The simplified expression in the context of this problem is given as follows:
C. -5yz².
What are like terms?Like terms are terms that share these two features listed as follows:
Same letters. (algebraic variables).Same exponents.If terms are like terms, then they can be either added or subtracted.
The expression for this problem is given as follows:
4yz²- 5yz² + 7yz² - 5yz² + yz² - 4yz² - 3yz².
The sum of the coefficients is given as follows:
4 - 5 + 7 - 5 + 1 - 4 - 3 = -5.
Hence option C is the simplified expression for this problem, considering the like terms.
More can be learned about like terms at brainly.com/question/17471184
#SPJ1
what is the equation of a line perpendicular to y=-1/3x+1 and passes through the point (1,-1)
Answer:
y = 3x - 4
Step-by-step explanation
If the line is perpendicular, then it means that the slope will be opposite. So if it's -1/3 then it will become 3.
y = 3x + b
-1 = 3(1) + b
-1 = 3 + b
-4 = b
The equation is y = 3x - 4
Let f(t) be the number of units produced by a company t years after opening in 2005. what is the correct interpretation of f(6) = 44,500?
a. six years from now, 44500 units will be produced
b. in 2009, 44500 units are produced
c. in 2006, 44500 units are produced
d. in 2011, 44500 units are produced
The correct interpretation of `f(6) = 44,500` is that in the year 2011, a company that opened in 2005 will produce 44,500 units of products is the answer.
Given, `f(t)` be the number of units produced by a company `t` years after opening in 2005.
According to the question, `f(6) = 44,500`. It means six years after the company opened, which is in the year 2011, the company will produce 44,500 units of products.
The statement "six years from now, 44,500 units will be produced" (option a) is not correct because the year is not specified. The company will produce 44,500 units of products in the year 2011, not six years from the present.
The statement "in 2009, 44,500 units are produced" (option b) is not correct because in the year 2009, the company will only have been open for four years, and not enough information is provided to calculate the number of units produced.
The statement "in 2006, 44,500 units are produced" (option c) is not correct because in the year 2006, the company will have only been open for one year, and not enough information is provided to calculate the number of units produced.
know more about interpretation of `f(6)
https://brainly.com/question/21086049
#SPJ11
1. GASOLINE The table gives the cost of a gallon of gasoline at two stations. How much more does gasoline cost at Gas For Less than at Cut-Rate? Cut-Rate 2.x + 3.5 Gas for less V12
Answer:
GASOLINE The table gives the cost of a
gallon of gasoline at two stations.
How much more does gasoline cost at
Gas For Less than at Cut-Rate?
Step-by-step explanation:
Please help ! 13 points
Answer:
...
Step-by-step explanation:
remeber that for every angle they give you, you need to subtract 90 from it to get the answer.
Which of the following expressions represents the solution to x – 3 > -4?
a. x > -7
b. x > -1
c. x < 12
d. x > 12
Step-by-step explanation:
x - 3 > -4
= x > -4+3
= x > -1 _ Answer
8) A crew is made up of 8 men; the rest are women. 66% of the crew are men. How many people are in the crew?
Answer:
12 crew members I think hope this helps :)
Step-by-step explanation:
☁️ Answer ☁️
12.
(66 2/3)
---------- (x) = 8
100
Solve for x
(66 2/3)x = 800
x = 800/(66 2/3)
x = 800/(200/3)
x = 800(3/200)
x = 4(3)
x = 12
Here's the link: https://www.wyzant.com/resources/answers/286307/a_crew_is_made_up_of_8_men_the_rest_are_women_66_2_3_are_men_how_many_people_are_in_the_crew
Hope it helps.
Have a nice day noona/hyung.
A different math class took the same test with these five test scores: 92, 92,92,52,52 Find the standard deviation and the variance for this class.
The standard deviation for the given test scores is 20, and the variance is 400
We have,
To find the standard deviation and variance for the given test scores, we can follow these steps:
Calculate the mean (average) of the test scores:
Mean (μ) = (92 + 92 + 92 + 52 + 52) / 5 = 80
Calculate the deviation of each test score from the mean:
Deviation = Test score - Mean
For the given test scores:
Deviations = (92 - 80), (92 - 80), (92 - 80), (52 - 80), (52 - 80)
= 12, 12, 12, -28, -28
Square each deviation:
Squared Deviations = Deviation²
Squared Deviations = 12², 12², 12², (-28)², (-28)²
= 144, 144, 144, 784, 784
Calculate the variance:
Variance = (Sum of Squared Deviations) / (Number of Scores)
Variance = (144 + 144 + 144 + 784 + 784) / 5
= 2000 / 5
= 400
Calculate the standard deviation:
Standard Deviation = √Variance
Standard Deviation = √400
= 20
Therefore,
The standard deviation for the given test scores is 20, and the variance is 400.
Learn more about variance here:
https://brainly.com/question/31432390
#SPJ4
Three less than the product of 5 and a number equals 7
Using the order of operations, what should be done first when evaluating this expression?
Negative one-half divided by 2 (9 + 3) minus 4 minus three-fourths (8)
Divide Negative one-half divided by 2.
Add 9 + 3.
Multiply Negative three-fourths (8).
Subtract 3 minus 4.
Answer:
You add (9+3)
Step-by-step explanation:
because PEMDAS evaluates the parenthesis first,
Answer:
It' B
Step-by-step explanation:
I got a 100 on the test
which inequality represents the sentence below?
two more thwn a numbre is less than 14
Answer:
the answer is B
I hope it helps have a great day
Answer:
2 + n < 14
Step-by-step explanation:
Hey!
==================================================================
Let's work this word by word.
"Two more than a number is less than 14"
--------------------------------------------------------------------------------------------------------------
"Two more than"
⇒ 2 +
"A number"
⇒ 2 + n
"Is less than"
⇒2 + n <
"14"
⇒2 + n < 14
==================================================================
Hope I Helped, Feel free to ask any questions to clarify :)
Have a great day!
More Love, More Peace, Less Hate.
-Aadi x
Help this is clever 8.4 I need this by 7
Answer:
Just do 8.4 times 7
Step-by-step explanation:
8.4 times 7 = 58.8
According to the Capital Asset Pricing Model (CAPM), which one of the following statements is false?
a• The expected rate of return on a security increases in direct proportion to a decrease in the risk-free rate.
b• The expected rate of return on a security increases as its beta increases.
c• A fairly priced security has an alpha of zero.
d• In equilibrium, all securities lie on the security market line.
According to the Capital Asset Pricing Model (CAPM), A) the expected rate of return on a security increases in direct proportion to a decrease in the risk-free rate is the false statement.
According to the Capital Asset Pricing Model (CAPM), the expected rate of return on a security increases in direct proportion to an increase in the risk-free rate. Therefore, the statement that "The expected rate of return on a security increases in direct proportion to a decrease in the risk-free rate" is false.
The Capital Asset Pricing Model (CAPM) is a model that shows the relationship between risk and expected return and is used to calculate the expected return on an investment.CAPM is based on several assumptions, one of which is that investors are rational and risk-averse.
Another assumption is that the market is in equilibrium, meaning that supply equals demand for all securities. The model also assumes that investors have homogeneous expectations of future returns and that there are no taxes or transaction costs.CAPM states that the expected rate of return on an asset is a function of the risk-free rate, the expected market return, and the asset's beta.
Beta is a measure of the asset's volatility compared to the market. If an asset has a beta of 1, it is as volatile as the market. If it has a beta of less than 1, it is less volatile than the market, and if it has a beta of more than 1, it is more volatile than the market.
Therefore, according to CAPM, the expected rate of return on a security increases as its beta increases.In equilibrium, all securities lie on the security market line, and a fairly priced security has an alpha of zero.
Therefore, options B, C, and D are true, and the answer is option A, "The expected rate of return on a security increases in direct proportion to a decrease in the risk-free rate."
Know more about Capital Asset Pricing Model here,
https://brainly.com/question/32625782
#SPJ11
!!PLS HELP I WILL GIVE BRAINLEST!!
A family-sized box of cereal with dimensions 3x9x12 inches costs $6, while the regular size with
dimensions 2 x 8 x 9 inches costs $4.50. What is the diference in price per cubic inch?
they amount of money are not the same
reason why;
the reason why its not the same is because 2x8x9=144 and 3x9x12=324 and the amount of money spent is different
The difference in price per cubic inch between the two sizes of cereal boxes is $0.0128.
What is an expression?An expression contains one or more terms with addition, subtraction, multiplication, and division.
We always combine the like terms in an expression when we simplify.
We also keep all the like terms on one side of the expression if we are dealing with two sides of an expression.
Example:
1 + 3x + 4y = 7 is an expression.
3 + 4 is an expression.
2 x 4 + 6 x 7 – 9 is an expression.
33 + 77 – 88 is an expression.
We have,
The volume of the family-sized box of cereal is:
= 3 x 9 x 12
= 324 cubic inches
The volume of the regular-sized box of cereal is:
= 2 x 8 x 9
= 144 cubic inches
The price per cubic inch of the family-sized box is:
= 6 / 324
= 0.0185 dollars per cubic inch
The price per cubic inch of the regular-sized box is:
= 4.50 / 144
= 0.0313 dollars per cubic inch
The difference in price per cubic inch is:
= 0.0313 - 0.0185
= 0.0128 dollars per cubic inch
Therefore,
The difference in price per cubic inch between the two sizes of cereal boxes is $0.0128.
Learn more about expressions here:
https://brainly.com/question/3118662
#SPJ3
CONTAINER SPECIFICATIONS: • Each container must hold exactly one litre of liquid. Each container must have a minimum surface area. The surface area of each container must include the lid. The length of the rectangular base must be twice the breadth. The triangular container must have an equilateral base. TASK 1 Rectangular base container: CONTAINER A Sketch a rectangular base container with dimensions to hold exactly one litre of liquid. Clearly show your dimensions on your diagram. 1. Calculate the volume of this container in terms of above dimensions. 2. Calculate the surface area of the container in terms of above dimensions. 3. Calculate the value of the dimensions for this container for the surface area to be a minimum?
1. Volume of the Container: 1000 = l * b * h
2. Surface Area = 2(lw + lh + bh)
3. For the rectangular base container, the dimensions for the surface area to be a minimum will be the ones that satisfy the condition: l = 2b
1. Rectangular Base Container:
To sketch a rectangular base container that holds exactly one liter of liquid, we can assume the length of the rectangular base as 'l' and the breadth as 'b'. According to the given specifications, the length of the rectangular base must be twice the breadth.
Sketch:
--------------------
| |
| |
| |
| l |
| |
| |
----------------------
bVolume of the Container:
The volume of a rectangular prism is calculated by multiplying the length, breadth, and height. In this case, the height will represent the depth of the container.
Volume = l * b * h
Since we want the container to hold exactly one liter of liquid, which is equivalent to 1000 cubic centimeters, we have:
1000 = l * b * h
2. Surface Area of the Container:
The surface area of a rectangular prism can be calculated using the formula:
Surface Area = 2(lw + lh + bh)
In our case, the lid of the container is also included in the surface area calculation.
Dimensions for Minimum Surface Area:
3. To determine the dimensions for the container's surface area to be a minimum, we can use calculus and find the critical points. In this case, we need to minimize the surface area formula by differentiating it with respect to one variable, setting it equal to zero, and solving for that variable.
For the rectangular base container, the dimensions for the surface area to be a minimum will be the ones that satisfy the condition:
l = 2b
Substituting this value into the surface area formula, we can find the minimum surface area for a given volume of one liter.
By solving the equation for the surface area with respect to 'b' and substituting the result into the volume equation, we can find the exact dimensions of the container to satisfy the given conditions.
For more such questions on Volume visit:
https://brainly.com/question/463363
#SPJ8
Worth five points! it doesnt tell me if what answer is right but if i get 75% or up i will mark the first person who answered with an actual answer brainliest and i don't lie about brainliest!! Please no nonsense answers I just want help :(
The measures of two angles in ABC are 56 and 72.
What is the measure of A?
A. 32
B. 42
C. 52
D. 62
Given the joint density f(x, y) = 1 for -y < x < y and 0 < y < 1, or 0 elsewhere, show that the random variables X and Y are uncorrelated but not independent.
The joint density f(x, y) = 1 for -y < x < y and 0 < y < 1, or 0 elsewhere, the variables X and Y are uncorrelated but not independent.
The problem requires the determination of whether the random variables X and Y are independent and uncorrelated. For that, the expectation of the product of X and Y is needed. Evaluating E(XY). For the two variables X and Y, their joint density is given as:
f(x, y) = 1 for -y < x < y and 0 < y < 1, or 0 elsewhere
To evaluate the expectation of XY, multiply the variables X and Y as follows: E(XY) = ∫∫xy f(x,y) dy dx.
We evaluate the above equation over the range of the variables.
Since the domain of the density function is given by -y < x < y and 0 < y < 1, E(XY) = ∫∫xy f(x,y) dy dx = ∫0¹ ∫-[tex]y^{y}[/tex] xy dy dx
The above equation can be simplified as:
E(XY) = ∫0¹ (1/3)*y³ dy = 1/12
Hence the covariance between X and Y is given by: Cov (X, Y) = E(XY) - E(X)E(Y) = E(XY) = 1/12.
The variance of X is calculated as follows: E(X) = ∫∫xf(x, y) dy dx
For the two variables X and Y, their joint density is given as: f(x, y) = 1 for -y < x < y and 0 < y < 1, or 0 elsewhere.
Thus, E(X) = ∫∫x f(x, y) dy dx= ∫0¹ ∫-[tex]y^{y}[/tex] x dy dx= 0.
Hence, Var(X) = E(X²) - [E(X)]² = E(X²) - 0² = E(X²).
The variance of X² is calculated as follows:
E(X²) = ∫∫x² f(x, y) dy dx. For the two variables X and Y, their joint density is given as: f(x, y) = 1 for -y < x < y and 0 < y < 1, or 0 elsewhere.
Thus, E(X²) = ∫∫x² f(x, y) dy dx= ∫0¹ ∫-[tex]y^{y}[/tex] x² dy dx= 1/3
Hence, Var(X) = E(X²) - [E(X)] ² = 1/3 - 0 = 1/3
The variance of Y² is calculated as follows: E(Y²) = ∫∫y² f(x, y) dy dx
For the two variables X and Y, their joint density is given as: f(x, y) = 1 for -y < x < y and 0 < y < 1, or 0 elsewhere. Thus, E(Y²) = ∫∫y² f(x, y) dy dx= ∫0¹ ∫-[tex]y^{y}[/tex]y² dy dx= 1/3
Hence Var(Y) = E(Y²) - [E(Y)]² = 1/3 - [E(Y)]²
The covariance between X and Y is given by: Cov (X, Y) = E(XY) - E(X)E(Y) = 1/12 - 0 = 1/12.
We can evaluate the correlation between X and Y as: Corr (X, Y) = Cov (X, Y) / √Var (X) Var(Y)= (1/12) / [(1/3) * (1/3)] = 1/4
Thus, the variables X and Y are uncorrelated but not independent.
To know more about correlation, visit:
https://brainly.com/question/13879362
#SPJ11
Find the general solution of the following equation. Express the solution explicitly as a function of the independent variable.
x^2(dw/dx)=sqrt(w)(3x+2)
w(x)= ? (Use C as the arbitrary constant)
The general solution of the given equation, x^2(dw/dx) = sqrt(w)(3x+2), expressed explicitly as a function of the independent variable, is w(x) = (1/27)((9x^2 + 6x + C)^3), where C is an arbitrary constant.
To solve the given equation, we can separate the variables and integrate.
First, rewrite the equation as
(1/sqrt(w))dw = (3x+2)/x^2 dx.
Integrate both sides with respect to their respective variables:
∫(1/sqrt(w))dw = ∫(3x+2)/x^2 dx.
The integral of (1/sqrt(w)) with respect to w is 2√w, and the integral of (3x+2)/x^2 with respect to x can be found using partial fractions or another suitable method.
After integrating and simplifying, we obtain:
2√w = (1/27)(9x^2 + 6x + C),
where C is the arbitrary constant.
To find the explicit solution, isolate w by squaring both sides:
w(x) = (1/27)((9x^2 + 6x + C)^3),
where w(x) is the function expressing the solution explicitly in terms of the independent variable x, and C is the arbitrary constant.
To learn more about explicit solution click here: brainly.com/question/24029948
#SPJ11
A locker is in the shape of right rectangular prism. Its dimensions are as shown. What is the surface area of this locker?
a.412
b.392
c.432
d.448
The height of the right circular cylinder shown below is 10 feet and its base has a radius of 4 feet.
what is the surface area of the cylinder in terms of pi?
a.96
b.118
c.112
d.128
Answer:
first one is 432
Step-by-step explanation:took the test and got it right
The height and depth of locker is 40 inch and 5 inch.
What is volume?In mathematics, volume is the space taken by an object. Volume is a measure of three-dimensional space. It is often quantified numerically using SI derived units or by various imperial or US customary units. The definition of length is interrelated with volume.
here, we have,
As per the known fact, volume of rectangle is calculated by multiplying the entities width, height and depth. Let us assume the depth be d.
So, the height is 4d. Keep the values in formula to find the value of depth.
10800 = 12 × d × 4d
4d² = 10800 ÷ 12
Performing Division
4d² = 900
d² = 900 ÷ 4
Performing Division
d² = 225
d = ✓225
Taking square root
d = 15
The depth of locker is 15 inch.
So, the height = 4d
Height = 4 × 15
Performing multiplication
Height = 60 inch
Therefore, the depth and height of locker is 15 inch and 40 inch.
Learn more about volume of prism -
brainly.com/question/23963432
#SPJ3
complete question:
A locker in the shape of a rectangular prism has a width of 12 inches. Its height is four
times its depth. The volume of the locker is 10,800 cubic inches. Find the height and depth of the locker.
Height:
Evaluate 2m if
m = 7.2
PLSS HELP IMMEDIATELY!!! i’ll give brainiest if u don’t leave a link!
Answer:
Step-by-step explanation:
B i took that same quiz
What is the midpoint of line segment RS with endpoints R(5, -10) and S(3, 6)?
Answer:
(4, -2)
Step-by-step explanation:
The midpoint of two points is found by averaging the X coordinates and averaging the Y coordinates to create a new pair.
X: (5+3)/2 = 4
Y: (-10+6)/2 = -2
Answer:
(4,-2)
Step-by-step explanation:
add the x and divide by two. do the same with the y. this is the same as finding the average
in 50 item test nestor got 95% correctly. how many correct answers did he get
Answer: 47.5 or just 47
Step-by-step explanation: Well, to start, set up a ratio.
x / 50 = 95 / 100
95 * 50 is 4750
4750 / 100 is 47.5.
Now, it's asking how many questions he got correct. You can't get 47.5 questions correct, it should be a whole number. Now, I don't know how the rules work with that question, but it is like 47.
Marcus wants to use a model to determine the difference − 8 − 3 ( + 3 ) -8-3+3. He starts with 8 negative counters. He wants to add 3 positive counters to the model without changing the value. How can he do that?
A. add 3 positive counters
B. add 3 positive counters and take away 3 negative counters
C. add 3 negative counters
D. add 3 positive counters and 3 negative counters
Without changing the value, Marcus can add 3 positive counters and 3 negative counters. Option d is correct.
To determine the difference -8 - 3 (+3), Marcus wants to use a model with counters. He starts with 8 negative counters, and in order to add 3 positive counters without changing the value, he can add 3 positive counters and 3 negative counters.
By adding 3 positive counters, he is increasing the value by 3. However, since he wants to maintain the same value, he also needs to add 3 negative counters. This ensures that the net change in value remains zero.
So, by adding 3 positive counters and 3 negative counters to the model, Marcus can represent the difference -8 - 3 (+3) without changing the overall value. Therefore, d is correct.
Learn more about positive counters https://brainly.com/question/17272070
#SPJ11
Which is the measure of the angle shown on the protractor?
The measure of the angle should be 170° as this angle looks like an obtuse angle.
Hope that helps!
let be the line spanned by -1 2 3 in . find a basis of the orthogonal complement
The required basis of the orthogonal complement is {(2, 1, 0), (3, 0, 1)}.
Given that the line spanned by (-1, 2, 3) in R3.
To find the basis of the orthogonal complement, we need to find the vector which is orthogonal to (-1, 2, 3).
Let x = (x1, x2, x3) be a vector in the orthogonal complement of the given line.
Then we have: (-1, 2, 3)·x = 0-1x1 + 2x2 + 3x3 = 0x1 = 2x2 + 3x3
Thus, every vector x in the orthogonal complement has the form x = (2x2 + 3x3, x2, x3) = x2(2, 1, 0) + x3(3, 0, 1)
Therefore, the set { (2, 1, 0), (3, 0, 1) } is a basis of the orthogonal complement of the line spanned by (-1, 2, 3) in R3.
This is because both these vectors are linearly independent, and every vector in the orthogonal complement of the given line can be written as a linear combination of these two vectors.
Hence, the required basis of the orthogonal complement is {(2, 1, 0), (3, 0, 1)}.
Know more about basis here,
https://brainly.com/question/30451428
#SPJ11
The random variable x is known to be uniformly distributed
between 10 and 20.
a. Compute P( 10 ≤ x ≤ 15)
The random variable x is uniformly distributed between 10 and 20. To compute the probability of 10 ≤ x ≤ 15, Hence, the probability of 10 ≤ x ≤ 15 is 0.5.
Since x is uniformly distributed between 10 and 20, the probability density function (PDF) of x is a constant within this range. The PDF is given by the reciprocal of the range, which in this case is 1/10.
To find the probability of 10 ≤ x ≤ 15, we need to calculate the area under the PDF curve between 10 and 15. Since the PDF is constant, the area under the curve corresponds to the proportion of the total range that falls within this interval.
The width of the interval 10 ≤ x ≤ 15 is 15 - 10 = 5. The total range of x is 20 - 10 = 10. Therefore, the proportion of the total range that falls within the interval is 5/10 = 0.5.
Hence, the probability of 10 ≤ x ≤ 15 is 0.5. This means that there is a 50% chance that a randomly chosen value of x will fall within the interval from 10 to 15.
It is important to note that in a uniform distribution, the probability of any subinterval within the range is proportional to the width of that subinterval. In this case, since the subinterval 10 ≤ x ≤ 15 has a width of 5 out of the total range of 10, the probability is 0.5 or 50%.
Learn more about uniform distribution here:
https://brainly.com/question/30639872
#SPJ11
Which of the following distances is a circumference? a.the distance around the face of a cube. b.the distance around a text book. c.the distance around a nickel. d.the distance around one of the hawaiian islands.
Answer:
c
Step-by-step explanation:
circumference = perimeter around circle
Can someone please solve these equations help your boy out no files no links
Answer:
7. 0.50980392
9. 12
10. 50
find the height of a cone when its diameter is 8 inches and the volume is 100 cubic inches
Answer:
[tex]\frac{75}{4\pi }[/tex] inches or approximately 5.97 inches
Step-by-step explanation:
Use the cone volume formula: V = [tex]\pi[/tex]r²[tex]\frac{h}{3}[/tex]
The diameter is 8 inches, so the radius will be 4 inches.
Plug in the radius and volume, and solve for h
V = [tex]\pi[/tex]r²[tex]\frac{h}{3}[/tex]
100 = [tex]\pi[/tex](4²)([tex]\frac{h}{3}[/tex])
100 = 16[tex]\pi[/tex][tex]\frac{h}{3}[/tex]
Divide each side by 16[tex]\pi[/tex]
[tex]\frac{25}{4\pi }[/tex] = [tex]\frac{h}{3}[/tex]
Cross multiply and solve for h:
4[tex]\pi[/tex]h = 75
h = [tex]\frac{75}{4\pi }[/tex]
So, the cone's height is [tex]\frac{75}{4\pi }[/tex] or approximately 5.97 inches
Add f(x)=2x^3 and g(x) = log(x+4) + 100
The sum of the given function is 2x^3 + log(x+4) + 100
Sum of functionsGiven the following functions
f(x)=2x^3 and;
g(x) = log(x+4) + 100
Take the sum of the functions
f(x) + g(x) = 2x^3 + log(x+4) + 100
Hence the sum of the given function is 2x^3 + log(x+4) + 100
Learn more on sum of function here: https://brainly.com/question/11602229
#SPJ1