Bus stops A, B, C, and D are on a straight road. The distance from A to D is exactly 1 km. The distance from B to C is 2 km. The distance from B to D is 3 km, the distance from A to B is 4 km, and the distance from C to D is 5 km. What is the distance between stops A and C?

Answers

Answer 1

Okay, let's think this through step-by-step:

* A to D is 1 km

* B to C is 2 km

* B to D is 3 km

* A to B is 4 km

* C to D is 5 km

So we have:

A -> B = 4 km

B -> C = 2 km

C -> D = 5 km

We want to find A -> C.

A -> B is 4 km

B -> C is 2 km

So A -> C = 4 + 2 = 6 km

Therefore, the distance between stops A and C is 6 km.


Related Questions

Hugo is rolling a die and recording the number of spots showing. He rolled 7 times and the results were: 6 spot5 spot5 spot3 spot4 spot3 spot4 spot What was the median number of spots rolled?

Answers

The calculatd value of the median number of spots rolled is 4

What was the median number of spots rolled?

From the question, we have the following parameters that can be used in our computation:

Spots = 6 5 5 3 4 3 4

Start by sorting the number of spots in ascending order

So, we have

6  5 5 4 4 3 3

As a general rule.

The median is the middle number

Using the above as a guide, we have the following:

Median = middle number = 4

Hence, the value of the median is 4

Read more about median at

https://brainly.com/question/15696302

#SPJ1

convert y into a one-hot-encoded matrix, assuming y can take on 10 unique values.

Answers

The resulting one-hot-encoded matrix would be:

[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

To convert y into a one-hot-encoded matrix, we can use the following steps:

1. Create an empty matrix of size (m x 10), where m is the number of samples in y and 10 is the number of unique values that y can take on.

2. For each value in y, create a row vector of size (1 x 10) where all elements are 0, except for the element corresponding to the value, which is set to 1.

3. Replace the corresponding row in the empty matrix with the row vector created in step 2.

For example, if y is a vector of length m = 5 with values [3, 5, 2, 5, 1], and assuming y can take on 10 unique values, the resulting one-hot-encoded matrix would be:

[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

Each row in the matrix corresponds to a sample in y, and the value 1 in each row indicates the position of the value in y. For example, the first row indicates that the first sample in y has the value 3.

To know more about one-hot-encoded matrix refer here:

https://brainly.com/question/29809755

#SPJ11

The resulting one-hot-encoded matrix would be:

[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

To convert y into a one-hot-encoded matrix, we can use the following steps:

1. Create an empty matrix of size (m x 10), where m is the number of samples in y and 10 is the number of unique values that y can take on.

2. For each value in y, create a row vector of size (1 x 10) where all elements are 0, except for the element corresponding to the value, which is set to 1.

3. Replace the corresponding row in the empty matrix with the row vector created in step 2.

For example, if y is a vector of length m = 5 with values [3, 5, 2, 5, 1], and assuming y can take on 10 unique values, the resulting one-hot-encoded matrix would be:

[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

Each row in the matrix corresponds to a sample in y, and the value 1 in each row indicates the position of the value in y. For example, the first row indicates that the first sample in y has the value 3.

To know more about one-hot-encoded matrix refer here:

https://brainly.com/question/29809755

#SPJ11

For the hypothesis test H0: μ = 11 against H1: μ > 11 with variance unknown and n = 11, approximate the P-value for the test statistic t0 = 1.948.

Answers

The approximate p-value for this test is 0.0575.

We are given that;

H0: μ = 11 and H1: μ > 11

t0 = 1.948, df = n - 1 = 11 - 1 = 10

Now,

To find the p-value based on these values. One way to do this is to use a cumulative distribution function (CDF) of the t-distribution with 10 degrees of freedom2. The CDF gives you the probability that a random variable from the t-distribution is less than or equal to a given value.

For a one-tailed test, the p-value is equal to 1 - CDF(t0). In this case, using a calculator, we get:

p-value = 1 - CDF(1.948) = 1 - 0.9425 = 0.0575

Therefore, by the statistics the answer will be 0.0575.

To learn more on Statistics click:

brainly.com/question/29342780

#SPJ1

given the function u = x y/y z, x = p 3r 4t, y=p-3r 4t, z=p 3r -4t, use the chain rule to find

Answers

The chain rule to find du/dt: du/dt = (∂u/∂x)(dx/dt) + (∂u/∂y)(dy/dt) + (∂u/∂z)(dz/dt)
du/dt = (y/z)(4p3r4) + ((x - u)/z)(4p-3r4) + [tex](-xy/z^2)(-4p3r)[/tex]Now, you can substitute the given expressions for x, y, and z to compute du/dt in terms of p, r, and t.

To use the chain rule, we need to find the partial derivatives of u with respect to x, y, and z, and then multiply them together.

∂u/∂x = y/y z = 1/z

∂u/∂y = x/z

∂u/∂z = -xy/y^2 z

Now we can apply the chain rule:

∂u/∂p = (∂u/∂x)(∂x/∂p) + (∂u/∂y)(∂y/∂p) + (∂u/∂z)(∂z/∂p)

= (1/z)(3r) + (p-3r)/(p-3r+4t)(-3) + (-xy/y^2 z)(3r)

Simplifying, we get:

∂u/∂p = (3r/z) - (3xyr)/(y^2 z(p-3r+4t))

Note: The simplification assumes that y is not equal to zero. If y=0, the function u is undefined.
To find the derivative of the function u(x, y, z) with respect to t using the chain rule, you need to find the partial derivatives of u with respect to x, y, and z, and then multiply them by the corresponding derivatives of x, y, and z with respect to t.

Given u = xy/yz and x = p3r4t, y = p-3r4t, z = p3r-4t.

First, find the partial derivatives of u with respect to x, y, and z:

∂u/∂x = y/z
∂u/∂y = (x - u)/z
∂u/∂z = -xy/z^2

Next, find the derivatives of x, y, and z with respect to t:

dx/dt = 4p3r4
dy/dt = 4p-3r4
dz/dt = -4p3r

To learn more about derivatives visit;

brainly.com/question/30365299

#SPJ11

A group of college freshmen and a group of sophomores are asked about the quality of the university cafeteria. Do students' opinions change during their time at school? O A. This scenario should not be analyzed using paired data because the groups have a natural pairing but are independent. OB. This scenario should be analyzed using paired data because the groups are dependent and have a natural pairing. OC. This scenario should not be analyzed using paired data because the groups are independent and do not have a natural pairing. OD. This scenario should not be analyzed using paired data because the groups are dependent but do not have a natural pairing.

Answers

If students' opinions change during their time at school when comparing a group of college freshmen and a group of sophomores regarding the quality of the university cafeteria. The correct answer is C. This scenario should not be analyzed using paired data because the groups are independent and do not have a natural pairing.

To explain, paired data is used when each observation in one group has a unique match in the other group, and these pairs are related in some way. In this scenario, college freshmen and sophomores are two separate groups with no direct relationship between individual students in each group.

Therefore, the data is not naturally paired, and we cannot track individual changes in opinions over time as the students progress from freshmen to sophomores. Additionally, the groups are independent, meaning the opinions of one group do not influence the opinions of the other group.

College freshmen and sophomores have different experiences and are at different stages of their college life, so their opinions about the university cafeteria are not dependent on each other.

Thus, to analyze the difference in opinions between these two independent groups, an appropriate statistical method would be to use unpaired data analysis techniques such as an independent samples t-test or a chi-square test for independence, depending on the nature of the data collected.

In conclusion, when comparing the opinions of college freshmen and sophomores about the quality of the university cafeteria, we should not use paired data analysis because the groups are independent and do not have a natural pairing.

To know more about paired data refer here:

https://brainly.com/question/31385381#

#SPJ11

Solve for when the population increases the fastest in the logistic growth equation: P'(t) = 0.9P(1 P 3500 P = TIP Enter your answer as an integer or decimal number. Examples: 3.-4.5.5172 Enter DNE for Does Not Exist, oo for Infinity Get Help: Solve this differential equation: dy dt 0.11y(1 – 200 y(0) = 2 vít) = Preview TIP Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c Be sure your variables match those in the question Biologists stocked a lake with 500 fish and estimated the carrying capacity to be 4500. The number of fish grew to 710 in the first year. Round to 4 decimal places. a) Find an equation for the fish population, P(t), after t years. P(t) Preview b) How long will it take for the population to increase to 2250 (half of the carrying capacity)? Preview years.

Answers

⇒ The population increases the fastest when it is at half of the carrying capacity, which is 1750.

⇒ The solution to the differential equation is,

y = 200exp(0.11t + ln(3/197)) / (1 + 19exp(0.11t + ln(3/197)))

⇒ It will take about 3.04 years for the fish population to increase to 2250.

To determine when the population increases the fastest,

we have to find the maximum value of the derivative P'(t).

We can start by setting the derivative equal to zero and solving for p,

⇒ P'(t) = 0.9(1 - p/3500) = 0

⇒ 1 - p/3500 = 0

⇒ p/3500 = 1

⇒ p = 3500

So, the population will increase the fastest when p = 3500.

To confirm that this is a maximum,

Take the second derivative of P(t),

⇒ P''(t) = -0.9/3500

Since P''(t) is negative, P(t) has a maximum at p = 3500.

Therefore, the population increases the fastest when it is at half of the carrying capacity, which is 1750.

To solve the given differential equation ,

First, separate the variables by dividing both sides by (y(1 - y/200)),

⇒ (1 / (y(1 - y/200))) dy = 0.11 dt

Integrate both sides. Let's first integrate the left side,

⇒ ∫ (1 / (y(1 - y/200))) dy = ∫ (1 / y) + (1 / (200 - y)) dy

                                       = ln(y) - ln(200 - y) + C1

where C1 is the constant of integration.

Now we can integrate the right side,

⇒ 0.11t + C2

Where C2 is another constant of integration.

Putting it all together, we have,

⇒ ln(y) - ln(200 - y) = 0.11t + C

where C = C2 - C1.

To solve for y, we can exponentiate both sides,

⇒y / (200 - y) = exp(0.11t + C)

Multiplying both sides by (200 - y), we get,

⇒ y = 200exp(0.11t + C) / (1 + 19exp(0.11t + C))

Using the initial condition y(0) = 2,

Solve for C and get:

⇒ C = ln(3/197)

Therefore, the solution to the differential equation is:

⇒ y = 200exp(0.11t + ln(3/197)) / (1 + 19exp(0.11t + ln(3/197)))

a) To find the equation for the fish population,

we can use the logistic growth model,

⇒ P(t) = K / (1 + Aexp(-r*t))

where P(t) is the population at time t,

K is the carrying capacity,

A is the initial population,

r is the growth rate, and

e is the base of natural logarithms.

We know that

A = 500,

K = 4500, and

P(1) = 710.

Use these values to solve for r,

⇒ r = ln((P(1)/A - 1)/(K/A - P(1)/A))

⇒r = ln((710/500 - 1)/(4500/500 - 710/500))

⇒r = 0.4542

Now we can plug in all the values to get the equation,

⇒P(t) = 4500 / (1 + 4exp(-0.4542t))

b) We want to find t when P(t) = 2250.

Use the equation we found in part a) and solve for t,

⇒ 2250 = 4500 / (1 + 4exp(-0.4542t))

⇒ 1 + 4exp(-0.4542t) = 2

⇒        exp(-0.4542t) = 0.25

⇒                -0.4542t = ln(0.25)

⇒                              t = ln(0.25) / (-0.4542)

⇒                              t ≈ 3.04 years.

     

So it will take about 3.04 years for the fish population to increase to 2250.

To learn more about derivative visit;

https://brainly.com/question/29144258

#SPJ12

Find the indicial equation and the exponents for the specified singularity of the given differential equation. (x - 1)^2y" + (x^2 - 1)y' - 12y = 0, at x = 1

Answers

The indicial equation is r^2 - 12 = 0, and the exponents for the specified singularity at x = 1 are r = ±√12.

To find the indicial equation and the exponents for the specified singularity of the given differential equation,

(x - 1)^2y" + (x^2 - 1)y' - 12y = 0 at x = 1:

Follow these steps:

STEP 1: Substitute y(x) = (x - 1)^r into the given differential equation. This will help us find the indicial equation.

STEP 2: Differentiate y(x) with respect to x to find y'(x) and y''(x):
  y'(x) = r(x - 1)^(r - 1)
  y''(x) = r(r - 1)(x - 1)^(r - 2)

STEP 3:Substitute y(x), y'(x), and y''(x) back into the given differential equation:
  (x - 1)^2[r(r - 1)(x - 1)^(r - 2)] + (x^2 - 1)[r(x - 1)^(r - 1)] - 12(x - 1)^r = 0

STEP 4: Simplify the equation:
  r(r - 1)(x - 1)^r + r(x - 1)^r - 12(x - 1)^r = 0

STEP 5: Factor out (x - 1)^r:
  (x - 1)^r[r(r - 1) + r - 12] = 0

STEP 6: Since (x - 1)^r is never zero, we can set the other factor equal to zero to find the indicial equation:
  r(r - 1) + r - 12 = 0

STEP 7: Simplify and solve for r:
  r^2 - r + r - 12 = 0
  r^2 - 12 = 0

STEP 8: Solve the quadratic equation for r:
  r = ±√12

So, the indicial equation is r^2 - 12 = 0, and the exponents for the specified singularity at x = 1 are r = ±√12.

To now more about Indicial equation:

https://brainly.com/question/29071716

#SPJ11

5 Let an = and bn = Calculate the following limit. vn + ln(n) (Give an exact answer. Use symbolic notation and fractions where needed. Enter DNE if the limit does not exist.) an lim 11- bm Determine the convergence of Žan. n=1 an 1+ bn is infinite. 18 il a, diverges by the Limit Comparison Test since 2 b, diverges and lim a, converges by the Limit Comparison Test since bn converges. n=1 n=1 an an diverges by the Limit Comparison Test since bn diverges and lim exists and is finite. - bm n=1 an E a, converges by the Limit Comparison Test since bn converges and lim does not exist. n=1 1170 bm HEI Explain your reasoning: This ungraded area will provide insight to your instructor.

Answers

an diverges by the limit comparison test since bn diverges and lim (an or bn) exists and is finite.


Given an = 5/n and bn = 1/(n + ln(n)), we need to find the limit of an/bn and determine the convergence of an.

Step 1: Calculate the limit of an or bn as n approaches infinity.
lim (n→∞) (an/bn) = lim (n→∞) [(5/n) / (1/(√n + ln(n)))]
= lim (n→∞) [5(√n + ln(n))/n]

Step 2: Use L'Hopital's Rule since we have the indeterminate form of (0, 0).
lim (n→∞) [5(1/2n^(-1/2) + 1/n) / 1]
= lim (n→∞) [5(1/2√n + 1/n)]

Step 3: Since the limit exists and is finite, apply the limit comparison test.
We know that the series (1/n) diverges (it's the harmonic series), so let's compare it with an.
If the limit lim (n) (an/bn) exists and is finite, then both series will have the same convergence behavior.

Since the limit exists and is finite, an will have the same convergence behavior as (1/n), which is divergence.

Therefore, Σan diverges by the limit comparison test since bn diverges and lim (an or bn) exists and is finite.

Visit here to learn more about limit comparison test:

brainly.com/question/31362838

#SPJ11

Reduce the following 4 x 4 game matrix to find the optimal strategy for the row player 4 3 9 7 -7 -5 -3 5 -1 4 5 8 3-5 -1 5 1 (57601/60) 10 5/6 1/60) always play row 2 always play row 3

Answers

The optimal strategy for the row player is to always play row 2, as it has the lowest expected value for the column player's choices.

To reduce the 4 x 4 game matrix and find the optimal strategy for the row player, we need to calculate the expected value for each row based on the column player's choices.

For the first row, the expected value is (4x57601 + 3x10 + 9x5/6 + 7x1/60)/60 = 42.72/60 = 0.712.

For the second row, the expected value is (-7x57601 + -5x10 + -3x5/6 + 5x1/60)/60 = -410.16/60 = -6.836.

For the third row, the expected value is (-1x57601 + 4x10 + 5x5/6 + 8x1/60)/60 = -38.58/60 = -0.643.

For the fourth row, the expected value is (3x57601 + -5x10 + -1x5/6 + 5x1/60)/60 = 214.42/60 = 3.574.

From these expected values, we can see that the optimal strategy for the row player is to always play row 2, as it has the lowest expected value for the column player's choices.

To learn more about expected value, refer below:

https://brainly.com/question/29574962

#SPJ11

(a) Suppose you are given the following (x, y) data pairs.
x 2 3 5
y 4 3 6
Find the least-squares equation for these data (rounded to three digits after the decimal).
ŷ = + x
(b) Now suppose you are given these (x, y) data pairs.
x 4 3 6
y 2 3 5
Find the least-squares equation for these data (rounded to three digits after the decimal).
ŷ = + x
(d) Solve your answer from part (a) for x (rounded to three digits after the decimal).
x = + y

Answers

A- The least-squares equation for the given (x, y) data pairs is ŷ = 4.759 - 0.115x, rounded to three digits after the decimal.

B- The least-squares equation for the given (x, y) data pairs is ŷ = 1.505 + 0.461x, rounded to three digits after the decimal.

(a) To find the least-squares equation for the given (x, y) data pairs, we first calculate the means of x and y:

Mean of x = (2 + 3 + 5) / 3 = 3.333

Mean of y = (4 + 3 + 6) / 3 = 4.333

Next, we calculate the sample covariance of x and y and the sample variance of x:

Sample covariance of x and y = [(2 - 3.333)(4 - 4.333) + (3 - 3.333)(3 - 4.333) + (5 - 3.333)(6 - 4.333)] / 2

= -0.333

Sample variance of x = [(2 - 3.333)^2 + (3 - 3.333)^2 + (5 - 3.333)^2] / 2

= 2.888

Finally, we can use these values to calculate the slope and intercept of the least-squares line:

Slope = sample covariance of x and y / sample variance of x = -0.333 / 2.888 = -0.115

Intercept = mean of y - (slope * mean of x) = 4.333 - (-0.115 * 3.333) = 4.759

Therefore, the least-squares equation for the given (x, y) data pairs is ŷ = 4.759 - 0.115x, rounded to three digits after the decimal.

(b) Following the same steps as in part (a), we find:

Mean of x = (4 + 3 + 6) / 3 = 4.333

Mean of y = (2 + 3 + 5) / 3 = 3.333

Sample covariance of x and y = [(4 - 4.333)(2 - 3.333) + (3 - 4.333)(3 - 3.333) + (6 - 4.333)(5 - 3.333)] / 2

= 1.333

Sample variance of x = [(4 - 4.333)^2 + (3 - 4.333)^2 + (6 - 4.333)^2] / 2

= 2.888

Slope = sample covariance of x and y / sample variance of x = 1.333 / 2.888 = 0.461

Intercept = mean of y - (slope * mean of x) = 3.333 - (0.461 * 4.333) = 1.505

Therefore, the least-squares equation for the given (x, y) data pairs is ŷ = 1.505 + 0.461x, rounded to three digits after the decimal.

(d) To solve the least-squares equation from part (a) for x, we can rearrange the equation as follows:

x = (y - 4.759) / (-0.115)

Therefore, x = (-8.130y + 37.069), rounded to three digits after the decimal.

Learn more about “ least-squares equation “ visit here;

https://brainly.com/question/28382324

#SPJ4

Line / contains points (-4,0) and (0, -2). Find the distance between line and the point P(4, 1). Round your answer to the nearest
hundredth, if necessary.
units

Answers

The distance between the line and the point is D = 10/3 units

Given data ,

Let the two points be P ( -4 , 0 ) and Q ( 0 , -2 )

To find the slope (m)

m = (y2 - y1) / (x2 - x1)

m = (-2 - 0) / (0 - (-4))

m = -2 / 4

m = -1/2

So, the equation of the line is:

y = (-1/2)x + b

To find the y-intercept (b), we can plug in the coordinates of one of the points.

-2 = (-1/2)(0) + b

b = -2

So, the equation of the line is

y = (-1/2)x - 2

Now , Distance of a point to line D = | Ax₀ + By₀ + C | / √ ( A² + B² )

On simplifying , we get

( 1/2 )x + y + 2 = 0

A = 1/2 , B = 1 and C = 2

D = | ( 1/2 )4 + 1 + 2 | / √(9/4)

D = 5 / 3/2

D = 10/3 units

Hence , the distance is D = 10/3 units

To learn more about distance from a point to line click :

https://brainly.com/question/21096072

#SPJ1

what conclusions can be made about the series[infinity] ∑ 3cos(n)/n and the integral test?n=1

Answers

We can make the conclusion that the series ∑ 3cos(n)/n is convergent.

The series ∑ 3cos(n)/n satisfies the conditions of the integral test if we consider the function f(x) = 3cos(x)/x.

Using integration by parts, we can find that the integral of f(x) from 1 to infinity is equal to 3sin(1) + 3/2 ∫1^∞ sin(x)/x^2 dx.

Since the integral ∫1^∞ sin(x)/x^2 dx converges (as it is a known convergent integral), we can conclude that the series ∑ 3cos(n)/n also converges by the integral test.

Using the Integral Test, we can determine the convergence or divergence of the series ∑ (3cos(n)/n) from n=1 to infinity. The Integral Test states that if a function f(n) is continuous, positive, and decreasing for all n≥1, then the series ∑ f(n) converges if the integral ∫ f(x)dx from 1 to infinity converges, and diverges if the integral diverges.

In this case, f(n) = 3cos(n)/n. Unfortunately, this function is not always positive, as the cosine function oscillates between -1 and 1. Due to this property, the Integral Test is not applicable to the given series, and we cannot draw any conclusions about its convergence or divergence using this test.



Learn more about integration here: brainly.com/question/18125359

#SPJ11

5. Find the area of the shaded sector. Round to the
nearest hundredth.
15 ft
332
A =

Answers

Answer: 54.98 sq. ft.

Step-by-step explanation:

use cramer's rule to solve the system of linear equations for x and y. kx (1 − k)y = 1 (1 − k)x ky = 3

Answers

The solution to the system of linear equations is, [tex]$x = \frac{3}{k(1-k)}$[/tex] and[tex]$y = \frac{3-k}{k(1-k)}$[/tex].

We are given the system of linear equations:

kx(1-k)y = 1

(1-k)xky = 3

We can use Cramer's rule to solve for $x$ and $y$. The determinant of the coefficient matrix is:

[tex]$\begin{vmatrix}k(1-k) & -k(1-k) \(1-k)k & -k^2\end{vmatrix} = -k^2(1-k)^2$[/tex]

The determinant of the x-matrix is:

[tex]$\begin{vmatrix}1 & -k(1-k) \3 & -k^2\end{vmatrix} = -k^2 + 3k(1-k) = 3k - 3k^2$[/tex]

The determinant of the y-matrix is:

[tex]$\begin{vmatrix}k(1-k) & 1 \(1-k)k & 3\end{vmatrix} = 3k - k^2$[/tex]

Using Cramer's rule, we can find x and y:

[tex]$x = \frac{\begin{vmatrix}1 & -k(1-k) \3 & -k^2\end{vmatrix}}{\begin{vmatrix}k(1-k) & -k(1-k) \(1-k)k & -k^2\end{vmatrix}} = \frac{3k - 3k^2}{-k^2(1-k)^2} = \frac{3}{k(1-k)}$[/tex]

[tex]$y = \frac{\begin{vmatrix}k(1-k) & 1 \(1-k)k & 3\end{vmatrix}}{\begin{vmatrix}k(1-k) & -k(1-k) \(1-k)k & -k^2\end{vmatrix}} = \frac{3k - k^2}{-k^2(1-k)^2} = \frac{3-k}{k(1-k)}$[/tex]

Therefore, the solution to the system of linear equations is:

[tex]$x = \frac{3}{k(1-k)}$[/tex]

[tex]$y = \frac{3-k}{k(1-k)}$[/tex]

To know more about Cramer's rule, here

https://brainly.com/question/30682863

#SPJ4

Find r(t) for the given conditions.
r′(t) = te^−t2i − e^−tj + k, r(0) =

Answers

To find the function r(t) given its derivative r′(t) and an initial condition, we need to integrate r′(t) and apply the initial condition.

Step 1: Integrate r′(t) component-wise:
For the i-component: ∫(te^(-t^2)) dt
For the j-component: ∫(-e^(-t)) dt
For the k-component: ∫(1) dt

Step 2: Find the antiderivatives for each component:
For the i-component: -(1/2)e^(-t^2) + C1
For the j-component: e^(-t) + C2
For the k-component: t + C3

Step 3: Combine the antiderivatives to obtain the general solution for r(t):
r(t) = [-(1/2)e^(-t^2) + C1]i + [e^(-t) + C2]j + [t + C3]k

Step 4: Apply the initial condition r(0):
r(0) = [-(1/2)e^(0) + C1]i + [e^(0) + C2]j + [0 + C3]k
Given r(0), we can determine the constants C1, C2, and C3.

Without the provided value for r(0), I can't find the specific constants, but you can use the general solution r(t) and plug in r(0) to find the exact function for r(t).

To learn more about “antiderivatives” refer to the https://brainly.com/question/12956882

#SPJ11

pls help!! i’ll mark brainliest :)

Answers

Answer: Complementary: x= 5

Step-by-step explanation:

First we know that the angles are complementary because they add to 90 degrees.

Next to find 5x we can subtract 65 from 90: 90-65=25

Solve: 5x=25

x=5

describe the given set in spherical coordinates x^2+ y^2+z^ 2=64, z≥0 (use symbolic notation and fractions where needed.) = p≤ ∅≤ ∅≥

Answers

Thus, the given set in spherical coordinates can be described as: ρ = 8, 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π.

The given set can be described in spherical coordinates as follows: ρ² = 64 and z ≥ 0, where ρ (rho) is the radial distance, θ (theta) is the polar angle, and φ (phi) is the azimuthal angle.
In spherical coordinates, the relationship between Cartesian and spherical coordinates is:
x = ρ × sin(θ) × cos(φ)
y = ρ × sin(θ) × sin(φ)
z = ρ × cos(θ)
For x² + y² + z² = 64, we can substitute the spherical coordinates:
(ρ * sin(θ) × cos(φ))² + (ρ × sin(θ) × sin(φ))² + (ρ × cos(θ))² = 64
ρ² * (sin²(θ) × cos²(φ) + sin²(θ) × sin²(φ) + cos²(θ)) = 64
Since sin²(θ) + cos^2(θ) = 1, the equation simplifies to:
ρ² = 64
So, ρ = 8, as the radial distance must be non-negative.
For z ≥ 0, we use the relationship z = ρ × cos(θ):
8 × cos(θ) ≥ 0
This inequality is satisfied when 0 ≤ θ ≤ π/2, as the cosine function is non-negative in this range.
Since the azimuthal angle φ covers the entire range of possible angles in the xy-plane, we have 0 ≤ φ ≤ 2π.

Learn more about azimuthal angle here:

https://brainly.com/question/30882365

#SPJ11

Question: The loss amount, X, for a medical insurance policy hascumulative distribution function: F[x] = (1/9) (2 x^2 - x^3/3) for0 ≤ x < 3 and: F[x] = 1 for x ≥ 3. Calculate the mode of thisdistribution.The loss amount, X, for a medical insurance policy hascumulative distribution function: F[x] = (1/9) (2 x^2 - x^3/3) for0 ≤ x < 3 and: F[x] = 1 for x ≥ 3. Calculate the mode of thisdistribution.

Answers

the mode of the distribution is x = 2.

To find the mode of the distribution, we need to find the value of x that corresponds to the peak of the distribution function. In other words, we need to find the value of x at which the probability density function (pdf) is maximized.

To do this, we first need to find the pdf. We can do this by taking the derivative of the cumulative distribution function (cdf):

[tex]f[x] = \frac{d}{dx} F[x][/tex]

For 0 ≤ x < 3, we have:

[tex]f[x] = \frac{d}{dx} {[(1/9) (2 x^2 - x^{3/3}]}\\f[x] = 1/9 {(4x - x^2)}[/tex]

For x ≥ 3, we have:

f[x] = d/dx (1)
f[x] = 0

Therefore, the pdf is:

[tex]f[x] = (1/9) (4x - x^2)[/tex]for 0 ≤ x < 3
f[x] = 0 for x ≥ 3

To find the mode, we need to find the value of x that maximizes the pdf. We can do this by setting the derivative of the pdf equal to zero and solving for x:

[tex]\frac{df}{dx} = (4/9) - (2/9) x = 0[/tex]
x = 2

Therefore, the mode of the distribution is x = 2.

learn more about the mode of the distribution

https://brainly.com/question/1529313

#SPJ11

helpppppppp. The base of a triangle is 7 cm rounded to the nearest integer. The perpendicular height of the triangle is 4.5 cm rounded to 1 dp. Write the error interval for the area, a , of the triangle in the form m ≤ a < n .

Answers

The error interval for the area "a" of the triangle is:  13.17 cm² ≤ a < 16.065 cm²

Given data ,

Let's write "b" for the triangle's base and "h" for the height of the perpendicular.

The alternative values for "b" would be 7 cm or 6 cm, depending on whether the actual value of the base is closer to 7.5 cm or 6.5 cm, respectively.

The range of potential values for "h" is 4.45 cm to 4.55 cm, depending on whether the actual height value is more closely related to 4.45 cm or 4.55 cm, respectively

Now , area of the triangle = ( 1/2 ) x Length x Base

When base "b" is 7 cm and height "h" is 4.45 cm:

Minimum possible area = (1/2) * 7 * 4.45 = 15.615 cm²

When base "b" is 7 cm and height "h" is 4.55 cm:

Maximum possible area = (1/2) * 7 * 4.55 = 16.065 cm²

When base "b" is 6 cm and height "h" is 4.45 cm:

Minimum possible area = (1/2) * 6 * 4.45 = 13.17 cm²

When base "b" is 6 cm and height "h" is 4.55 cm:

Maximum possible area = (1/2) * 6 * 4.55 = 13.63 cm²

Hence , the error interval for the area "a" of the triangle is:

13.17 cm² ≤ a < 16.065 cm²

To learn more about triangles click :

https://brainly.com/question/16739377

#SPJ1

a.) compute s_{4} (the 4th partial sum) of the following series. s=\sum_{n=1}^{\infty}\frac{10}{6 n^5}

Answers

The 4th partial sum of the given series is approximately 0.1164.

How to compute [tex]s_{4}[/tex] of the series?

The given series is:

[tex]s = \sum_{n=1}^\infty 10/(6n^5)[/tex]

To compute the 4th partial sum, we add up the terms from n=1 to n=4:

[tex]s_4 = \sum_{n=1}^4 10/(6n^5) = (10/6) (1/1^5 + 1/2^5 + 1/3^5 + 1/4^5)[/tex]

We can simplify this expression using a calculator:

[tex]s_4[/tex]= (10/6) (1 + 1/32 + 1/243 + 1/1024) ≈ 0.1164

Therefore, the 4th partial sum of the given series is approximately 0.1164.

Learn more about series

brainly.com/question/15415793

#SPJ11

The 4th partial sum of the given series is approximately 0.1164.

How to compute [tex]s_{4}[/tex] of the series?

The given series is:

[tex]s = \sum_{n=1}^\infty 10/(6n^5)[/tex]

To compute the 4th partial sum, we add up the terms from n=1 to n=4:

[tex]s_4 = \sum_{n=1}^4 10/(6n^5) = (10/6) (1/1^5 + 1/2^5 + 1/3^5 + 1/4^5)[/tex]

We can simplify this expression using a calculator:

[tex]s_4[/tex]= (10/6) (1 + 1/32 + 1/243 + 1/1024) ≈ 0.1164

Therefore, the 4th partial sum of the given series is approximately 0.1164.

Learn more about series

brainly.com/question/15415793

#SPJ11

To plumbers charge an initial fee and an hourly rate.
The equation y 100+30z models plumber A's fee, where y is the total charge, in dollars, and z is the number of
hours worked.
Plumber B
Hours Total Charges (5)
1
105
2
160
215
The table shown represents plumber B's total charge for different numbers of hours.
Which statement about the plumbers'charges is true?
The two plumbers have equal hourly rates.
Plumber A has a greater initial fee.
Plumber A has a greater hourly rate.
The two plumbers have equal initial fees.

Answers

Analyzing the fixed and variable cost elements, the TRUE statement about the plumbers' charges is B. Plumber A has a greater initial fee.

What are the cost elements?

Costs can be fixed, variable, or mixed.

Fixed costs are the initial charges and do not depend on the number of hours worked.

Variable costs depend on the number of hours worked by each plumber.

Plumber A:

Equation, y = 100 + 30z

y = the total charge in dollars

z = the number of hours worked

Variable cost per unit = $30

Fixed cost = $100

Plumber B:

Hours    Total Charges ($)

1                    105

2                   160

3                   215

Variable cost per unit = $55 (215 - $160) or ($160 - $105)

Fixed cost = $50.

Thus, Option B is correct because Plumber A has a greater initial fee of $100 compared to Plumber B's $50.

Learn more about fixed and variable costs at https://brainly.com/question/14872023.

#SPJ1

find the following. f(x) = x2+3, g(x) = 5−x (a) (f g)(x) = ______
(b) (f − g)(x) = _____
(c) (fg)(x) = ____
(d) (f/g)(x) = ___

Answers

If the functions f(x) = x²+3, g(x) = 5−x, then the values of,

(a) (f g)(x) = 28 - 10x + x²

(b) (f - g)(x) = x² + x - 2

(c) (fg)(x) = -x³ + 2x² + 15x - 15

(d) (f/g)(x) = (5x² + 8x + 15) / (x² - 25), where x ≠ 5.

(a) (f g)(x) represents the composition of two functions f(x) and g(x), where the output of g(x) is the input to f(x).

So, (f g)(x) = f(g(x)) = f(5-x) = (5-x)² + 3 = 28 - 10x + x².

Therefore, (f g)(x) = 28 - 10x + x².

(b) (f - g)(x) represents the subtraction of one function from another.

So, (f - g)(x) = f(x) - g(x) = (x² + 3) - (5 - x) = x² + x - 2.

Therefore, (f - g)(x) = x² + x - 2.

(c) (fg)(x) represents the multiplication of two functions.

So, (fg)(x) = f(x) × g(x) = (x² + 3) × (5 - x) = -x³ + 2x² + 15x - 15.

Therefore, (fg)(x) = -x³ + 2x² + 15x - 15.

(d) (f/g)(x) represents the division of one function by another.

So, (f/g)(x) = f(x) / g(x) = (x² + 3) / (5 - x).

Note that (5 - x) cannot equal 0, otherwise the denominator would be undefined. Therefore, the domain of (f/g)(x) is all real numbers except x = 5.

Simplifying (f/g)(x) by multiplying the numerator and denominator by the conjugate of the denominator (5 + x), we get

(f/g)(x) = (x² + 3) / (5 - x) × (5 + x) / (5 + x)

= (x² + 3) (5 + x) / (25 - x²)

= (5x² + 8x + 15) / (x² - 25)

Therefore, (f/g)(x) = (5x² + 8x + 15) / (x² - 25), where x ≠ 5.

Learn more about function here

brainly.com/question/29166607

#SPJ4

The given question is incomplete, the complete question is:

If f(x) = x²+3, g(x) = 5−x  find the values of (a) (f g)(x)

(b) (f − g)(x)  

(c) (fg)(x)

(d) (f/g)(x)

Which properties did Elizabeth use in her solution? Select 4 answers

Answers

The distribution property Elizabeth used in her solution

What is distribution property?

The distribution property is a fundamental property of arithmetic and algebra that states that multiplication can be distributed over addition or subtraction, and vice versa. It is a property that is used extensively in mathematics, science, engineering, and other fields that involve mathematical calculations.

The distribution property can be expressed in various ways, but the most common form is:

a × (b + c) = (a × b) + (a × c)

This means that if you have a number "a" and you want to multiply it by the sum of two other numbers "b" and "c", you can do so by multiplying "a" by each of the two numbers "b" and "c" separately, and then adding the results together.

For example, if a = 3, b = 4, and c = 5, then:

3 × (4 + 5) = (3 × 4) + (3 × 5) = 12 + 15 = 27

The distribution property can also be used in reverse, which means that you can factor out a common factor from an expression. For example:

3x + 6x = (3 + 6)x = 9x

In this example, the distribution property was used to factor out the common factor of "3x" from the expression "3x + 6x".

The distribution property is a very powerful tool in mathematics, and it can be used to simplify and solve many different types of problems. It is especially useful in algebra, where it is used to expand and simplify expressions, factor polynomials, and solve equations.

Learn more about distribution property here,

https://brainly.com/question/2807928

#SPJ1

Correct question is ''Which property did Elizabeth use in her solution? Explain the property."

What is the image of (-4,4) after a dilation by a scale factor of 1/4 centered at the
origin?

Answers

Answer is ( -1, 1 )

Step by step

Since the dilation is centered at the origin, the image of any point (x,y) after applying a dilation of scale factor "k" is the point (Kx, ky).

So ( -4, 4) becomes ( 1/4 * -4 , 1/4 * 4 )

Multiply

Answer is ( -1, 1 )

2 (1/2 x3 x 4) + 4x2 + 3x2+ 5x 2

Answers

Answer:

36

Step-by-step explanation:

2(1/2 x 3 x 4) + 4 x 2 + 3 x 2 + 5 x 2

2(6) + 8 + 6 + 10

12 + 24

36

Helping in the name of Jesus.

The basic working pay of a man is $12,000. If he is paid $10,500 of deducting tax. What is the percentage tax charged?

Answers

Answer:

The percentage tax charged is $1,500 / $12,000 = 12.5%.

Step-by-step explanation:

0_0

Answer:

12.5%

Step-by-step explanation:

12000 - 10500 = 1500

1500 / 12000 = 0.125

0.125 * 100 = 12.5%

Find a11 in an arithmetic sequence where a1 = −5 and d = 4

Answers

Answer:

[tex]a_{11} = 45[/tex]

Step-by-step explanation:

An arithmetic sequence can be defined by an explicit formula in which , [tex]a_n = a_1 + d(n-1)[/tex], where d is the common difference between consecutive terms.

Plugging in [tex]a_1\\[/tex] as 5, [tex]d[/tex] as 4, and [tex]n[/tex] as 11, we get the equation [tex]a_n = 5 + 4(11-1)[/tex]. [tex]11-1=10[/tex], and [tex]4[/tex] × [tex]10\\[/tex] [tex]=40\\[/tex], and finally [tex]40 + 5 = 45[/tex].

Thus, [tex]a_{11} = 45[/tex].

Answer:

35

Step-by-step explanation:

we know that,

formula of arithmatic sequence is a+(n-1)d.

a11=a+(n-1)d

a11=-5+(11-1)4

a11=-5+10*4

a11=-5+40

a11=35.

The arithmatic sequence of a11=35.

Thank you

Help ASAP due today
Find the Area

Answers

Answer:

Step-by-step explanation:

To find the area of the circle, we need to use the formula:

A = πr^2

where D is the diameter of the circle and r is the radius, which is half of the diameter.

Given that D = 22ft, we can find the radius by dividing the diameter by 2:

r = D/2 = 22ft/2 = 11ft

Now we can substitute the value of r into the formula for the area:

A = πr^2 = π(11ft)^2

Using 3.14 as an approximation for π, we get:

A ≈ 3.14 × 121ft^2 ≈ 380.13ft^2

Therefore, the area of the circle is approximately 380.13 square feet.

GiveN:-Diameter Of Circle= 22 ftTo FinD:-Area of Circle = ??SolutioN:-

➢ Radius of Circle:-

➺ Radius = Diameter/2 ➺ Radius = 22/2 ➺ Radius = 11/1 ➺ Radius = 11 ft.

➢ Area of Circle:-

➺ Area of Circle = π r²➺ Area of Circle = 22/7 × 11²➺ Area of Circle = 22/7 × 11 × 11➺ Area of Circle = 22/7 × 121➺ Area of Circle = (22×121/7)➺ Area of Circle = 2662/7➺ Area of Circle = 380.28 ft²

If f(x) = 7x and g(x) = 3x+1, find (fog)(x).
OA. 21x² +7x
OB. 21x+1
C. 10x+1
OD. 21x+7

Answers

If f(x) = 7x and g(x) = 3x+1, the value of given function (fog)(x) is 21x+7. Therefore, the correct option is option D among all the given options.

In mathematics, a function is a statement, rule, or law that establishes the relationship between an independent variable and a dependent variable. In mathematics, functions exist everywhere, and they are crucial for constructing physical links in the sciences. It is equivalent to linear forms in linear algebra, which are linear mappings from a vector space into their scalar field.

f(x) = 7x

g(x) = 3x+1

(fog)(x) = f(g(x))

(fog)(x) = f(3x+1)

(fog)(x) =7(3x+1)

(fog)(x) = 21x+7

To know more about mathematical function, here:

https://brainly.com/question/12195089

#SPJ1

Find the x - and y-intercepts of the parabola y=5x2−6x−3. Enter each intercept as an ordered pair (x,y). Use a comma to separate the ordered pairs of multiple intercepts. You may enter an exact answer or round to 2 decimal places. If there are no solutions or no real solutions for an intercept enter ∅. Provide your answer below: x-intercept =(),():y-intercept =()

Answers

The answer is: x-intercept = (0.34, 0), (1.66, 0) : y-intercept = (0, -3)

To find the x-intercept(s), we set y to 0 and solve for x. For the given equation, 0 = 5x^2 - 6x - 3. To find the y-intercept, we set x to 0 and solve for y.x-intercept:0 = 5x^2 - 6x - 3We can use the quadratic formula to find the solutions for x:x = (-b ± √(b^2 - 4ac)) / 2ax = (6 ± √((-6)^2 - 4(5)(-3))) / 2(5)x ≈ 1.08, -0.55y-intercept:y = 5(0)^2 - 6(0) - 3y = -3So, the x-intercepts are (1.08, 0) and (-0.55, 0), and the y-intercept is (0, -3).Your answer: x-intercept =(1.08, 0),(-0.55, 0): y-intercept =(0, -3)

Learn more about quadratic formula here: brainly.com/question/9300679

#SPJ11

Other Questions
What Discretionary Elections Status is used to indicate that selections have been completed and finalized in order to prevent auto-submission. Which is most likely a characteristic of cells that secrete steroid hormones? A. They store large amounts of hormone.B. They are characterized by abundant smooth endoplasmic reticulum and few secretory granules. C. They contain large numbers of secretory granules.D. They are found in the anterior pituitary gland. E. They are found in the medulla of the adrenal gland. Insert 11, 44, 21, 55, 09, 23, 67, 29, 25, 89, 65, 43 into a B+ tree of order 4 and make the tree a left-biased tree. Write the algorithm. 1. What are some ways in which globalization has affected resource distribution andincome distribution? In forming your answer, be sure to describe how these twofactors affect different kinds of people and countries in different ways. what volume of 3.00 mm hclhcl in liters is needed to react completely (with nothing left over) with 0.250 ll of 0.400 mm na2co3na2co3 Roll 4 fair six-sided dice. Let X be the value of the lowest die. Prove that E(X) = (2275/1296)Hint: For a given k, what is P r(X = k)?Please show all work give an expression for the closed-loop voltage gain of the circuit in terms of the resistances, assuming an ideal op amp. express your answer in terms of the variables r1 and r2 . California's 1978 Briggs Initiative was a statewide ballot proposition that authorized the firing of _____ for "public homosexual conduct."a. state workersb. military service membersc. public school employeesd. librarians You are on an island inhabited by 3 types of people. Those who only tell the truth (knights), those who only tell lies (knaves) and those who either tell the truth or lie (spies). You come across 3 people. You know that one is a knight, one is a knave and one is a spy.A says B is a spyB says C is a spyC says B is a spyWhat type is each person Jackie buys some tickets to see the film.Each ticket costs 4.50Jackie pays with two 20 notes.Jackie gets 8.50 change.(b) How many tickets did Jackie buy? The volume of gas in a balloon is 1.90 L at 21.0 C. The balloon is heated, causing it to expand to a volume of 5.70 L. What is the new temperature of the gas inside the balloon?answer choicesa. 7.00 Cb. 63.0 Cc. 120. Cd. 609. C What power lens is needed to correct for farsightedness where the uncorrected near point is 75 cm? C) -5.33 D B) -2.67 D D) 100 DE+2.67 D E) +2.67 D A) +5.33 D D) +1.00 D find the first four terms of the taylor series for the function 3/x about the point = 2 . (your answers should include the variable x when appropriate.3/x = ? As described by Barry Bogin, author of The Tall and the Short of It, plasticity refers to the ability of an organism to: a. change its genetic destiny b. insulate itself from its environment c. manipulate its gene for growth d. adapt in response to changes in the environment e. only b & d What is the volume of a rectangular prism with a length of 14 yards, a width of 6 yards, and a height of 8 yards? consider a 8-tb disk that uses 4-kb blocks and the free-list method. how many block addresses can be stored in one block? C =5/9 (F 32) What is the answer Write a two to three page essay on the developments in mainland Europe. please help 30 points In Drosophila, the X chromosomes may become attached to one another (XXXX^) such that they always segregate together. Some flies thus contain a set of attached X chromosomes plus a Y chromosome.An attached-X female fly, XXYXX^Y, expresses the recessive X-linked white-eye mutation. It is crossed to a male fly that expresses the X-linked recessive miniature-wing mutation. the process by which naive t cells leave the bloodstream and enter the t-cell zone of a lymph node is called