Answer:
1. False
2. True
3. False
Select the correct answer. The graph of function f is shown. The graph of an exponential function passes through (minus 10, minus 1), (2, 8) also intercepts the x-axis at minus 2 units and y-axis at 2 units Function g is represented by the table. x -2 -1 0 1 2 g(x) 0 2 8 26 Which statement correctly compares the two functions? A. They have the same y-intercept and the same end behavior as x approaches ∞. B. They have the same x-intercept and the same end behavior as x approaches ∞. C. They have different x- and y-intercepts but the same end behavior as x approaches ∞. D. They have the same x- and y-intercepts.
The correct statement is that they have different x- and y-intercepts, but we cannot determine their end behavior based on the given information.
Based on the information provided, we can compare the two functions f and g as follows:
Function f:
- It passes through the points (-10, -1) and (2, 8).
- It intercepts the x-axis at -2 units and the y-axis at 2 units.
Function g:
- It is represented by the table with x-values -2, -1, 0, 1, 2, and corresponding y-values 0, 2, 8, 26.
Comparing the two functions based on their intercepts and end behavior:
A. They have the same y-intercept and the same end behavior as x approaches ∞: This statement is incorrect because the y-intercepts of f and g are different. Function f intercepts the y-axis at 2 units, while function g intercepts the y-axis at 0 units. Additionally, we do not have information about the end behavior of either function.
B. They have the same x-intercept and the same end behavior as x approaches ∞: This statement is incorrect because the x-intercepts of f and g are different. Function f intercepts the x-axis at -2 units, while function g does not intercept the x-axis.
C. They have different x- and y-intercepts but the same end behavior as x approaches ∞: This statement is partially correct. Function f and g have different x- and y-intercepts, but we don't have information about their end behavior.
D. They have the same x- and y-intercepts: This statement is incorrect as the x- and y-intercepts of f and g are different.
For more such questions on intercepts
https://brainly.com/question/24212383
#SPJ8
please help me this is kinda hard
Answer: 14.4 ft^2
Step-by-step explanation: The formula for the area of a triangle is A=1/2(b)(h). B is the base of the triangle and h is the height. First solve for the top part of the triangle. A=1/2(2)(3.2). A=3.2 ft^2. The 2 triangles on top are congruent, so you can multiply the area for the 1st triangle by 2 to get the combined area of the 2 top triangles. 3.2*2=6.4 ft^2.
Now we will solve for the 2 bottom triangles. A=1/2(2)(4). A=4 ft^2. The 2 triangles on the bottom are also congruent, so multiply the area that we got by 2 to get the combined area of both bottom triangles. 4*2=8 ft^2.
Finally, add both values to get the total area. 6.4+8=14.4 ft^2.
What is the shortest distance from the surface +15+2=209 to the origin?
We can determine the shortest distance from the surface xy+15x+z^2=209 to the origin.
Given the equation of the surface is xy + 15x + z^2 = 209.
Let's determine the shortest distance from the surface to the origin.
The shortest distance between the surface and the origin is given by the perpendicular distance, which can be calculated as follows:
Firstly, we need to determine the gradient of the surface, which is the vector normal to the surface.
For this purpose, we need to write the surface equation in the standard form, which is:xy + 15x + z^2 = 209 xy + 15x + (0)z^2 - 209 = 0 (the coefficients of x, y, and z are a, b, and c).
The gradient of the surface is given by the vector: ∇f = (a, b, c) = (y + 15, x, 2z) at the point P(x, y, z), which is a point on the surface.
Here, the normal vector is ∇f = (y + 15, x, 2z).
Now, let's consider a point A on the surface which is closest to the origin.
Let the coordinates of A be (a, b, c).
Therefore, the position vector of A is given by: OA = ai + bj + ck.
The direction of the position vector is in the direction of the normal vector, and therefore: OA is parallel to ∇f.
Thus, we can write: OA = λ∇f = λ(y + 15)i + λxj + 2λzkWhere λ is a scalar.
Since A lies on the surface, we have: a*b + 15a + c^2 = 209.
We also know that OA passes through the origin.
Therefore, the position vector of A is perpendicular to the direction vector OA.
This gives us: OA·OA = 0⟹ (ai + bj + ck)·(λ(y + 15)i + λxj + 2λzk) = 0
Simplifying this equation gives us:aλ(y + 15) + bλx + c(2λz) = 0
Also, we know that OA passes through the origin.
Therefore, the magnitude of OA is equal to the distance of A from the origin.
Hence, we can write: |OA| = √(a^2 + b^2 + c^2)
The value of λ can be obtained from the equation: aλ(y + 15) + bλx + c(2λz) = 0orλ = -2cz / (b + a(y + 15))
Substituting this value of λ in OA, we get: OA = λ(y + 15)i + λxj + 2λzk= -2cz/(b + a(y + 15)) (y + 15)i - 2cz/(b + a(y + 15)) xj - 4cz^2/(b + a(y + 15))k
Substituting this value of λ in |OA|, we get: |OA| = √[(2cz/(b + a(y + 15)))^2 + (2cz/(b + a(y + 15)))^2 + (4cz^2/(b + a(y + 15)))^2] = 2cz√[(y + 15)^2 + x^2 + 4z^2] / |b + a(y + 15)|
The distance of the point A from the origin is |OA|, which is minimized when the denominator is maximized. The denominator is given by |b + a(y + 15)|.
Thus, we have to maximize the denominator with respect to a and b. The condition for maximum value of the denominator is obtained by differentiating the denominator with respect to a and b separately and equating it to zero. The values of a and b obtained from these equations are substituted in the equation a*b + 15a + c^2 = 209 to obtain the coordinates of the point A, which is closest to the origin.
Hence, we can determine the shortest distance from the surface xy+15x+z^2=209 to the origin.
For more such questions on shortest distance, click on:
brainly.com/question/28935294
#SPJ
the closure property applies to addition, subtraction, and multiplication. Why does the closure property not apply to the division of polynomials?
The closure property does not hold for division of polynomials because the result may not be a polynomial itself.
The closure property states that if you perform an operation on two elements within a certain set, the result of that operation will also be within the same set.
In the case of addition, subtraction, and multiplication, this property holds true, but it does not apply to the division of polynomials.
When dividing polynomials, the result may not always be a polynomial. Division involves dividing the coefficients of the terms and subtracting exponents, which can result in fractional or negative exponents.
These fractional or negative exponents indicate that the result is not a polynomial, but rather a rational function or a polynomial with non-integer exponents.
For example, consider dividing the polynomial x^2 by the polynomial x. The result is x, which is a polynomial. However, if you divide x^2 by x^2 + 1, the result is 1 / (1 + 1/x^2), which is a rational function, not a polynomial.
For more such questions on polynomials,click on
https://brainly.com/question/2833285
#SPJ8
(q9) Find the volume of the solid obtained by rotating the region enclosed by the curves
and y = x2 about the y-axis.
The volume of the solid obtained by rotating the region enclosed by the curves [tex]y=\sqrt{x^3}[/tex] and [tex]y = x^2[/tex] about the y-axis is [tex]\pi/14[/tex] . option B
To determine the solid's volume after rotating the area bounded by curves
[tex]y = \sqrt{x^3}[/tex] and [tex]y = x^2[/tex]
We can apply the cylindrical shell approach to the y-axis.
First, let's locate the spots where the two curves intersect:
[tex]\sqrt{x^3} = x^2[/tex]
Squaring both sides:
[tex]x^3 = x^4[/tex]
Rearranging:
[tex]x^4 - x^3 = 0[/tex]
Factorizing [tex]x^3(x - 1) = 0[/tex]
Therefore, the locations of intersection are x = 0 and x = 1.
The integral for the solid's volume must then be set up using cylindrical shells. The following formula determines the volume of a cylindrical shell:
V is equal to 2[a, b] x * h(x). dx where a and b are the integration limits, x is the shell's radius, and h(x) is the height of the shell.
The radius of the shell in this instance is x, while the height of the shell is the ratio of the two curves: [tex]h(x) = \sqrt{x^3} - x^2.[/tex]
Since those are the locations of intersection, the range of integration's bounds is 0 to 1.
The integral then becomes:
∫[tex]V = 2\pi [0, 1] x * (\sqrt{x^3} - x^2) dx[/tex]
We can simplify the formula inside the integral in order to evaluate it:
V = 2π ∫[0, 1] (x^(5/2) - x^3) dx
We can integrate each word by applying the power rule for integration as follows:
[tex]V = 2\pi [(2/7)x^{(7/2)} - (1/4)x^{4}] |[0, 1][/tex]
Calculating the limits of the definite integral:
[tex]V = 2\pi [(2/7)(1^{(7/2))} - (1/4)(1^{4)}] - 2\pi [(2/7)(0^{(7/2})) - (1/4)(0^{4)}][/tex]
Simplifying further:
V = 2π [(2/7) - (1/4)]
V = 2π (8/28 - 7/28)
V = 2π/28
Simplifying the fraction:
V = π/14 ,Therefore, the correct answer is option B.
For more question on volume visit:
https://brainly.com/question/463363
#SPJ8
Integral of 1/(x+cosx)
The integral is ln|x + cos(x)| + C, where C represents the constant of integration.
To find the integral of the function 1/(x + cos(x)), we can employ a combination of algebraic manipulation and the use of standard integration techniques. Here's the solution:
First, let's rewrite the integral in a slightly different form to simplify the process:
∫(1/(x + cos(x))) dx
We notice that the denominator, x + cos(x), is not amenable to direct integration. To overcome this, we employ a substitution. Let's set u = x + cos(x). Now, differentiate u with respect to x: du/dx = 1 - sin(x).
Rearranging this equation, we get dx = du/(1 - sin(x)).
Substituting these values, the integral becomes:
∫(1/(u(1 - sin(x)))) du
Next, we simplify further by factoring out 1/(1 - sin(x)) from the integral:
∫(1/(u(1 - sin(x)))) du = ∫(1/u) du = ln|u| + C
Replacing u with its original expression, we have:
ln|x + cos(x)| + C
Therefore, the answer to the integral is ln|x + cos(x)| + C, where C represents the constant of integration.
For more questions on integral
https://brainly.com/question/30094386
#SPJ8
Given: Quadrilateral DEFG is inscribed in circle P.
Prove: m∠D+m∠F=180∘
The sum of angles ∠D and ∠F in quadrilateral DEFG, inscribed in circle P, is equal to 180∘.
To prove that m∠D + m∠F = 180∘, we can use the property of angles inscribed in a circle.
In a circle, an inscribed angle is equal to half the measure of its intercepted arc. Therefore, if we can show that arc DE + arc FG = 360∘, we can conclude that m∠D + m∠F = 180∘.
Let's start the proof:
1. Quadrilateral DEFG is inscribed in circle P. This means that all the vertices of the quadrilateral lie on the circumference of the circle.
2. Let's consider arc DE and arc FG. These arcs are intercepted by angles ∠D and ∠F, respectively.
3. By the property of angles inscribed in a circle, we know that the measure of an inscribed angle is equal to half the measure of its intercepted arc.
4. Therefore, m∠D = 1/2(arc DE) and m∠F = 1/2(arc FG).
5. We want to prove that m∠D + m∠F = 180∘. This is equivalent to showing that 1/2(arc DE) + 1/2(arc FG) = 180∘.
6. Combining the fractions, we have 1/2(arc DE + arc FG) = 180∘.
7. Now, we need to show that arc DE + arc FG = 360∘.
8. Since quadrilateral DEFG is inscribed in circle P, the sum of the measures of all the arcs intercepted by the sides of the quadrilateral is equal to 360∘.
9. This means that arc DE + arc EF + arc FG + arc GD = 360∘.
10. However, we can observe that arc EF and arc GD are opposite sides of the same chord, so they have equal measures. Therefore, arc EF = arc GD.
11. Substituting arc GD with arc EF in the equation from step 9, we have arc DE + arc EF + arc FG + arc EF = 360∘.
12. Simplifying the equation, we get 2(arc DE + arc EF + arc FG) = 360∘.
13. Dividing both sides by 2, we have arc DE + arc EF + arc FG = 180∘.
14. Comparing this result with step 7, we can conclude that arc DE + arc FG = 180∘.
15. Finally, going back to our initial goal, we can now substitute arc DE + arc FG with 180∘ in the equation from step 6: 1/2(180∘) = 180∘.
16. Simplifying, we have 90∘ = 180∘, which is a true statement.
17. Therefore, we have proven that m∠D + m∠F = 180∘.
Thus, we have successfully proved that the sum of angles ∠D and ∠F in quadrilateral DEFG, inscribed in circle P, is equal to 180∘.
For more questions on quadrilateral .
https://brainly.com/question/23935806
#SPJ8
The lateral area of a cone is 574 pie cm2. The radius is 19.6cm what is the slant height to the nearest tenth of a cenimeter
The slant height of the cone is approximately 29.29 cm to the nearest tenth of a centimeter.
To solve the problem, we must first understand what the lateral area of a cone is. The lateral area of a cone is the curved surface area of the cone, which does not include the area of the base. It can be calculated by multiplying the slant height of the cone by the circumference of the base.
Using the formula for the lateral area of a cone, we can write:
Lateral area = πrℓ
where r is the radius of the base, and ℓ is the slant height.
Substituting the given values of lateral area and radius, we get:
574π = π(19.6)ℓ
Simplifying the equation, we get:
574 = 19.6ℓ
ℓ = 574/19.6
ℓ ≈ 29.29 cm
In conclusion, we can find the slant height of a cone with a given lateral area and radius by using the formula for lateral area and solving for the slant height. In this case, the slant height was found to be approximately 29.29 cm.
For such more questions on height
https://brainly.com/question/28990670
#SPJ8
the age of some kids that partecipate to a race are
13 13 17 16 15 15 18 14 18 17 16 17 15 15 15 14 15 14 16 15
a) put from least to biggest, create a table and calcolate the absolute frequency, relative and percentual.
b) Reppresent graphically with a histogram the absolute frequency.
c) calcolate mode mean median
Calcolate the probability of having
d) 13 years old
e) 14 or 16 years old
f) doesn't have 15 years
I WILL GIVE BRAINLY IF YOU GIVE ME THE RIGHT ANSWERS
c) Mode: 15 (appears 6 times)
Mean: 15.25
Median: 15
d) Probability of being 13 years old: 2/20 = 0.1 or 10%
e) Probability of being 14 or 16 years old: 6/20 = 0.3 or 30%
f) Probability of not having 15 years old: 1 - (6/20) = 14/20 = 0.7 or 70%
a) To create a table and calculate the absolute frequency, relative frequency, and percentual frequency, we organize the given ages in ascending order:
13 13 14 14 15 15 15 15 15 16 16 17 17 17 18 18
Age Absolute Frequency Relative Frequency Percentual Frequency
13 2 2/16 12.5%
14 2 2/16 12.5%
15 5 5/16 31.25%
16 2 2/16 12.5%
17 3 3/16 18.75%
18 2 2/16 12.5%
b) To represent the data graphically with a histogram, we plot the ages on the x-axis and the absolute frequency on the y-axis:
c) To calculate the mode, mean, and median:
Mode: The mode is the most frequently occurring age in the dataset. In this case, the mode is 15, as it appears 5 times.
Mean: The mean is the average of all the ages. To calculate it, we sum up all the ages and divide by the total number of ages:
(13 + 13 + 14 + 14 + 15 + 15 + 15 + 15 + 15 + 16 + 16 + 17 + 17 + 17 + 18 + 18) / 20 = 306 / 20 = 15.3
Median: The median is the middle value in the dataset when arranged in ascending order. In this case, the median is 15 since it falls in the middle.
d) To calculate the probability of having 13 years old, we divide the absolute frequency of 13 (2) by the total number of ages (20):
Probability of 13 years old = 2/20 = 0.1 or 10%
e) To calculate the probability of having 14 or 16 years old, we add the absolute frequencies of 14 and 16 (2 + 2 = 4) and divide by the total number of ages (20):
Probability of 14 or 16 years old = 4/20 = 0.2 or 20%
f) To calculate the probability of not having 15 years old, we subtract the absolute frequency of 15 (5) from the total number of ages (20):
Probability of not having 15 years old = (20 - 5)/20 = 0.75 or 75%
for such more question on Probability
https://brainly.com/question/13604758
#SPJ8
What are the coordinates of the terminal point determined by t = 1177?
○ A (-4)
○ B. (-.-)
OC (1)
OD. (1.)
The Coordinates of the terminal point determined by `t = 1177` are approximately `(-0.17101, -0.98526)`.Thus, the correct option is B (-0.17101, -0.98526).
The following trigonometric function represents a point P on the unit circle as a function of the angle θ in standard position: `(cos θ, sin θ)`.
Here, we have to determine the coordinates of the terminal point determined by `t = 1177`.Terminal Point on a unit circle:The terminal point is a point on a circle that lies on the terminal side of an angle. The angles that end on the same terminal side of the x-axis are called coterminal angles. The angle between the positive x-axis and the line segment connecting the origin of the circle and the point on the circle is called the angle in the standard position.
So, the angle measure `t = 1177` may be too large or too small to locate the corresponding point P on the unit circle. To find an equivalent angle between 0 and 360 degrees, we may subtract or add an integral number of revolutions: `1177 - 360 × 3 = 97`.That is, an angle of `t = 1177` degrees is coterminal with an angle of `t = 97` degrees. The terminal point determined by `t = 1177` is the same as the terminal point determined by `t = 97`.
The point on the unit circle with `t = 97` degrees lies in the fourth quadrant because the standard angle of 97 degrees is obtained by rotating a ray 97 degrees counterclockwise from the positive x-axis.So, `P = (cos 97°, sin 97°)`.We can approximate the values of `cos 97°` and `sin 97°` using a calculator or computer software as: `cos 97° ≈ -0.17101` and `sin 97° ≈ -0.98526`.
Therefore, the coordinates of the terminal point determined by `t = 1177` are approximately `(-0.17101, -0.98526)`.Thus, the correct option is B (-0.17101, -0.98526).
To know more about Coordinates .
https://brainly.com/question/31217877
#SPJ8
PLS HELP!! I can't figure it out
The dependent and independent variables are distance from destination and time respectively.
The relationship is linear as the change is constantrate of change is -2.05 mi/min139 minutes .The rate of changeRate of change = change in y/Change in x
Rate of change= (244-285)/(20-0)
Rate = -2.05
Helicopter's DestinationWhen the helicopter reaches its destination , y = 0
We can write the traveling equation in the form y = mx + c
Where :
c= intercept ; m = slope
y = -2.05x + 285
At y = 0
0 = -2.05x + 285
-2.05x = - 285
x = 285/2.05
x = 139.02
Hence, the helicopter will reach its destination after 139 minutes .
Learn more on rate of change:https://brainly.com/question/25184007
#SPJ1
Please please help I need help and I’m lost thank you
The median of the data set are as follows;
Boys: 45. Girls: 110.
The range of the data set are as follows;
Boys: 45. Girls: 110.
The median and range of girls is greater than the median and range of boys.
What is a median?In Mathematics, a median refers to the middle number (center) of a sorted data set, which is when the data set has either been arranged in a descending order, from the greatest to least or in an ascending order, from the least to greatest.
Based on the information provided in the line plot above, we would determine the median for the data set as follows;
Median of boys = [5th + 6th]/2.
Median of boys = [90 + 90]/2.
Median of boys = 45.
Median of girls = [5th + 6th]/2.
Median of girls = [100 + 120]/2.
Median of girls = 110.
Next, we would determine the range of the data set as follows;
Range = Highest number - Lowest number
Range of boys = 120 - 60
Range of boys = 60.
Range of girls = 120 - 60
Range of girls = 150 - 70.
Range of girls = 80.
In conclusion, we can logically deduce that the median and range for the girls is greater than the median and range of boys.
Read more on median here: brainly.com/question/452652
#SPJ1
A line with of -10 passes through the Points (4, 8) and (5, r) what is the valué of r
The value of [tex]\(r\)[/tex] is [tex]\(r = -2\)[/tex], according to the given cartesian points.
To find the value of [tex]\(r\)[/tex], we can use the slope-intercept form of a linear equation, [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope of the line. Given that the line has a slope of [tex]\(-10\)[/tex] and passes through the cartesian points [tex]\((4, 8)\)[/tex]and \[tex]((5, r)\)[/tex], we can calculate the slope as follows:
[tex]\[m = \frac{{y_2 - y_1}}{{x_2 - x_1}} = \frac{{r - 8}}{{5 - 4}} = r - 8\][/tex]
Since the slope is [tex]\(-10\)[/tex], we can equate it to the calculated slope and solve for [tex]\(r\)[/tex]:
[tex]\[-10 = r - 8\][/tex]
Simplifying the equation, we have:
[tex]\[r - 8 = -10\][/tex]
Adding [tex]\(8\)[/tex] to both sides, we get:
[tex]\[r = -10 + 8\][/tex]
Therefore, the value of [tex]\(r\)[/tex] is [tex]\(r = -2\)[/tex].
In conclusion, the value of [tex]\(r\)[/tex] in the line with a slope of [tex]-10[/tex] passing through the points [tex](4, 8)[/tex] and [tex](5, \(r\))[/tex] is [tex]\(r = -2\)[/tex]. This satisfies the equation and represents the y-coordinate of the second point. This value of [tex]r[/tex] indicates that the second point lies on the line with a slope of -[tex]10[/tex] passing through ([tex]4,8[/tex]).
For more such questions on cartesian points:
https://brainly.com/question/9391785
#SPJ8
A manufacturer is designing a two-wheeled cart that can maneuver in tight spaces. On one test model, the wheel placement (center) and radius are modeled by the equation (x – 4)2 + (y + 1.5)2 = 4. Which graph shows the position and radius of the wheels?
SOMEONE HELP PLEASE!
The circle should be a circle centered at point (4,-1.5) and have a radius of 2.The equation (x - 4)^2 + (y + 1.5)^2 = 4 represents a circle with a center at (4, -1.5) and a radius of 2.
To identify the graph that shows the position and radius of the wheels, we look for a graph that depicts a circle with a center at (4, -1.5) and a radius of 2.
Among the options provided, the graph that corresponds to the given equation is likely the one that shows a circle with its center at (4, -1.5) and a radius of 2.
The equation provided is a standard form of a circle equation which states that the center of the circle is (4,-1.5) and the radius is 2 (square root of 4). Any graph with a circle centered at (4,-1.5) and a radius of 2 will represent the position and radius of the wheels of the test model.
Of the options given in the answer section, option (D) is the graph that shows the position and radius of the wheels since it represents a circle with center (4,-1.5) and a radius of 2.
It is also important to note that a circle equation in standard form is (x-h)^2+(y-k)^2=r^2, where (h,k) is the center of the circle and r is the radius.
To learn more about :circle
https://brainly.com/question/28162977
#SPJ8
Write 3 1/2 cups as a multiplication expression using the unit, 1 cup, as a factor.
I ABSOLUTELY NEED HELP BY TOMORROW!!! I AM GIVING 100 POINTS
3 1/2 cups can be expressed as the multiplication expression: 3 + 1/2.
How to Write 3 1/2 cups as a multiplication expression using the unit, 1 cup, as a factor.To express 3 1/2 cups as a multiplication expression using the unit "1 cup" as a factor, you can write it as:
3 1/2 cups = (3 + 1/2) cups = 3 cups + 1/2 cup
Since there are 1 cup in each term, we can rewrite it as:
3 cups + (1/2) cup
Now, we can express each term as a multiplication expression:
3 cups = 3 * 1 cup = 3
(1/2) cup = (1/2) * 1 cup = 1/2
Putting it all together, the multiplication expression is:
3 * 1 cup + (1/2) * 1 cup = 3 + 1/2
Therefore, 3 1/2 cups can be expressed as the multiplication expression: 3 + 1/2.
Learn more about expression at https://brainly.com/question/1859113
#SPJ1
2x − y < 4
x + y > −1
In each graph, the area for f(x) is shaded and labeled A, the area for g(x) is shaded and labeled B, and the area where they have shading in common is labeled AB.
The graph should visually represent the shaded regions A and B, as well as their overlap in region AB. It's important to note that without a specific scale or values, the graph may not accurately depict the exact shape and position of the shaded regions.
To graph the system of inequalities 2x - y < 4 and x + y > -1, we can start by graphing each inequality separately and then determining the overlapping region.
For the inequality 2x - y < 4:
Start by graphing the line 2x - y = 4. Choose two points on the line, such as (0, -4) and (2, 0), and connect them to draw the line.
Since the inequality is "less than" (<), shade the region below the line. Label this shaded region as A.
For the inequality x + y > -1:
Graph the line x + y = -1 using points such as (-2, 1) and (0, -1). Connect the points to draw the line.
Since the inequality is "greater than" (>), shade the region above the line. Label this shaded region as B.
Finally, identify the overlapping region of the shaded regions A and B. This region represents the solution to the system of inequalities and is labeled as AB. This region indicates the values of x and y that satisfy both inequalities simultaneously.
For more such questions on graph visit;
https://brainly.com/question/19040584
#SPJ8
Answer:
Step-by-step explanation:
2x − y < 4
x + y > −1
In each graph, the area for f(x) is shaded and labeled A, the area for g(x) is shaded and labeled B, and the area where they have shading in common is labeled AB.
a candle starts at 9 inches long. after burning for 4 hours , it was 7 inches tall.
a. how would you categorize this situation as a function? circle one
Answer:
a. How would you categorize this situation as a function? Circle one:
Linear function
Quadratic function
Exponential function
None of the above
The given situation can be categorized as a linear function.
Step-by-step explanation:
ham
HELP PLEASEEE I NEED IMMEDIATELY
There are like 4 people watching this question...
Answer:
1335.6
Step-by-step explanation:
volume = pir^2 h = (3.14)(6)^2(15) = (3.14)(36)(15) = (47.1)(36) = 1,335.6
The volume of the tank is 1695.60 ft³.
What is the volume of the tank?A cylinder is a three-dimensional object. It is a prism with a circular base. The volume is the amount of space in an object.
Volume of a cylinder = πr²h
Where:
π = 3.14 h = height = 15r = radius = 6= 3.14 x 6² x 15 = 1695.60 ft³
To learn more about to determine the volume of a cylinder, check: https://brainly.com/question/9624219
#SPJ1
you want to install molding around the circular room. How much it would cost you to install the molding that you picked if it cost $4.22 per foot?
The cost of the molding is given as follows:
$119.30.
What is the measure of the circumference of a circle?The circumference of a circle of radius r is given by the equation presented as follows:
C = 2πr.
The parameters for this problem are given as follows:
d = 9 -> r = 4.5.
(as the radius is half the diameter)
Hence the circumference is given as follows:
C = 2 x π x 4.5
C = 28.27 ft.
The cost is of $4.22 per ft, hence the total cost is given as follows:
4.22 x 28.27 = $119.30.
More can be learned about the circumference of a circle at brainly.com/question/12823137
#SPJ1
PLEASE HELP
I need this done in 15 minutes
Triangle ABC has vertices at A(-5,2), B(1,3), and C(-3,0). Determine the coordinates of the vertices for the image of the pre image is translated 4 units right.
A. A’(-9,2),B’(-3,3), C’(-7,0)
B. A’(-4,6),B’(0,7),C’(1,0)
C. A’(-1,2),B’(5,3),C’(1,0)
D. A’ (-5,-2), B’(-1,-1), C’(-3,-4)
The coordinates of the vertices for the image of the pre image is translated 4 units right are:
C. A' = (-1,2), B' = (5, 3), C' = (1,0)
How to determine the coordinates of the vertices for the image of the pre image is translated 4 units right?A geometric transformation involves taking a geometric object as input and producing a new geometric object as output. We have different types of geometric transformations such as translation, rotation, reflection etc.
A translation moves a geometric object a certain distance in a certain direction. Translation to the right means movement in the positive x-direction.
Thus, the coordinates of the vertices for the image of the pre image if it is translated 4 units right can be obtained by adding 4 to x-coordinate values while y-coordinate values remain the same. That is:
A(-5,2) becomes A'(-5+4, 2) = (-1,2)
B(1,3)becomes B'(1+4, 3) = (5, 3)
C(-3,0) becomes C'(-3+4, 0) = (1,0)
Therefore, the coordinates of the vertices of the image of triangle ABC after it is translated 4 units right are (-1, 2), (5, 3), and (1, 0).
Learn more about translation on:
brainly.com/question/12861087
#SPJ1
In quadrilateral ABCD, angle A is 72, angle B is 94, and angle C is 113. What is angle D
Angle D measures 81 degrees in quadrilateral ABCD.
We have,
To find the measure of angle D in quadrilateral ABCD, we can use the fact that the sum of the angles in any quadrilateral is always 360 degrees.
Let's denote angle D as x. Given that angle A is 72 degrees, angle B is 94 degrees, and angle C is 113 degrees, we can set up the equation:
72 + 94 + 113 + x = 360
Combining the known angle measures:
279 + x = 360
To solve for x, we can subtract 279 from both sides of the equation:
x = 360 - 279
x = 81
Therefore,
Angle D measures 81 degrees in quadrilateral ABCD.
Learn more about quadrilaterals here:
https://brainly.com/question/29934440
#SPJ1
what answer? here, can you answer that? thankyou
It should be noted that the number of sample size based on the information will be 300.
How to explain the sampleIn order to calculate the sample size, we can use the following formula:
n = z² * p * (1-p) / E²
n = 1.96² * 0.5 * (1-0.5) / 0.05²
= 300
A questionnaire is a method of gathering data that makes use of written questions to be answered by the respondents. It is a popular method of data collection because it is relatively easy to administer and can be used to collect a wide variety of information.
In the first column, the population is the entire National Capital Region (NCR). The sample is the city of Manila. In the second column, the population is all STEM students. The sample is all academic track students. In the third column, the population is all the tablespoons of sugar in the jar. The sample is one tablespoon of sugar. In the fourth column, the population is all the vowels in the word "juice". The sample is the vowel "i".
Learn more about sample on
https://brainly.com/question/24466382
#SPJ1
If h(x) = -2x + 6, find x if h(x) = 12.
[tex]-2x+6=12\\2x=-6\\x=-3[/tex]
How would you describe the difference between the graphs of f(x) = 2x² and
g(x) = -2x²?
A. g(x) is a reflection of f(x) over the y-axis.
B. g(x) is a reflection of f(x) over the line y = -1.
OC. g(x) is a reflection of f(x) over the line y = x.
D. g(x) is a reflection of f(x) over the x-axis.
SUBMIT
How would you describe the difference between the graphs of f(x) = 2x² and g(x) = -2x²: D. g(x) is a reflection of f(x) over the x-axis.
What is a reflection over the x-axis?In Mathematics and Geometry, a reflection over or across the x-axis is represented by this transformation rule (x, y) → (x, -y).
This ultimately implies that, a reflection over or across the x-axis would maintain the same x-coordinate while the sign of the y-coordinate changes from positive to negative or negative to positive.
In this context, we can reasonably infer and logically deduce that a graph of transformed function g(x) = -2x² would be created by applying a reflection over or across the x-axis to the graph of the parent function f(x) = 2x² as shown in the image attached below.
Read more on reflection here: brainly.com/question/27912791
#SPJ1
Using the image below, find the missing part indicated by the question mark.
(3 separate questions)
The missing part indicated in the figures are ? = 12, TX = 9 and x = 20
How to find the missing part indicated in the figuresFigure a
The missing part can be calculated using the following equation
?/(11 - 5) = 22/11
Evaluate the difference
?/6 = 22/11
So, we have
? = 6 * 22/11
Evaluate the expression
? = 12
Figure b
The missing part can be calculated using the following equation
TX/3 = 6/2
So, we have
TX = 3 * 6/2
Evaluate
TX = 9
Figure c
The value of x can be calculated using the following equation
1/4x + 6 = 2x - 29
So, we have
x + 24 = 8x - 116
Evaluate
-7x = -140
Divide
x = 20
Hence, the value of x is 20
Read more about similar shapes at
https://brainly.com/question/14285697
#SPJ1
A. Saving money at the grocery store by using unit pricing.
a. Toilet paper A is 6 mega rolls for $4.59.
Toilet paper B is 12 mega rolls for $9.02
How to I find which one is the better deal?
Based on the calculations using unit pricing, Toilet paper B has a lower unit price and is the better deal between the two. Customers will save more money if they purchase toilet paper B rather than toilet paper A because the price per mega roll is lower. (option b)
Saving money while shopping is one of the best ways to reduce your expenses and have more disposable income for other things. Unit pricing is a pricing system that displays prices in standard units, allowing customers to compare prices across different brands and package sizes and save money. To determine which toilet paper deal is better, we can use the unit price method, which divides the price by the number of units in the package. The toilet paper with the lower unit price is the better deal.
The formula for unit pricing is as follows:
Unit price = total price ÷ number of units
Using the above formula, we can calculate the unit price of toilet paper A and toilet paper B as follows:
For Toilet paper A:
Unit price = $4.59 ÷ 6 mega rolls
Unit price = $0.765 per mega roll
For Toilet paper B:
Unit price = $9.02 ÷ 12 mega rolls
Unit price = $0.751 per mega roll
Therefore, based on the calculations, Toilet paper B has a lower unit price and is the better deal between the two. Customers will save more money if they purchase toilet paper B rather than toilet paper A because the price per mega roll is lower. (option b)
Unit pricing is a great way to compare prices, and consumers should always use it to determine the better deal between two products, as this will help them save money and stick to their budget.
For more such questions on Unit pricing, click on:
https://brainly.com/question/29023044
#SPJ8
you want to install molding around the circular room. How much it would cost you to install the molding that you picked if it cost $4.22 per foot?
It would cost approximately $119.42 to install the molding around the circular room, assuming the cost per foot is $4.22 and the diameter of the room is 9 feet.
To calculate the cost of installing molding around a circular room, we need to find the circumference of the room. The circumference of a circle is given by the formula C = πd, where C is the circumference and d is the diameter.
In this case, the diameter is given as 9. We can substitute this value into the formula to find the circumference:
C = π * 9
C ≈ 28.27 feet
Now that we know the circumference of the room is approximately 28.27 feet, we can calculate the cost of installing the molding. The cost per foot is given as $4.22.
Cost = Cost per foot * Circumference
Cost = $4.22 * 28.27
Cost ≈ $119.42
For more such questions on diameter
https://brainly.com/question/23220731
#SPJ8
The parent absolute value function is reflected across the x-axis and translated right 2 units. Which function is represented by the graph?
–|x – 2|
–|x + 2|
|–x| – 2
|–x| + 2
The function represented by the graph with the given transformations is |–x| + 2.
The function represented by the given transformations is |–x| + 2.
Let's analyze the transformations step by step:
Reflection across the x-axis:
Reflecting the parent absolute value function across the x-axis changes the sign of the function. The positive slopes become negative, and the negative slopes become positive. This transformation is denoted by a negative sign in front of the function.
Translation right 2 units:
Translating the function right 2 units shifts the entire graph horizontally to the right. This transformation is denoted by subtracting the value being translated from the input of the function.
Combining these transformations, the function |–x| + 2 results. The negative sign reflects the function across the x-axis, and the subtraction of 2 units translates it right. The absolute value is applied to the negated x, ensuring that the function always returns a positive value.
Thus, the function represented by the graph with the given transformations is |–x| + 2.
For more questions on function
https://brainly.com/question/30905449
#SPJ8
Answer: -lx-2l
Step-by-step explanation:
NO LINKS!! URGENT HELP PLEASE!!!
Determine if the sequence is arithmetic. If it is, find the common difference, the 52nd term, and the explicit formula.
34. -11, -7, -3, 1, . . .
Given the explicit formula for an arithmetic sequence find the common difference and the 52nd term.
35. a_n = -30 - 4n
Answer:
#34. aₙ = 4n - 15; a₅₂ = 193#35. a₅₂ = -238; d = - 4-----------------
Question 34Find the differences in the sequence -11, -7, -3, 1, ...
1 - (-3) = 4,-3 - (-7) = 4,-7 - (-11) = 4The difference is common, so the sequence is an AP.
The nth term is:
[tex]a_n=a_1+(n-1)d[/tex][tex]a_n=-11+(n-1)*4=-11+4n-4=4n-15[/tex]Find the 52nd term:
[tex]a_{52}=4*52-15=208-15=193[/tex]Question 35Find the 52nd term using the given formula:
[tex]a_{52}=-30-4*52=-30-208=-238[/tex]Find the previous term:
[tex]a_{51}=-30-4*51=-30-204=-234[/tex]Find the common difference:
[tex]d=a_{52}-a_{51}=-238-(-234)=-4[/tex]Answer:
[tex]\begin{aligned}\textsf{34)} \quad d&=4\\a_n&=4n-15\\a_{52}&=193\end{aligned}[/tex]
[tex]\begin{aligned}\textsf{35)} \quad d&=-4\\a_{52}&=-238\end{aligned}[/tex]
Step-by-step explanation:
Question 34An arithmetic sequence is a sequence of numbers in which the difference between consecutive terms is constant.
Given sequence:
-11, -7, -3, 1, ...To determine if the given sequence is arithmetic, calculate the differences between consecutive terms.
[tex]a_4-a_3=1-(-3)=4[/tex]
[tex]a_3-a_2=-3-(-7)=4[/tex]
[tex]a_2-a_1=-7-(-11)=4[/tex]
As the differences are constant, the sequence is arithmetic, with common difference, d = 4.
The explicit formula for an arithmetic sequence is:
[tex]\boxed{a_n=a+(n-1)d}[/tex]
where:
a is the first term of the sequence.n is the position of the termd is the common difference between consecutive terms.To find the explicit formula for the given sequence, substitute a = -11 and d = 4 into the formula:
[tex]\begin{aligned}a_n&=-11+(n-1)4\\&=-11+4n-4\\&=4n-15\end{aligned}[/tex]
To find the 52nd term, simply substitute n = 52 into the formula:
[tex]\begin{aligned}a_{52}&=4(52)-15\\&=208-15\\&=193\end{aligned}[/tex]
Therefore, the 52nd term is a₅₂ = 193.
[tex]\hrulefill[/tex]
Question 35Given explicit formula for an arithmetic sequence:
[tex]a_n=-30-4n[/tex]
To find the common difference, we need to compare it with the explicit formula for the nth term:
[tex]\begin{aligned}a_n&=a+(n-1)d\\&=a+dn-d\\&=a-d+dn\end{aligned}[/tex]
The coefficient of the n-term is -4, therefore, the common difference is d = -4.
To find the 52nd term, simply substitute n = 52 into the formula:
[tex]\begin{aligned}a_{52}&=-30-4(52)\\&=-30-208\\&=-238\end{aligned}[/tex]
Therefore, the 52nd term is a₅₂ = -238.
Review the Monthly Principal & Interest Factor chart to answer the question:
FICO Score APR 30-Year Term 20-Year Term 15-Year Term
770–789 5.5 $5.68 $6.88 $8.17
750–769 6.0 $6.00 $7.16 $8.44
730–749 6.5 $6.32 $7.46 $8.71
710–729 7.0 $6.65 $7.75 $8.99
690–709 7.5 $6.99 $8.06 $9.27
Determine the percent decrease in total principal and interest paid between a 30-year term mortgage and a 15-year mortgage with a principal balance of $484,500.00 and a 6.5% APR. Round the final answer to the nearest tenth.
31.0%
31.1%
59.0%
68.5%
The percent decrease in total principal and interest paid between a 30-year term mortgage and a 15-year mortgage with a principal balance of $484,500.00 and a 6.5% APR is 31.0%. (Option A)
How is this so ?
To calculate the percent decrease, we can use the following formula.
Percent decrease = ( (30-year factor - 15-year factor) / 30-year factor) x 100
Substituting the values from the chart.
= (($ 6.65 - $8.71) / $6.65) x 100
= ( -$ 2.06 / $6.65) * 100
= -0.309 * 100
Percent decrease ≈ - 30.9 %
Since the question asks for the percent decrease as a positive value, we take the absolute value of the result which is
Percent decrease ≈ 31%
Learn more about percentage decrease:
https://brainly.com/question/30404835
#SPJ1