draw the product that will be isolated after thermal decarboxylation of the following compound. 2-Pentylmalonic acid

Answers

Answer 1

The product obtained after thermal decarboxylation of 2-pentylmalonic acid is 2-pentylpropanoic acid.

2-pentylmalonic acid has the following structure:

HOOC-CH(COOR)-CH2-CH2-CH2-CH3

Upon heating, the carboxylic acid group (-COOH) undergoes decarboxylation and is removed as carbon dioxide (CO2), leaving behind a ketone group (-C=O) at the alpha position. The remaining molecule is then the corresponding alkyl acid.

Thus, in the given compound, after thermal decarboxylation, the resulting molecule will have the structure:

CH3-CH2-CH2-CH2-CO-CH2-CH2-CH3

which is 2-pentylpropanoic acid.

Therefore, the product obtained after thermal decarboxylation of 2-pentylmalonic acid is 2-pentylpropanoic acid.

For more questions like Acid  click the link below:

https://brainly.com/question/14319110

#SPJ11


Related Questions

if you want a solution that is 0.100m in ions, how many grams of na2so4 must you dissolve in 125g of water? (assume total dissociation of the ionic solid)

Answers

The first step in solving this problem is to calculate the number of moles of ions required to make a 0.100 M solution. Since [tex]Na_{2} SO_{4}[/tex] dissociates completely in water to form three ions (2 [tex]Na^{+}[/tex] ions and 1 [tex]SO_{4} ^{2-}[/tex] ion), the total number of moles of ions required is:

0.100 M × 3 moles = 0.300 moles

Next, we can use the formula:

moles = mass / molar mass

to calculate the mass of [tex]Na_{2} SO_{4}[/tex] required. The molar mass of [tex]Na_{2} SO_{4}[/tex] is:

2(22.99 g/mol) + 1(32.06 g/mol) + 4(16.00 g/mol) = 142.04 g/mol

So, we have:

0.300 moles = mass / 142.04 g/mol

mass = 0.300 moles × 142.04 g/mol = 42.61 g

Therefore, we need to dissolve 42.61 g of [tex]Na_{2} SO_{4}[/tex] in 125 g of water to make a 0.100 M solution of ions.

Learn more about moles of ions

https://brainly.com/question/31427823

#SPJ4

the radial part of a hydrogen 2p wave function expectiation valueR2p(r)=1^24(1/a0)3/2(r/a0)e-r/2a0. a. Draw schematically, the R2p radial wave functions as a function of r/ao. b. Locate the maximum of the radial electron density distribution. c. Calculate the expectation value for the distance between electron and nucleus.

Answers

a. The R2p radial wave functions as a function of r/ao can be represented with a bell-shaped curve.

b. The maximum of the radial electron density distribution occurs at the peak of the curve.

c. The expectation value for the distance between electron and nucleus is 9/8 times the Bohr radius (a0).

a. The R2p radial wave function as a function of r/ao can be represented schematically as a bell-shaped curve with a peak at r/ao = 2. This means that the probability of finding the electron at a distance of 2 times the Bohr radius (a0) from the nucleus is the highest.

b. The maximum of the radial electron density distribution occurs at the peak of the bell-shaped curve, which is at r/ao = 2. At this distance, the electron is most likely to be found.

c. To calculate the expectation value for the distance between electron and nucleus, we need to use the formula:

< r > = ∫0∞ rR2p(r)^2 dr

Substituting the given wave function, we get:

< r > = ∫0∞ r(1/24)(1/a0)3/2(r/a0)e^(-r/a0) dr

This integral can be solved using integration by parts, and the final result is:

< r > = 9/8 a0

Therefore, the expectation value for the distance between the electron and nucleus is 9/8 times the Bohr radius (a0).

For more such questions on Radial wave function.

https://brainly.com/question/31491431#

#SPJ11

Write balanced net ionic equations for the following reactions: a. Solid zinc is placed in a solution of lead (II) nitrate. b. Solid nickel is placed in a solution of copper (II) sulfate. c. A silver nitrate solution is poured over solid tin. d. Solid iron is immersed in a solution of tin (II) nitrate. d.

Answers

a. The balanced net ionic equation for the reaction of solid zinc (Zn) with lead (II) nitrate ([tex]Pb(NO_{3})_{2}[/tex]) can be written as:

Zn(s) + [tex]Pb_{2}^{+}[/tex](aq) + [tex]2NO_{3}^{-}[/tex](aq) → [tex]Zn_{2}^{+}[/tex](aq) + [tex]Pb(NO_{3})_{2}[/tex](s)

The spectator ions are the nitrate ions ([tex]NO_{3}^{-}[/tex]) which do not participate in the reaction and remain in the solution.

b. The balanced net ionic equation for the reaction of solid nickel (Ni) with copper (II) sulfate ([tex]CuSO_{4}[/tex]) can be written as:

Ni(s) + [tex]Cu^{+2}[/tex](aq) + [tex]SO_{4}^{-2}[/tex](aq) → [tex]Ni_{2}^{+}[/tex](aq) + [tex]CuSO_{4}[/tex](s)

The spectator ions are the sulfate ions ([tex]SO_{4}^{-2}[/tex]) which do not participate in the reaction and remain in the solution.

c. The balanced net ionic equation for the reaction of a silver nitrate ([tex]AgNO_{3}[/tex]) solution with solid tin (Sn) can be written as:

[tex]Ag^{+}[/tex](aq) + Sn(s) → Ag(s) + [tex]Sn^{+2}[/tex](aq)

The spectator ion is the nitrate ion  ([tex]NO_{3}^{-}[/tex]) which does not participate in the reaction and remains in the solution.

d. The balanced net ionic equation for the reaction of solid iron (Fe) with tin (II) nitrate ([tex]Sn(NO_{3})_{2}[/tex]) solution can be written as:

Fe(s) +  [tex]Sn^{+2}[/tex](aq) + [tex]2NO_{3}^{-}[/tex](aq) → [tex]Fe^{+2}[/tex](aq) + [tex]Sn(NO_{3})_{2}[/tex](s)

The spectator ions are the nitrate ions  ([tex]NO_{3}^{-}[/tex]) which do not participate in the reaction and remain in the solution.

What is an ionic equation?

An ionic equation is a type of chemical equation that shows the dissociation of ionic compounds into their respective ions in a solution. In other words, it represents a chemical reaction between ions that are dissolved in water.

In an ionic equation, the ions that participate in the chemical reaction are represented in their ionic form, while the non-ionized or molecular compounds are represented in their chemical formula. The ionic equation shows the chemical species that are actually involved in the reaction, and therefore provides a more accurate representation of the reaction than a complete molecular equation.

To know more baout ionic equation, visit:

https://brainly.com/question/15467507

#SPJ1

approximately 0.14 g nickel (ii) hydroxide , ni(oh)2 (s), dissolves per liter of water at 20 degrees c. calculate ksp for ni(oh)2 (s) at this temperature.

Answers

At 20 degrees Celsius, the Ksp for Ni(OH)₂ is around 1.37 x 10⁻⁸.

How does temperature affect Ksp?

Ksp typically rises when temperature rises as a result of an increase in solubility. The ability of a substance, known as a solute, to dissolve in a solvent and create a solution is known as solubility.

The following equation can be used to get the solubility product constant (Ksp) for Ni(OH)₂:

Ni(OH)₂ (s) ⇌ Ni₂+ (aq) + 2OH₋ (aq)

Ksp = [Ni₂₊][OH₋]²

Ni(OH)₂ has a solubility of 0.14 g/L, which may be translated to molar solubility as follows:

molar mass of Ni(OH)₂ = 92.71 g/mol

molar solubility of Ni(OH)₂ = 0.14 g/L / 92.71 g/mol = 0.00151 M

The equilibrium concentrations of Ni₂₊ and OH₋ ions can be determined using the following formula because the stoichiometric ratio of Ni(OH)₂ to Ni₂+ and OH₋ is 1:1:2:

[Ni₂₊] = 0.00151 M

[OH-] = 2 × 0.00151 M = 0.00302 M

Adding these values to the Ksp expression results in:

Ksp = [Ni₂₊][OH₋]²

Ksp = (0.00151 M) × (0.00302 M)²

Ksp = 1.37 × 10⁻⁸

To know more about solubility visit:-

https://brainly.com/question/28170449

#SPJ1

Which reagents will efficiently protonate an alcohol (ROH) and convert it to oxonium (RO+H2)? Choose all that apply. A. HCI B. NaNH2 C.H20 D. H2SO4

Answers

Protonation of an alcohol (ROH) involves the transfer of a proton (H+) from an acid to the hydroxyl group (OH) of the alcohol, resulting in the formation of an oxonium ion (RO+H2). The efficiency of this process depends on the strength of the acid used as a reagent.

The reagents that are capable of efficiently protonating an alcohol and converting it to oxonium include strong acids like HCl (hydrochloric acid) and [tex]H_{2} SO_{4}[/tex] (sulfuric acid). These acids have a high tendency to donate protons, and as a result, they react readily with the alcohol to form the corresponding oxonium ion.

On the other hand, weak acids like [tex]H_{2} O[/tex] (water) and [tex]NaNH_{2}[/tex] (sodium amide) are not efficient in protonating alcohols. [tex]H_{2} O[/tex] is a neutral molecule that cannot donate protons, while [tex]NaNH_{2}[/tex] is a weak base that tends to deprotonate the alcohol instead of protonating it.

In summary, the reagents that efficiently protonate an alcohol and convert it to oxonium are strong acids like HCl and [tex]H_{2} SO_{4}[/tex]. These acids donate protons readily, and hence they react efficiently with alcohols to form oxonium ions. However, weak acids like [tex]H_{2} O[/tex] and [tex]NaNH_{2}[/tex] are not efficient in protonating alcohols due to their low tendency to donate protons.

Here you can learn more about Protonation

https://brainly.com/question/1252435#

#SPJ11  

1. Draw a structure for the exo product formed by cyclopentadiene and maleic anhydride.
2. Because the exo form is more stable than the endo form, why is the endo product formed almost exclusively in this reaction?
3. In addition to the main product, what are two side reactions that could occur in this experiment?
4. The infrared spectrum of the adduct is given in this experiment. Interpret the principal peaks.
this reaction is of cyclopentadiene and maleic anhydride

Answers

Infrared spectroscopy is a type of spectroscopy that makes use of infrared light to determine the atomic arrangement or chemical composition. Based on how the IR light interacts with a particular atom, the infrared light will react differently for different bonds.

The exo product is more stable, but because the activation energy for the endo product is smaller, it forms more quickly. The less stable endo isomer is the major result when the temperature is lower because kinetic control is more prominent. The exo product, which is also the thermodynamic product, is the most stable because the smaller one-atom bridge eclipses the anhydride ring with less steric interference. Bond produce a response peak within its spectrum at various wave numbers.

To know more about spectroscopy, click here:

https://brainly.com/question/28523860

#SPJ4

Select the reagent for the following reaction. phenyl acetate ----> ? N-phenylacetamide. O Acid halide O Anhydride O Ester O Amide O Alcohol O Amine O Carboxylic acid or carboxylate (the conjugate base of carboxylic acid)

Answers

To convert phenyl acetate to N-phenylacetamide, you should use an amine as the reagent.

This reaction involves nucleophilic acyl substitution, where the amine will replace the ester group in phenyl acetate, resulting in the formation of N-phenylacetamide.

Here's the step-by-step mechanism for the conversion of phenyl acetate to N-phenylacetamide:

Nucleophilic attack: An amine, which acts as the nucleophile, attacks the carbonyl carbon of the phenyl acetate. The nitrogen atom in the amine donates its lone pair of electrons to the carbonyl carbon, forming a tetrahedral intermediate.

Elimination of alcohol: The tetrahedral intermediate formed in step 1 is unstable and undergoes elimination of the alcohol (methanol or ethanol), which was originally attached to the carbonyl carbon of phenyl acetate. This leads to the formation of an acyl-amine intermediate.

Rearrangement: The acyl-amine intermediate undergoes rearrangement, where the alkyl or aryl group originally attached to the carbonyl carbon (phenyl group in this case) migrates to the nitrogen atom of the amine, resulting in the formation of N-phenylacetamide.

Deprotonation: The resulting N-phenylacetamide may exist in its protonated form. To obtain the neutral form of N-phenylacetamide, the compound may be treated with a base, which can deprotonate the amide nitrogen, resulting in the formation of N-phenylacetamide.

The overall reaction can be represented by the following chemical equation:

Phenyl acetate + Amine → N-phenylacetamide + Alcohol

To learn more about reagent, refer below:

https://brainly.com/question/31228572

#SPJ11

Why does heat treatment of plain carbon steel start from the austenite phase?
Rapid cooling from austenite is required to produce martensite. Describe the differences in structure between martensite and the equilibrium structures obtained for a 1080 plain carbon steel.
Describe the process of tempering martensite. Why is it done? What happens to the resulting mechanical properties? What happens to the microstructure?

Answers

Heat treatment of plain carbon steel starts from the austenite phase because it is a high-temperature phase that allows for the transformation of the microstructure upon cooling. Rapid cooling from austenite is required to produce martensite, a hard and brittle structure.

Martensite has a needle-like, non-lamellar structure, while the equilibrium structures of a 1080 plain carbon steel include ferrite and cementite, which form a lamellar structure known as pearlite. Martensite is harder and more brittle due to its distorted lattice structure and high carbon content, whereas pearlite exhibits a balanced combination of strength and ductility. Tempering is the process of reheating martensite to a lower temperature and then cooling it slowly. This process is done to reduce the brittleness of martensite and improve its ductility while maintaining an appropriate level of hardness. The resulting mechanical properties are more suitable for engineering applications that require a balance of strength and toughness. During tempering, the microstructure of martensite undergoes changes such as the formation of tempered martensite, which consists of small, evenly dispersed carbide particles within a ferrite matrix. This altered microstructure results in improved ductility and toughness while maintaining adequate hardness.

learn more about carbon steel here:

https://brainly.com/question/30036139

#SPJ11

If the drawn molecule encounters another CH2OH molecule, there will be O hydrogen bonds between the carbon and hydrogens of separate molecules. O hydrogen bonds between oxygens and hydrogens within the same molecule. O no hydrogen bonds. O hydrogen bonds between the oxygen and hydrogens of separate molecules. O hydrogen bonds between the carbon and hydrogens within the same molecule.

Answers

If a CH2OH molecule encounters another CH2OH molecule, there will be hydrogen bonds between the oxygen and hydrogens of separate molecules.

H2C-(H)O ------ H-O-CH2

This is because hydrogen bonding occurs between a highly electronegative atom (such as O, N, F) and a hydrogen atom that is covalently bonded to another highly electronegative atom (O, N, F).

Also, here the oxygen atom in the CH2OH group can act as a hydrogen bond acceptor, while the hydrogens attached to the carbon atoms can act as hydrogen bond donors.

These H-bonds help to stabilize the interaction between the two molecules. There will not be hydrogen bonds between the carbon and hydrogens within the same molecule, as these groups do not have much electronegativity difference.

https://brainly.com/question/31485826

#SPJ11

Write the net ionic equation for the following reaction:

FeO(s) + 2HCl4(aq)→Fe(ClO4)2(aq) + H2o(l) express your answer as a balanced net ionic equation. identify all of the phases in your answer.

Answers

[tex]MnO_4^- + I^-[/tex][tex]+ H_2O[/tex] → [tex]MnO_2 + IO_3^- + H_2O[/tex] is the net ionic equation for the given reaction .

To balance the equation, we must first break it into half-reactions, one for the oxidation and one for the reduction. The oxidation half-reaction is:

[tex]MnO_4^-[/tex]→ [tex]MnO_2[/tex]

To balance this, we add H2O to the right side:

[tex]MnO_4^-[/tex] →[tex]MnO_2 + H_2O[/tex]

To balance this, we add OH- to the left side:

[tex]MnO_4^- + OH^-[/tex]→ [tex]MnO_2 + H_2O[/tex]

For the reduction half-reaction, we have:

[tex]I^-[/tex]→ [tex]IO_3^-[/tex]

Again, the number of oxygen atoms on each side is not equal, so we add [tex]H_2O[/tex] to the left side:

[tex]I^- + H_2O[/tex] →[tex]IO_3^-[/tex]

Now the oxygen atoms are balanced, but we have introduced hydrogen atoms. To balance this, we add H+ to the right side:

[tex]I^- + H_2O[/tex] →[tex]I^- + H_2O[/tex]

This gives us the overall balanced equation:

[tex]MnO_4^- + I^- + H_2O[/tex]→ [tex]MnO_2 + IO_3^- + H^+[/tex]

To determine the smallest whole-number coefficient for H2O, we look at the number of H atoms on each side of the equation. There is one H atom on the left and one on the right, so the coefficient for H2O is 1.

Therefore, the balanced equation in basic solution is [tex]MnO_4^- + I^-[/tex][tex]+H_2O[/tex] →[tex]MnO_2 + IO_3^- + H_2O[/tex]

To know more about Net Ionic equation refer here :

https://brainly.com/question/13879496

#SPJ11

As with most typical calorimetry experiments, this lab will measure the change in temperature of a substance in this case water) as a chemical reaction takes place. Using this temperature data, the enthalpy of reaction and/or enthalpy of combustion can be determined. To prepare you for these calculations, sample data gathered from the combustion of kerosene are provided below. By answering the questions that follow and performing these calculations, you will have a better understanding of this part of the data analysis you will complete for this lab. 1. In a hypothetical experiment, you and your lab partner run a soda-can calorimeter experiment to determine the enthalpy of combustion for kerosene. Using the terms qcomb, qrxn, and qwater, what is the mathematical expression that relates the flow of heat in this experiment?

Answers

This expression states that the heat of the reaction is equal to the negative sum of the heat of combustion and the heat absorbed by water. This relationship is based on the principle of conservation of energy, where the total energy in the system remains constant.

The mathematical expression that relates the flow of heat in this experiment is qcomb = -qrxn = -qwater, where qcomb is the heat released by the combustion of kerosene, qrxn is the heat absorbed by the reaction, and qwater is the heat absorbed by the water in the calorimeter.
In a calorimetry experiment measuring the enthalpy of combustion for kerosene, the heat flow can be described using the terms qcomb (heat of combustion), qrxn (heat of reaction), and qwater (heat absorbed by water). The mathematical expression that relates the flow of heat in this experiment is:

qrxn = - (qcomb + qwater)
learn more about combustion here: brainly.com/question/10458605

#SPJ11

The limiting reagent for a given reaction can be recognized because it is the reagent that A) has the smallest coefficient in the balanced equation for the reaction. B) has the smallest mass in the reaction mixture. OC) is present in the smallest molar quantity. D) would be used up first.

Answers

The limiting reagent for a given reaction can be recognized because it is the reagent that would be used up first. The correct option is (D).

In a chemical reaction, the limiting reagent is the reactant that is completely consumed and limits the amount of product that can be formed. To identify the limiting reagent, follow these steps:
1. Write down the balanced chemical equation for the reaction.
2. Convert the given masses of each reactant to moles using their respective molar masses.
3. Divide the number of moles of each reactant by their respective coefficients in the balanced equation.
4. The reactant with the smallest resublt from step 3 is the limiting reagent, as it will be used up first and determine the maximum amount of product that can be formed.

To know more about "Limiting reagent" refer here:

https://brainly.com/question/26905271#

#SPJ11

the δvapδhvap of a certain compound is 19.25 kj·mol−119.25 kj·mol−1 and its δvapδsvap is 91.85 j·mol−1·k−1.91.85 j·mol−1·k−1. what is the boiling point of this compound?

Answers

The boiling point of the compound is 80.0 °C

Using Clausius-Clapeyron equation:

ln(P2/P1) = (-ΔHvap/R) x (1/T2 - 1/T1)

At the boiling point, P2 = 1 atm and T2 = Tb, where Tb is the boiling point.

Assume that the substance behaves ideally, so we can use the ideal gas law:

PV = nRT

n/V = P/RT = ρ/RT

The molar density of a vapor is given by:

n/V = ρ/RT = P/RT x MM

Substituting the given values, we get:

MM = ρ x R/T x 1/P = 91.85 J/mol-K x 1/1 atm x 1/101.325 kPa x 1/RT

MM = 0.01131/T (in units of kg/mol)

The enthalpy of vaporization , ΔHvap = 19.25 kJ/mol = 19.25 x 10^3 J/mol

Substituting these values into the equation, we get:

ln(1/P1) = (-ΔHvap/R) x (1/Tb - 1/T1)

ln(1/1 atm) = (-19.25 x 10^3 J/mol / (8.314 J/mol-K)) x (1/Tb - 1/298 K)

Tb = 353.2 K = 80.0 °C

Therefore, the boiling point of the compound is 80.0 °C.

learn more about boiling point here,

https://brainly.com/question/40140

#SPJ11

When removing electrons from any atom, the electrons that come off first are:

Answers

When removing electrons from any atom, the electrons that come off first are the ones in the outermost energy level or highest principal quantum number.

The outermost energy level of an atom is known as the valence shell. Electrons in this shell have the highest energy and are less tightly bound to the nucleus compared to inner electrons. According to the aufbau principle, electrons fill orbitals in increasing order of energy, with lower energy levels being filled before higher ones.

As a result, the outermost energy level has the highest energy and is more easily removed. The valence electrons play a crucial role in determining an atom's chemical behavior, as they are involved in bonding and chemical reactions.

Therefore, when atoms undergo ionization or lose electrons, it is the valence electrons that are typically removed first, leaving behind a positively charged ion.

This process is commonly observed in chemical reactions and is fundamental to understanding the behavior of elements in different bonding scenarios.

To learn more about valence shell click here

brainly.com/question/21729239

#SPJ11

Part 1. A certain weak base has a Kb of 8.80 x 10^-7. What concentration of this will produce a pH of 10.06?
Part 2. If the Kb of a weak base is 2.2 x 10^-6, what is the pH of a .41 M solution of this base?
Part 3. If the Ka of a monoprotic weak acid is 1.9 x 10^-6, what is the pH of a .34 M solution of this acid?

Answers

1. The concentration of the weak base that produces a pH of 10.06 is 0.00976 M

2. The required concentration is  [OH-] = 1.67 x 10⁻⁴ M, and the pH = 10.77.

3.  The required concentration is [H+] = 8.11 x 10⁻⁴ M, and the pH = 3.09.

Part 1:

To find the concentration of the weak base that produces a pH of 10.06, we need to use the Kb expression and the equilibrium expression for the reaction of the base with water. The equilibrium expression is:

Kb = [BH+][OH-]/[B]

We also know that:

pH = 14.00 - pOH

Substituting pOH = 3.94 into the equation gives us a pOH of 3.94.

Therefore, [OH-] = 10^(-pOH) = 7.94 x 10^(-4) M

Now, we can use the Kb expression to find [BH+]. Rearranging the expression gives:

[BH+] = Kb[B]/[OH-]

Plugging in the values gives:

[BH+] = (8.80 x 10⁻⁷)(x) / (7.94 x 10⁻⁴) = 0.00976 M

Therefore, the concentration of the weak base that produces a pH of 10.06 is 0.00976 M.

Part 2:

To find the pH of a 0.41 M solution of a weak base with a Kb of 2.2 x 10⁻⁶, we need to use the Kb expression and the equilibrium expression for the reaction of the base with water. The equilibrium expression is:

Kb = [BH+][OH-]/[B]

Assuming that x is the amount of base that reacts with water, we can set up an ICE table and substitute the values into the Kb expression. The table is:

              BH+ + OH- ⇌ B + H2O

Initial: 0.41 M x 0

Change: -x -x x

Equilibrium: 0.41 - x (10⁻¹⁴)/(0.41 - x) x

Substituting the values into the Kb expression and solving for x gives:

Kb = (10⁻¹⁴)/(2.2 x 10⁻⁶) = [x]^2 / (0.41 - x)

Solving for x gives x = 1.67 x 10⁻⁴ M

Therefore, the [OH-] = 1.67 x 10⁻⁴ M, and the pH = 10.77.

Part 3:

To find the pH of a 0.34 M solution of a weak acid with a Ka of 1.9 x 10⁻⁶, we need to use the Ka expression and the equilibrium expression for the dissociation of the acid. The equilibrium expression is:

Ka = [H+][A-]/[HA]

Assuming that x is the amount of acid that dissociates, we can set up an ICE table and substitute the values into the Ka expression. The table is:

              HA ⇌ H+ + A-

Initial: 0.34 M 0 0

Change: -x +x +x

Equilibrium: 0.34 - x x x

Substituting the values into the Ka expression and solving for x gives:

Ka = (x²)/(0.34 - x) = 1.9 x 10⁻⁶

Solving for x gives x = 8.11 x 10⁻⁴ M

Therefore, [H+] = 8.11 x 10⁻⁴ M, and the pH = 3.09.

Learn More about Acid and Base

https://brainly.com/question/16074267

#SPJ4

Using only the periodic table arrange the following elements in order of increasing atomic radius: neon, helium, radon, argon.

Answers

The correct order of increasing atomic radius is

Helium<Neon<Argon<Radon

All of these elements belong to the same group which is group 18 and are known as noble gases. Noble gases have an inert gas configuration which makes them extra stable. In the periodic table, as we go down the group, the atomic radius of the elements generally increases.

The atomic radius increases due to the addition of a new shell at every level. Due to this, the number of energy levels increases and the distance between the nucleus and the outermost orbital also increases. This leads to an increase in the atomic radius while going down the group. Therefore, the atomic radius is increasing in the order He<Ne<Ar<Rn.

To learn more about atomic radius;

https://brainly.com/question/13126562

Why does a match light when you strike it?

Answers

A match lights when you strike it because the striking surface contains a material that can undergo a chemical reaction with the chemicals in the match head. The match head contains a mixture of chemicals, including an oxidizing agent (usually potassium chlorate) and a reducing agent (usually sulfur). When the match is struck against the striking surface, the friction generates enough heat to ignite the chemicals in the head of the match. This chemical reaction produces heat, light, and a flame that can be used to light a candle or start a fire.

calculate the ph of a solution that results from mixing 44.3 ml of 0.24 m dimethylamine ((ch3)2nh) with 34.3 ml of 0.14 m (ch3)2nh2cl. the kb value for (ch3)2nh is 5.4 x 10-4.

Answers

The pH of the resulting solution is 10.50 that results from mixing 44.3 ml of 0.24 m dimethylamine ((ch3)2nh) with 34.3 ml of 0.14 m (ch3)2nh2cl. the kb value for (ch3)2nh is 5.4 x 10-4.

To calculate the pH, we need to first calculate the concentration of the resulting solution using the following formula: [tex]c1v1 + c2v2 = c3v3[/tex]

where c1 and v1 are the concentration and volume of dimethylamine, c2 and v2 are the concentration and volume of dimethylammonium chloride, and c3 and v3 are the concentration and volume of the resulting solution.

After calculating the concentration of the resulting solution, we can use the Kb value to calculate the pOH, and then use the formula pH + pOH = 14 to obtain the pH.

In this specific case, the pH is 10.50, indicating that the solution is slightly basic.

The mixing of dimethylamine and dimethylammonium chloride generates an equilibrium reaction between the two compounds. The resulting solution is a buffer solution that can resist changes in pH. The Kb value for dimethylamine can be used to calculate the concentration of hydroxide ions in the solution.

learn more about pH here:

https://brainly.com/question/15289714

#SPJ11

theoretical yield of sodium hypochloriteoxidation of 4-tert-butylcyclohexanol

Answers

The result will be the theoretical yield of sodium hypochlorite for the given amount of 4-tert-butylcyclohexanol used in the reaction stoichiometry.

To find the theoretical yield of sodium hypochlorite oxidation of 4-tert-butylcyclohexanol, you need to first calculate the amount of 4-tert-butylcyclohexanol used in the reaction and then use stoichiometry to determine the maximum amount of sodium hypochlorite that can be produced.
Assuming the reaction goes to completion, the theoretical yield is the maximum amount of product that can be produced based on the amount of limiting reagent used. In this case, 4-tert-butylcyclohexanol is the limiting reagent.
The balanced equation for the reaction is:
4-tert-butylcyclohexanol + 4NaOCl ⇒ 4-tert-butylcyclohexyl chloroformate + 4NaCl + 4H₂O
From the equation, we can see that for every 1 mole of 4-tert-butylcyclohexanol used, 1 mole of sodium hypochlorite is consumed. Therefore, we can calculate the amount of 4-tert-butylcyclohexanol used by dividing the given mass by its molar mass.
Once we have the amount of 4-tert-butylcyclohexanol used, we can use stoichiometry to determine the maximum amount of sodium hypochlorite that can be produced. To do this, we multiply the amount of 4-tert-butylcyclohexanol used by the stoichiometric ratio of sodium hypochlorite to 4-tert-butylcyclohexanol, which is 1:1. However, it's important to note that the actual yield may be less than the theoretical yield due to side reactions, incomplete reactions, and other factors.

Learn more about stoichiometry here

https://brainly.com/question/30215297

#SPJ11

The result will be the theoretical yield of sodium hypochlorite for the given amount of 4-tert-butylcyclohexanol used in the reaction stoichiometry.

To find the theoretical yield of sodium hypochlorite oxidation of 4-tert-butylcyclohexanol, you need to first calculate the amount of 4-tert-butylcyclohexanol used in the reaction and then use stoichiometry to determine the maximum amount of sodium hypochlorite that can be produced.
Assuming the reaction goes to completion, the theoretical yield is the maximum amount of product that can be produced based on the amount of limiting reagent used. In this case, 4-tert-butylcyclohexanol is the limiting reagent.
The balanced equation for the reaction is:
4-tert-butylcyclohexanol + 4NaOCl ⇒ 4-tert-butylcyclohexyl chloroformate + 4NaCl + 4H₂O
From the equation, we can see that for every 1 mole of 4-tert-butylcyclohexanol used, 1 mole of sodium hypochlorite is consumed. Therefore, we can calculate the amount of 4-tert-butylcyclohexanol used by dividing the given mass by its molar mass.
Once we have the amount of 4-tert-butylcyclohexanol used, we can use stoichiometry to determine the maximum amount of sodium hypochlorite that can be produced. To do this, we multiply the amount of 4-tert-butylcyclohexanol used by the stoichiometric ratio of sodium hypochlorite to 4-tert-butylcyclohexanol, which is 1:1. However, it's important to note that the actual yield may be less than the theoretical yield due to side reactions, incomplete reactions, and other factors.

Learn more about stoichiometry here

https://brainly.com/question/30215297

#SPJ11

Part A Find the pH of a 0.130 M solution of a weak monoprotic acid having Ka= 1.0×10−5.
Part B Find the percent ionization of a 0.130 M solution of a weak monoprotic acid having Ka= 1.0×10−5.
Part C Find the pH of a 0.130 M solution of a weak monoprotic acid having Ka= 1.3×10−3.
Part D Find the percent ionization of a 0.130 M solution of a weak monoprotic acid having Ka= 1.3×10−3.
Part E Find the pH of a 0.130 M solution of a weak monoprotic acid having Ka= 0.13.
Part F Find the percent ionization of a 0.130 M solution of a weak monoprotic acid having Ka= 0.13.

Answers

Part A:

To find the pH of a 0.130 M solution of a weak monoprotic acid with Ka = 1.0×10-5, we can use the following equation:

Ka = [H+][A-]/[HA]

Where [H+] is the concentration of hydrogen ions, [A-] is the concentration of the conjugate base, and [HA] is the concentration of the weak acid. Since the acid is monoprotic, the concentration of the acid is the same as the concentration of the initial solution.

We can set up an ICE table to find the concentration of each species:

HA + H20 ↔ H3O+ + A-

↔ H3O+ + A-I 0.130 M 0 M 0 M

↔ H3O+ + A-I 0.130 M 0 M 0 MC -x +x +x

↔ H3O+ + A-I 0.130 M 0 M 0 MC -x +x +xE 0.130-x x x

Substituting these values into the Ka expression, we get:

1.0×10^-5 = (x^2)/(0.130-x)

Solving for x using the quadratic formula, we get x = 3.162×10^-3 M. This is the concentration of [H+].

Taking the negative log of [H+], we get the pH:

pH = -log[H+] = -log(3.162×10^-3) = 2.50

Therefore, the pH of a 0.130 M solution of a weak monoprotic acid with Ka = 1.0×10-5 is 2.50

Part B:

To find the percent ionization of the weak acid, we can use the equation:

% Ionization = ([H+]/[HA]) × 100

% Ionization = ([H+]/[HA]) × 100From Part A, we found that [H+] = 3.162×10^-3 M and [HA] = 0.130 M, so:

% Ionization = ([H+]/[HA]) × 100From Part A, we found that [H+] = 3.162×10^-3 M and [HA] = 0.130 M, so:% Ionization = (3.162×10^-3/0.130) × 100 = 2.43%

Therefore, the percent ionization of a 0.130 M solution of a weak monoprotic acid with Ka = 1.0×10−5 is 2.43%.

Part C:

To find the pH of a 0.130 M solution of a weak monoprotic acid with Ka = 1.3×10^-, we can use the same method as in Part A.

Setting up an ICE table:

HA + H2O ↔ H3O+ + A-

HA + H2O ↔ H3O+ + A-I 0.130 M 0 M 0 M

HA + H2O ↔ H3O+ + A-I 0.130 M 0 M 0 MC -x +x +x

HA + H2O ↔ H3O+ + A-I 0.130 M 0 M 0 MC -x +x +xE 0.130-x x x

Substituting these values into the Ka expression, we get:

1.3×10^-3 = (x^2)/(0.130-x)

Solving for x, we get x = 0.0361 M. This is the concentration of [H+].

Taking the negative log o [H+], we get the pH:

pH:pH = -log[H+] = -log(0.0361) = 1.44

Therefore, the pH of a 0.130 M solution of a weak monoprotic acid with Ka = 1.3×10^-3 is 1.44.

Ka = 1.3×10^-3 is 1.44.Part D:

To find the percent ionization of the weak acid, we can use the same equation as in Part B:

% Ionization = ([H+]/[HA]) × 100

% Ionization = ([H+]/[HA]) × 100From Part C, we found that [H+] = 0.0361 M and [HA] = 0.130 M, so:

% Ionization = ([H+]/[HA]) × 100From Part C, we found that [H+] = 0.0361 M and [HA] = 0.130 M, so:% Ionization = (0.0361/0.130) × 100 = 27.8%

Therefore, the percent ionization of a 0.130 M solution of a weak monoprotic acid with Ka = 1.3×10^-3 is 27.8%.

Part E:

To find the pH of a 0.130 M solution of a weak monoprotic acid with Ka = 0.13, we can use the same method as in Part A

Setting up an ICE table:

HA + H2O ↔ H3O+ + A-

HA + H2O ↔ H3O+ + A-I 0.130 M 0 M 0 M

HA + H2O ↔ H3O+ + A-I 0.130 M 0 M 0 MC -x +x +x

HA + H2O ↔ H3O+ + A-I 0.130 M 0 M 0 MC -x +x +xE 0.130-x x x

Substituting these values into the Ka expression, we get:

0.13 = (x^2)/(0.130-x)

Solving for x, we get x = 0.191 M. This is the concentration of [H+].

Taking the negative log of [H+] we get the pH:

Therefore, the pH of a 0.130 M solution of a weak monoprotic acid with Ka = 0.13 is 0.72.

Part F:

To find the percent ionization of the weak acid, we can use the same equation as in Part B:

% Ionization = ([H+]/[HA]) × 100

% Ionization = ([H+]/[HA]) × 100From Part E, we found that [H+] = 0.191 M and [HA] = 0.130 M, so:

% Ionization = ([H+]/[HA]) × 100From Part E, we found that [H+] = 0.191 M and [HA] = 0.130 M, so:% Ionization = (0.191/0.130) × 100 = 147%

Note that the percent ionization is greater than 100%. This is because the acid is relatively strong (compared to the previous examples) and ionizes to a greater extent.

Note that the percent ionization is greater than 100%. This is because the acid is relatively strong (compared to the previous examples) and ionizes to a greater extent.Therefore, the percent ionization of a 0.130 M solution of a weak monoprotic acid with Ka = 0.13 is 147%.

1. what is the order of the reaction in sodium hydroxide and ethyl acetate? show the calculations or explain the reasoning for how you determined order for each reactant.

Answers

To determine the order of the reaction in sodium hydroxide and ethyl acetate, we need to perform experiments and analyze the rate of reaction at different concentrations of each reactant.

Let's assume we have conducted experiments with varying concentrations of sodium hydroxide and ethyl acetate while keeping the concentration of other reactants and conditions constant. We will record the rate of reaction for each experiment and plot a graph of the rate of reaction versus the concentration of each reactant.

If the rate of reaction is directly proportional to the concentration of a reactant, the reaction is said to be first-order with respect to that reactant. If the rate of reaction is proportional to the square of the concentration of a reactant, the reaction is second-order with respect to that reactant. And if the rate of reaction is independent of the concentration of a reactant, the reaction is zero-order with respect to that reactant.

Using the experimental data and the rate-concentration graph, we can determine the order of the reaction in sodium hydroxide and ethyl acetate. The order for each reactant can be determined by observing the slope of the graph.

For example, if the graph for sodium hydroxide shows a straight line with a slope of 1, the reaction is first-order with respect to sodium hydroxide. If the graph for ethyl acetate shows a straight line with a slope of 2, the reaction is second-order with respect to ethyl acetate. If the graph for either reactant shows a horizontal line, the reaction is zero-order with respect to that reactant.

In conclusion, the order of the reaction in sodium hydroxide and ethyl acetate can be determined by performing experiments and analyzing the rate-concentration graph. The order for each reactant can be determined by observing the slope of the graph.

learn more about rate concentration here: brainly.com/question/17041853

#SPJ11

calculate the ph of 50.0ml of h20 following the addition of 1.00 ml of 0.60 m naoh

Answers

For calculating the pH of the solution after adding 1.00 mL of 0.60 M NaOH to 50.0 mL of H2O, the following steps are followed:

Firstly, the moles of NaOH added are calculated:

moles = volume × concentration

moles = 0.001 L (1.00 mL converted to liters) × 0.60 mol/L

          = 0.0006 mol

Later, the moles of OH⁻ ions are determined:
Since NaOH is a strong base and dissociates completely in water, the moles of OH⁻ ions will be equal to the moles of NaOH.
Therefore, the moles of OH⁻ = 0.0006 mol

Now, the concentration of OH⁻ ions when total volume = 50.0 mL H2O + 1.00 mL NaOH = 51.0 mL = 0.051 L:

Concentration = moles / total volume

Concentration = 0.0006 mol / 0.051 L

                        = 0.01176 mol/L

The pOH is:
pOH = -log10[OH⁻]
pOH = -log10(0.01176) ≈ 1.93

And, finally the pH:
pH + pOH = 14 (for aqueous solutions at 25°C)
pH = 14 - pOH
pH = 14 - 1.93 ≈ 12.07

Hence, the pH of the solution after adding 1.00 mL of 0.60 M NaOH to 50.0 mL of H2O is approximately 12.07.

https://brainly.com/question/31485766

#SPJ11

A 25.00 mL sample of sodium bicarbonate requires 2.55 mL of 0.0200 M sulfuric acid titrant to reach the endpoint. What is the concentration of the sodium bicarbonate solution in mol/L? H2SO4(aq) + 2 NaHCO3(aq).I> Na2SO4(aq) + CO2(g) + H2O(1)

Answers

The concentration of the sodium bicarbonate solution, we need to first find the moles of sulfuric acid (H2SO4) and then use the stoichiometry of the balanced equation to find the moles of sodium bicarbonate (NaHCO3). The sodium bicarbonate solution is 0.00204 mol/L.

First, we need to use the balanced chemical equation to determine the moles of sodium bicarbonate (NaHCO3) present in the 25.00 mL sample. From the equation, we can see that 2 moles of sulfuric acid (H2SO4) react with 2 moles of sodium bicarbonate to produce 1 mole of carbon dioxide (CO2), 1 mole of water (H2O), and 1 mole of sodium sulfate (Na2SO4).

So, the moles of NaHCO3 in the sample can be calculated as:

moles NaHCO3 = (moles H2SO4/2) = (0.0200 mol/L x 2.55 mL)/1000 mL/L = 0.000051 mol

Next, we need to calculate the concentration (in mol/L) of the sodium bicarbonate solution. This can be done using the formula:

concentration NaHCO3 = moles NaHCO3/volume of solution (in L)

Since we have 25.00 mL of solution, we need to convert this to liters:

volume of solution = 25.00 mL/1000 mL/L = 0.0250 L

Substituting the values we have, we get:

concentration NaHCO3 = 0.000051 mol/0.0250 L = 0.00204 mol/L

Therefore, the concentration of the sodium bicarbonate solution is 0.00204 mol/L.

Learn more about sodium bicarbonatehere:

https://brainly.com/question/8560563

#SPJ11

select the single best answer. assuming it is planar, is the following ion aromatic, antiaromatic, or not aromatic?aromatic antiaromatic not aromatic

Answers

Assuming it is planar, the answer depends on the number of pi electrons in the ion. If the ion has 4n+2 pi electrons, it is aromatic. If it has 4n pi electrons, it is antiaromatic. If it has any other number of pi electrons, it is not aromatic.

Aromaticity is a property that arises from the cyclic delocalization of pi electrons in a molecule. If a molecule is planar and has 4n+2 pi electrons, where n is an integer, it is considered to be aromatic. The term "aromatic" originally referred to the pleasant smell of certain compounds, but it now refers to a specific type of electronic structure. Aromatic compounds are known for their stability, reactivity, and unique physical and chemical properties. On the other hand, if a molecule has 4n pi electrons, where n is an integer, it is considered to be antiaromatic. Antiaromatic compounds are generally less stable and less reactive than aromatic compounds. If a molecule has any other number of pi electrons, it is not aromatic.

learn more about antiaromatic here:

https://brainly.com/question/30630680

#SPJ11

what happens to any grignard reagent that remians in the reaction mixture after addition of the aldehyde

Answers

Excess Grignard reagent in the reaction mixture will be destroyed by reacting with water or acidic workup solution, resulting in the formation of a salt or alcohol, making it necessary to ensure complete reaction with aldehyde.

After the addition of the aldehyde, any excess Grignard reagent that remains in the reaction mixture will react with water or the acidic workup solution. This reaction will destroy the Grignard reagent and result in the formation of a salt or alcohol. Therefore, it is important to ensure that all of the Grignard reagent has reacted with the aldehyde before proceeding with the workup. Any remaining Grignard reagent can also react with impurities in the reaction mixture, leading to unwanted side products.

Know more about Grignard Reagent here:

https://brainly.com/question/30144052

#SPJ11

An open box is to be made from a 3ft by 8ft rectangular piece of sheet metal by cutting out squares of equal size from the four corners and bending up the sides. Find the maximum volume that the box can have.
Round your answer to the nearest integer.
The maximum volume is ____ft^3

Answers

The first step is to determine the size of the squares that will be cut out of each corner. Let's call this size "x". Since the sheet metal is rectangular and we want to cut squares out of each corner, the length of the box will be 8 - 2x (we subtract 2x because there will be two squares cut out of each end) and the width of the box will be 3 - 2x. The height of the box will simply be "x" since that is how much we are bending up the sides.

So the volume of the box is:

V = (8 - 2x)(3 - 2x)(x)

V = (24x - 30x^2 + 8x^3)

Now we need to find the maximum volume by taking the derivative of V with respect to x, setting it equal to zero, and solving for x.

V' = 24 - 60x + 24x^2

0 = 24 - 60x + 24x^2

0 = 2 - 5x + 2x^2

Using the quadratic formula, we get:

x = (5 ± sqrt(17))/4

Since we can't have a negative value for x (that would mean cutting a negative size square out of each corner), we take the positive value:

x = (5 + sqrt(17))/4

Plugging this value back into the equation for V, we get:

V = 64/3 * (5 - sqrt(17))^3

V ≈ 138

Rounding to the nearest integer, the maximum volume the box can have is 138 cubic feet.

learn more about integers here: brainly.com/question/1615384

#SPJ11

Formic acid, HCOOH, ionizes in water according ot the following equation. The equilibrium constant is K = 1.8x10-4.HCOOH(aq)+H_{2}O(l)\rightleftharpoons HCOO^{-}(aq)+H_{3}O^{+}(aq)Calculate the equilibrium concentration of H3O+ in a 0.985 M solution_____ M

Answers

The first step to calculate the equilibrium concentration is to write the balanced equation for the ionization of formic acid in water.

How do you go about solving this problem?

The equation for this reaction is:

HCOOH + H₂O ⇌ HCOO⁻ + H3O⁺

Next, we can define the initial, change, and equilibrium concentrations of HCOOH, HCOO⁻, and H3O⁺:

Let x be the equilibrium concentration of H3O⁺ and HCOO⁻.

Initial concentration of HCOOH = 0.985 M

Initial concentration of H₂O is much larger than the initial concentration of HCOOH, so we can assume that the concentration of H₂O does not change significantly during the reaction.

   Initial concentration of HCOO⁻ and H3O+ = 0 M

   Change in concentration of HCOOH = -x

   Change in concentration of HCOO⁻= +x

   Change in concentration of H3O⁺ = +x

   Equilibrium concentration of HCOOH = 0.985 - x M

   Equilibrium concentration of HCOO⁻ = x M

   Equilibrium concentration of H3O⁺ = x M

We can now use the equilibrium constant expression to solve for x:

K = [HCOO⁻][H3O⁺]/[HCOOH]

1.8 × 10⁻⁴ = x² / (0.985 - x)

Since x is much smaller than 0.985 (the initial concentration of HCOOH), we can assume that the equilibrium concentration of HCOOH is approximately equal to the initial concentration of HCOOH. Therefore:

0.985 - x ≈ 0.985

Substituting this approximation into the equilibrium constant expression, we get:

1.8 × 10⁻⁴ = x² / 0.985

x²= 1.8 × 10⁻⁴ × 0.985

x² = 1.773 × 10⁻⁴

x = 0.0133 M

Therefore, the equilibrium concentration of H3O⁺ in a 0.985 M solution of formic acid is 0.0133 M.

Learn more about equilibrium concentration here:

https://brainly.com/question/15557078

#SPJ1

It took 2462 J to raise the temperature of a sample of water from 13.7 °C to 31.3 °C. Convert 2462 J to calories. 2462 J = ____ cal

Answers

When 2462 J is used to raise a sample of water from 13.7 °C to 31.3 °C, it is equivalent to 588.4321 cal.

J to calories: how do you do it?

Multiplying the energy by the conversion factor will get the calorie equivalent of a joule measurement. Joules multiplied by a factor of 0.239006 yields the energy in calories.

One calorie is equal to how many joules?

Since 1925, the definition of a calorie in terms of joules has been in place. Since 1948, one calorie has been equated to roughly 4.2 joules. For one second, one joule is equal to one watt of power that has been emitted or dissipated.

To know more about calories visit:-

https://brainly.com/question/22374134

#SPJ1

When 2462 J is used to raise a sample of water from 13.7 °C to 31.3 °C, it is equivalent to 588.4321 cal.

J to calories: how do you do it?

Multiplying the energy by the conversion factor will get the calorie equivalent of a joule measurement. Joules multiplied by a factor of 0.239006 yields the energy in calories.

One calorie is equal to how many joules?

Since 1925, the definition of a calorie in terms of joules has been in place. Since 1948, one calorie has been equated to roughly 4.2 joules. For one second, one joule is equal to one watt of power that has been emitted or dissipated.

To know more about calories visit:-

https://brainly.com/question/22374134

#SPJ1

if the electron cloud of a hydrogen atom was enlarged to the size of a sports statium, how large would the proton in the nucleus be?

Answers

If the electron cloud of a hydrogen atom was enlarged to the size of a sports stadium, the proton in the nucleus would still be extremely small in comparison.

The diameter of a typical sports stadium is on the order of hundreds of meters to a kilometer, whereas the diameter of a hydrogen atom is about 0.1 nanometers (nm). This means that the size of the hydrogen atom compared to the stadium would be roughly analogous to the size of a pea compared to the stadium.

The proton in the nucleus of a hydrogen atom is even smaller, with a diameter of about 1.7 femtometers (fm) or 0.0000000000017 meters. This means that the size of the proton compared to the hydrogen atom would be roughly analogous to the size of a grain of sand compared to a pea.

Therefore, even if the electron cloud of a hydrogen atom were enlarged to the size of a sports stadium, the proton in the nucleus would still be incredibly small in comparison.

Learn more about hydrogen atom,

https://brainly.com/question/29695801

#SPJ4

I have a balloon containing 1/6 mol He. How many He atoms are in the balloon?

Answers

There are approximately 1 x 10^23 He atoms in a balloon containing 1/6 mol Helium.

To answer this question, we first need to understand what a mole is. A mole is a unit of measurement used in chemistry that represents the amount of substance in a system. One mole of any substance contains 6.02 * 10^{23} particles, which is known as Avogadro's number.
In this case, we have a balloon containing 1/6 mol He. This means that there are 1/6 * 6.02 * 10^{23} He atoms in the balloon. Simplifying this, we get:
1/6 * 6.02 * 10^{23} = 1.0033 * 10^{23}
Therefore, there are approximately 1 x 10^23 He atoms in the balloon.

learn more about mole refer: https://brainly.com/question/30490905

#SPJ11

complete question:

I have a balloon containing 1/6 mol He. How many He atoms are in the balloon?

a) 10^23

b) 4 million

c) 0.01

d) 1 x 10^21

Other Questions
The rate of change of y = -x +5 Write a differential equation for the balance B in an investment fund with time, t, measured in years.The balance is earning interest at a continuous rate of 5% per year, and payments are being made out of the fund at a continuous rate of $11,000 per year.A) dB/dt=? What are the pros and cons of joining a union from an employee's perspective? Name and describe at least 3 pros AND 3 cons. 14 customers entered a store over the course of 7 minutes. At what rate were the customers entering the store in customers per minute? while undergoing a transition from the n = 1 to the n = 2 energy level, a harmonic oscillator absorbs a photon of wavelength 5.10 m. What is the wavelength of the absorbed photon when this oscillator undergoes a transition from the n = 2 to the n = 3 energy level? a square pyramid has a base measuring 10 inches on each side. the height of the pyramid is 5 inches. a similar square pyramid has a base measuring 2.5 inches on each side. how do the surface areas of these pyramids compare? drag a value to the box to correctly complete the statement. put responses in the correct input to answer the question. select a response, navigate to the desired input and insert the response. responses can be selected and inserted using the space bar, enter key, left mouse button or touchpad. responses can also be moved by dragging with a mouse. the surface area of the larger pyramid is response area times the surface area of the smaller pyramid. Find the area of the irregular figure below. You have $4,500 on a credit card that charges a 19% interest rate. If you want to pay off the credit card in 5 years, how much will you need to pay each month (assuming you don't charge anything new to the card)? Clayton Corporation owns business realty that the county condemns on July 15, year 1. The county pays Clayton $400,000 for the property that has an allocated basis of $235,000.a. What is Clayton's realized and recognized gain, assuming it does not replace the property?b. What is its recognized gain, assuming it spends $350,000 on replacement property?c. What is its basis in the replacement property?d. What is its recognized gain, assuming it spends $500,000 on replacement property?e. What is its basis in the replacement property?f. If the corporation has a June 30 fiscal year-end, what is the last date that it can acquire qualifying replacement property? True learning means committing content to long-term memory. t or f According to the Bureau of Labor Statistics, 71.9% of Young women enroll in college directly after high school graduation. Suppose a random sample of 200 female high school graduates is selected and the proportion who enroll in college is obtained.a. What value should we expect for the sample proportion? b. What is the standard error? c. What effect would increasing the sample size to 500 have on the standard error? Conditional probability 3. Anya travels to work by car or by bicycle. The probability that she travels by car is 0.35 If she travels to work by car, the probability that she will be late is 0.12 If she travels to work by bicycle, the probability that she will be late is 0.25 a) Draw a probability tree diagram to show all the possible outcomes. b) Work out the probability that Anya will not be late. help quick will give brainlist To apply Ampre's law to find the magnetic field inside an infinite solenoid. In this problem we will apply Ampre's law, written B (r )dl =0Iencl, to calculate the magnetic field inside a very long solenoid (only a relatively short segment of the solenoid is shown in the pictures). The segment of the solenoid shown in (Figure 1) has length L, diameter D, and n turns per unit length with each carrying current I. It is usual to assume that the component of the current along the z axis is negligible. (This may be assured by winding two layers of closely spaced wires that spiral in opposite directions.) From symmetry considerations it is possible to show that far from the ends of the solenoid, the magnetic field is axial. find bin , the z component of the magnetic field inside the solenoid where ampre's law applies. express your answer in terms of l , d , n , i , and physical constants such as 0 . Are there more challenges than benefits when dealing with instant messaging with the youth of today What is the best choice of reagent(s) to perform Fisher Esterification? CH31, H2SO4 CH3OH, H2S04 NaOCH CH3L1 Determine the mass of solid NaCHCOO that must be dissolved in an existing 500.0 mL solution of 0.200 M CHCOOH to form a buffer with a pH equal to 5.00. The value of Ka for CHCOOH is 1.8 10.Find the ICE chart for CH3COOH(aq) + H2O - H3O++ CH3COO-(aq)And Solve for Ka= ? =1.8*10-5 The International Society for Automation (ISA) promotes that we must treat fairly and respectfully all colleagues and co-workers but also, :Question 4 options:(A) recognize each of their unique contributions and individual capabilities full of strengths and weaknesses.(B) realize some employees are woefully lacking at times such that providing financial support or perhaps some other incentive such that they may have a boost of motivation to succeed.(C) recognize that everyone is human too and will make mistakes such that no corrective action is ever necessary(D) judge their quality and/or quantity of work critically and rashly rather than constructively and supportive to foster helping aid in their development. Which has a higher exchange rate Euro or the U.S. dollar? choose the correct resonance structures for the following compound and use the resonance structures to determine if the substituent has an electron-donating or electron-withdrawing resonance effect.