design and production of replica Viking boats. On January 1, 2021, the company issues $2,900,000 of 9% bonds, due in 20 years, with interest payable semiannually on June 30 and December 31 each year.
Required:
1. If the market interest rate is 9%, the bonds will issue at $2,900,000. Record the bond issue on January 1, 2021, and the first two semiannual interest payments on June 30, 2021, and December 31, 2021. (If no entry is required for a particular transaction/event, select "No Journal Entry Required" in the first account field.)
2. If the market interest rate is 10%, the bonds will issue at $2,651,193. Record the bond issue on January 1, 2021, and the first two semiannual interest payments on June 30, 2021, and December 31, 2021. (If no entry is required for a particular transaction/event, select "No Journal Entry Required" in the first account field. Round your answers to the nearest dollar amount.)
3. If the market interest rate is 8%, the bonds will issue at $3,186,995. Record the bond issue on January 1, 2021, and the first two semiannual interest payments on June 30, 2021, and December 31, 2021. (If no entry is required for a particular transaction/event, select "No Journal Entry Required" in the first account field. Round your answers to the nearest dollar amount.)
The bond issue and interest payments are recorded differently based on the market interest rate.
How to find the bond issue and interest payments recorded based on the market interest rate?The recording of bond issue and interest payments depends on the market interest rate. When the market interest rate is equal to the stated rate of 9%, the bonds will issue at their face value of $2,900,000.
On January 1, 2021, the company would debit Cash for $2,900,000 and credit Bonds Payable for $2,900,000 to record the bond issue.
The interest payments on June 30, 2021, and December 31, 2021, would be recorded by debiting Interest Expense for $130,500 ([$2,900,000 * 9%]/2) and crediting Cash for $130,500.
However, when the market interest rate is 10% or 8%, the bonds will issue at a discount or premium, respectively. If the market interest rate is 10%, the bonds will issue at $2,651,193 (rounded).
In this case, the bond issue on January 1, 2021, would be recorded by debiting Cash for $2,651,193 and crediting Discount on Bonds Payable for $248,807 ($2,900,000 - $2,651,193).
The interest payments on June 30, 2021, and December 31, 2021, would be recorded as mentioned earlier.
Conversely, if the market interest rate is 8%, the bonds will issue at $3,186,995 (rounded).
The bond issue on January 1, 2021, would be recorded by debiting Cash for $3,186,995 and crediting Premium on Bonds Payable for $286,995 ($3,186,995 - $2,900,000).
The interest payments on June 30, 2021, and December 31, 2021, would be recorded accordingly.
Learn more about bond issue
brainly.com/question/14599790
#SPJ11
Let the inverse demand function for the vaccine of the monopolist BoTex be given by:pq=360-2q (p: Price in € ;
q: Quantity in millions of units). The cost function is given by 1000 +q2.
a) Calculate the profit-maximizing quantity of BoTex.
b) Calculate the monopoly price.
c) Calculate the profit.
The profit-maximizing quantity of Bo Tex is 90 million units.
The monopoly price is 180 million euros.
The profit of Bo Tex is 8400 million euros.
a) Calculation of profit-maximizing quantity of BoTex:
In order to calculate the profit-maximizing quantity of Bo Tex, we have to differentiate the total profit function with respect to q and equate the result to zero.
Total profit (Π) = Total revenue (TR) – Total cost (TC)TR = p.
q = (360 - 2q)q = 360q - 2q2TC = 1000 + q2Π = TR - TC
Differentiating Π w.r.t. q: {d \Pi}{dq} = 360 - 4q
Equating it to zero, we get:
360 - 4q = 0q = 90 million units
Therefore, the profit-maximizing quantity of Bo Tex is 90 million units.
b) Calculation of monopoly price:
To calculate the monopoly price, we need to substitute the quantity obtained in part (a) into the inverse demand function:
pq = 360 - 2q = 360 - 2(90) = 180 million euro
Therefore, the monopoly price is 180 million euros.
c) Calculation of profit:
We have to substitute the value of quantity (90 million units) and price (180 million euros) into the total revenue and total cost functions.
Total revenue (TR) = p.q = 180 × 90 = 16,200 million euro
Total cost (TC) = 1000 + q2 = 1000 + 902 = 8200 million euro
Profit (Π) = TR - TC = 16,200 - 8200 = 8400 million euro
Therefore, the profit of Bo Tex is 8400 million euros.
Learn more about profit-maximizing here:
https://brainly.com/question/31852625
#SPJ11
2. (6 points) Use Bisection method to find solution accurate to within 10-5 for the following problems: x2 + 2x – 3 = 0, for – 2 < x < 2, X – 2-4 = 0, for 0 < x < 1. Show the number of iteration
Using the Bisection method, we need to find solutions accurate to within [tex]10^{-5}[/tex] for the equations [tex]x^{2}[/tex]+ 2x - 3 = 0 in the range -2 < x < 2 and x - [tex]2^{-4}[/tex] = 0 in the range 0 < x < 1.
For the equation [tex]x^{2}[/tex] + 2x - 3 = 0:
We start with an initial interval [-2, 2] and evaluate the function at the midpoint of the interval. If the function value is close to 0, we consider it as the solution. Otherwise, we narrow down the interval by dividing it in half and selecting the subinterval where the function changes sign. This process is repeated until the desired accuracy is achieved (within [tex]10^{-5}[/tex]). The number of iterations required will be recorded.
For the equation x - [tex]2^{-4}[/tex]= 0:
We follow the same steps as above but with the initial interval [0, 1]. Again, we iterate until the desired accuracy is reached and keep track of the number of iterations.
By applying the Bisection method and counting the number of iterations for each equation, we can find solutions accurate to within 10^-5 for both equations and determine the required number of iterations for each case.
Learn more about bisection here:
brainly.com/question/32563551
#SPJ11