Answer:
In speciation, organisms evolved with the passage of time.
Explanation:
Speciation is the evolutionary process in which populations of species evolve with the passage of time to become different species from the original one. Temporal isolation and gametic isolation are two possible prezygotic barriers of the Hawaiian honeycreepers that contribute to occur speciation. The newly available niches could lead to speciation of that organisms that tolerate the Hawaiian climatic conditions when the extinction of Hawaiian honeycreepers occurs. The new organisms used the available resources such as food and space etc and increase its population.
List the significant events of the Electron Transport Chain. Include which reactants and products are involved. Highlight what will be released as a product. Be sure to include where the process occurs in the mitochondria.
Answer:
The electron transport chain is a series of protein complexes and electron carriers that are located in the inner membrane of the mitochondria. These complexes and carriers are involved in the transfer of electrons from NADH and FADH2, produced during glycolysis and the Krebs cycle, to oxygen, the final electron acceptor. The energy released from this transfer is used to pump protons across the inner mitochondrial membrane, generating a proton gradient that drives the production of ATP.
The key events of the electron transport chain include the following:
The transfer of electrons from NADH to complex I, also known as NADH-ubiquinone oxidoreductase, by the enzyme NADH dehydrogenase. This complex consists of several protein subunits and a non-protein electron carrier called ubiquinone.
The transfer of electrons from complex I to complex II, also known as succinate-ubiquinone oxidoreductase or succinate dehydrogenase, by the enzyme ubiquinone. Complex II consists of several protein subunits and a non-protein electron carrier called ubiquinone.
The transfer of electrons from complex II to complex III, also known as ubiquinone-cytochrome c oxidoreductase or cytochrome bc1 complex, by the enzyme cytochrome b. Complex III consists of several protein subunits and two non-protein electron carriers called cytochromes c1 and c.
The transfer of electrons from complex III to complex IV, also known as cytochrome c oxidase or cytochrome aa3, by the enzyme cytochrome c. Complex IV consists of several protein subunits and two non-protein electron carriers called cytochromes a and a3.
The transfer of electrons from complex IV to oxygen by the enzyme cytochrome a3. Oxygen is the final electron acceptor in the electron transport chain.
As the electrons are transferred through the complexes of the electron transport chain, energy is released and used to pump protons across the inner mitochondrial membrane. This creates a proton gradient that drives the synthesis of ATP by the enzyme ATP synthase. The end products of the electron transport chain are water and ATP.
Explanation:
What part of the body is most painful to get a tattoo?
Neck and Spine are the two most painful body parts to get a tattoo.
Tattoos are one of the most popular kind of body art across the world. According to a 2010 research, 38 percent of persons aged 18 to 29 had had tattoos at least once in their life.
Tattooing is the process of repeatedly piercing the top layer of your skin with a sharp needle that has been colored. Getting a tattoo is always uncomfortable, albeit various people feel varying amounts of agony.
Biologically masculine people experience and cope with pain differently than biologically feminine people. Furthermore, different regions of the body suffer varying degrees of discomfort when tattooed.
learn more about tattoo at https://brainly.com/question/28431107
#SPJ4
Is monggo good for stomach?
Monggo is beneficial for the stomach. Soluble fiber and carbohydrate in mung beans help to control digestion.
Therefore, compared to other legumes, moong beans' carbohydrate content is less prone to cause flatulence. Mung beans also include a lot of protein and fiber. Additionally, it is abundant in antioxidants, which reduce blood pressure. It also has various characteristics that help to regulate blood sugar levels.
Nevertheless, it should not be consumed by those who have issues with their kidneys or gallbladder. Oxalate, a substance found in mung beans, prevents the body from properly absorbing calcium. Therefore, those who are calcium deficient should stay away from it. Additionally, as they are difficult to digest, one should chew them thoroughly.
Learn more about Calcium here:
https://brainly.com/question/29597119
#SPJ4
What are the 4 common characteristics shared among living things?
Answer:
Living things have a variety of characteristics that are displayed to different degrees: they respire, move, respond to stimuli, reproduce and grow, and are dependent on their environment.
Most of the electrons removed from glucose by cellular respiration are used for which of the following processes?
a. Reducing NAD+ to NADH in glycolysis and the citric acid cycle
b. Producing a proton gradient for ATP synthesis in the mitochondria
c. Driving substrate-level phosphorylation in glycolysis
d. The second and third answers are correct.
e. The first two choices are correct.
The correct option is (e) i.e. the first two choices are correct. Most of the electrons removed from glucose by cellular respiration are used for the processes listed.
The oxidation of biological fuels in the presence of an inorganic electron acceptor, such as oxygen, during the process of cellular respiration results in considerable amounts of energy that are utilised to power the primary production of ATP. Eukaryotic mitochondrial cristae are the site of oxidative phosphorylation. It is made up of the electron transport chain, which generates a proton gradient (chemiosmotic potential) across the inner membrane's edge by oxidising the NADH produced by the Krebs cycle. When the chemiosmotic gradient drives the phosphorylation of ADP, the ATP synthase enzyme creates ATP. When the foreign oxygen receives the electrons, it reacts with two protons to form water. Numerous illnesses may have an impact on cellular respiration. Given how crucial cellular respiration is to bodily functions, many of these disorders have a significant negative effect on people. The most common conditions that affect glycolysis are pyruvate kinase insufficiency, erythrocyte hexokinase deficiency, and glucose phosphate isomerase deficiency.
To know more about cellular respiration please refer: https://brainly.com/question/29771613
#SPJ4
Fish produce 1,000 grams of biomass, which represents usable chemical energy. Describe the approximate amount of energy from that biomass that will transfer from fish to polar bears.
Fish provide polar bears with 10 grams of biomass worth of energy.
What is biomass?Biomass is defined as a fuel made from organic materials; a sustainable and renewable energy source used to produce electricity or other types of power. Our ecology, economy, and energy security might all be significantly improved by using biomass as a clean, renewable energy source.
According to 10% rule.
1000x10%=100
100x10%=10.
When animals from one trophic level are consumed by organisms from the next trophic level, energy is lost when going from a lower trophic level to a higher trophic level because energy is lost as metabolic heat.
Thus, fish provide polar bears with 10 grams of biomass worth of energy.
To learn more about biomass, refer to the link below:
https://brainly.com/question/21525417
#SPJ1
Classify each phrase as describing an enzyme, an active site, or a substrate.
a. A biological catalyst
b. A protein containing an active site
c. A specific enzyme location that binds with the substrate
d. A substance that the enzyme acts upon
e. May be a phosphate group
Since there is where the catalytic "action" takes place, the area of the enzyme where the substrate binds is known as the active site.
These amino acids make it possible for an enzyme's active site to specifically bind to its substrate or substrates and facilitate chemical reactions. An enzyme will cling to (bind) one or more reactant molecules in order to catalyze a process. The substrates of the enzyme are these substances. One substrate may be broken down into several products in some reactions. The products then depart the enzyme's active site.
Enzymes are biological catalysts that quicken a living thing's biochemical reactions. Enzymes don't alter the reaction's equilibrium.
The product is created by the enzymes from the substrate. The enzymes generate the enzymes substrate complex when they attach to the substrate's active site. The synthesis of this enzyme substrate complex is crucial for the creation of the specific product.
To know more about enzyme
https://brainly.com/question/2536131
#SPJ4
Why snails can change gender?
Snail can change their gender as they are obligate hermaphrodites. They have both male and female reproductive organs and are able to produce sperm and eggs while mating with a partner.
Why snails change gender?Snails which are called slipper limpets begin life as males and become female as they grow. A new study shows that when two males are kept together and can touch each other, the larger one changes to female sooner but the smaller one later.
Slipper snails start life as males and change to female and this strategy is called sequential hermaphroditism. These snails change gender when they reach certain size, depending on the gender of other slipper snails around.
To know more about gender of snails, refer
https://brainly.com/question/29933242
#SPJ4
explain how the electron transport chain is utilized in oxidative phosphorylation
The electron transport chain is utilized in oxidative phosphorylation as electrons are passed starting with one atom and then onto the next, and energy delivered in these electron moves is utilized to frame an electrochemical gradient.
The inner membrane of the mitochondria is home to a collection of proteins and organic molecules that make up the electron transport chain. In a series of redox reactions, electrons travel from one transport chain member to another. Chemiosmosis is the process by which the energy released during these reactions is used to make ATP and is captured as a proton gradient.
Electrons from the breakdown products of the first two stages of cellular respiration are taken by the electron transport chain, which then moves the electrons from one molecule to another.
Know more about cellular respiration here: https://brainly.com/question/29760658
#SPJ4
What factors require cells to use active transport?
Answer:
Active transport requires cellular energy to achieve this movement.
There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient.
What are the two important features of a traditional haiku?
Traditional haiku centers around two important features while giving a surprising viewpoint. Similar to a joke, the initial segment of haiku can frequently act as the set-up, while the subsequent part conveys the zinger.
An illustration comes from Murakami Kijo, a Japanese poet who lived from 1865 to 1938:
First autumn morning:
the mirror I stare into
shows my father’s face.
In Kijo's model, we can see that it adheres to the guidelines we made sense of above: a reference to Autumn and the unusual perspective at the end are two important features, and punctuation separates the lines.
Know more about Haiku here: https://brainly.com/question/29553627
#SPJ4
What is the correct arrangement for the components of one strand in A DNA molecule?
Answer:The correct option is A.
Explanation:The correct option is A
Adenine-Thymine
Explanation of correct option:
Option A
DNA molecules consist of four nucleotides - adenine, guanine, cytosine, and thymine.
Base pairing in the presence of hydrogen bonding.
Adenine - Thymine
Guanine - Cytosine
Why research become integral part of development?
Development is dependent on research because without it, there would be nothing to develop. Therefore, research is discovery, and development is the application and improvement of that finding. Additionally, even if research is a beginning, it is also a component of development.
One simple illustration: We would not have personal computers, or really much of any form of computer, if Shockley, Bardeen, and Brattain's invention of the transistor had not been made.
One of the very first digital computers, ENIAC, had a sizable space, consumed 175 kilowatts of power, and processed 500 flops per second.
A particularly powerful laptop computer uses roughly 170 watts per hour of power and has a processing speed of about 100 billion flops per second.
Without the government-funded research at Bell Labs, there would not have been a computer revolution, or it might not have looked anything like it does now.
In other words, you can't develop anything without research.
know more about computers here
https://brainly.com/question/21080395#
#SPJ4
Clones are derived _____.
Plants and animals' bodily cells are eventually clones created by an one fertilized egg going through mitosis, or cell reproduction.
The term "clone," derived from the Greek klon, was first used in 1903 by plant physiologist Herbert J. Webber to describe the process of growing new plants from cuttings, bulbs, or buds. Howard Markel, a science historian, talks about how the phrase later evolved to apply to a variety of genetic alterations.Plants and animals' bodily cells are eventually clones created by an one fertilized egg going through mitosis, or cell reproduction. Every cell in clones' bodies has identical genetic information in the nucleus, which is where the chromosomes are located. Thus, the DNA and genes in the nucleus of cells from two clones are identical. The word "cloning" refers to a variety of procedures that may be used to create biological copies that are genetically identical to the original. A clone is a copy of a substance that shares the same genetic make-up as the original.
Learn more about animal
https://brainly.com/question/29310309
#SPJ4
When a mutation occurs by elimination of one base in a DNA sequence this mutation is called a?
Answer: Deletion mutation
Do clams have lungs or gills?
Bivalves like oysters and clams, have greatly enlarged gills that they use for both respiration and filter feeding.
please mark me brainliest <3
Does point mutation increase DNA?
The point mutation can lead to an increase in the length of DNA sequences depending upon the type of mutation.
A point mutation is a form of mutation in which one single nucleotide base is added, deleted, or modified in DNA or RNA, the genetic material of the organism. In the case of base substitution length of the DNA sequence remains the same because the nucleotide number remains the same after the substitution. In the case of insertions mutation overall size of the DNA increases due to an increased number of nucleotides whereas decreased in the case of deletion mutations.
Hence, the type of point mutation determines DNA length.
To know more about Nucleotide.
https://brainly.com/question/16308848
#SPJ4
Where does your body get the energy for reattaching a third phosphate to ADP, creating ATP?
answer choices
from the sun
usually from carbs
from nucleic acids
from breaking ATP
Body get the energy for reattaching a third phosphate to ADP, creating ATP usually from carbs.
Breaking down the food molecules releases the energy that was keeping them together, and the cell temporarily stores that released energy for the re-building process.
Each of these food kinds necessitates a distinct breakdown process, which we'll discuss later, but the purpose is the same: release the energy that kept those food molecules together so that it may be stored in a form that the cell can utilize later to construct what it needed. The cell contains a specific type of molecule called ATP for storing that energy.
Adenosine triphosphate (ATP) is a vital chemical found in all living organisms. Consider it the "energetic currency" of the cell. When a cell requires energy to complete a job, the ATP molecule splits off one of its three phosphates, becoming ADP (Adenosine di-phosphate) + phosphate.
The energy that was holding that phosphate molecule is now free to accomplish work for the cell. When the cell has excess energy (from digesting food or, in the case of plants, from photosynthesis), it stores it by reattaching a free phosphate molecule to ADP and converting it back into ATP.
The correct answer is, usually from carbs.
learn more about Adenosine triphosphate at https://brainly.com/question/897553
#SPJ4
What causes a point mutation?
The point mutation arises due to errors in the replication of DNA.
The single base pair in the DNA sequence that is altered in a point mutation. This may induce changes in gene expression. Although DNA alteration, for as by exposure to X-rays or UV radiation, can also cause point mutations, mistakes occurred during DNA replication are most usually the cause of point mutations.
Transition mutations and transversion mutations are the two different forms of point mutations. Transition mutations happen when a purine base replaces another purine base or when a pyrimidine base replaces another pyrimidine base. Transversion mutations, on the other hand, take place when a pyrimidine base is changed into a purine base or vice versa.
Hence, point mutation is single base pair change which alter protein structure.
To know more about Gene.
https://brainly.com/question/8832859
#SPJ4
there are ___ levels of structural organization within the body.
There are Six distinct levels of structural organization within the body.
The smallest components of matter, such as atoms and molecules, are taken into consideration by scientists while studying the chemical level of organisation. The elements, which include elements like hydrogen, oxygen, carbon, nitrogen, calcium, and iron, are the building blocks of all matter in the universe. Each of these unadulterated substances (elements) has an atom as its smallest unit. Subatomic particles like the proton, electron, and neutron are the building blocks of atoms. Molecules, like the ones found in water, proteins, and carbohydrates in living things, are made up of two or more atoms. All of the components of the human body are composed of molecules.
Learn more about body here:
https://brainly.com/question/6149304
#SPJ4
CSF then flows down the cerebral ____________ to the fourth ventricle.
CSF then flows down the cerebral aqueduct to the fourth ventricle.
The ventricles of a brain are a communicating network of cavities within the brain parenchyma that are filled with cerebrospinal fluid (CSF). The ventricular system is made up of two lateral ventricles, a third ventricle, a cerebral aqueduct, and a fourth ventricle.
The cerebral aqueduct is a structure inside the brainstem that connects the third and fourth ventricles. It is situated in the midbrain and is surrounded by periaqueductal grey matter (PAG), the with tectum of a midbrain located posteriorly and also the tegmentum anteriorly. It is filled with CSF, and its obstruction causes obstructive hydrocephalus with lateral and third ventricle dilatation only.
To know more about the Ventricles, here
https://brainly.com/question/25955967
#SPJ4
How does the DNA of the 2 sister chromatids of chromosomes compare?
The genetic sequences of sister chromatids are identical. Sister chromatids occur only after the S (synthesis) phase, when the DNA is replicated in preparation for mitosis or meiosis.
A sister chromatid is a pair of identical copies (chromatids) generated by chromosomal DNA replication, with both copies connected together by a shared centromere.
To put it another way, a sister chromatid is 'one-half' of a duplicated chromosome. A dyad is a pair of sister chromatids.
Because both sisters are the result of semi-conservative DNA replication and so have the same DNA sequence, suitable criteria to identify sister chromatids are not clear.
Learn more about to Sister chromatids visit here;
https://brainly.com/question/29108845
#SPJ4
the enzyme(s) called __________ break(s) down the substrate called __________.
The enzyme(s) called peptidases break(s) down the substrate called proteins.
Peptidases are the digestive enzymes that can break down the large proteins into smaller peptides or even single amino acids. This process is known as proteolysis. The enzyme is produced in the small intestine of the digestive system.
Proteins are the biomolecules made up of amino acid as the monomers. These are the functional forms of genes that are involved in every function of the body. The proteins are synthesized in the cytoplasm of the cell where ribosomes are present. Proteins are involved in functions like signaling, enzymatic, transport, etc.
To know more about peptidases, here
brainly.com/question/1685816
#SPJ4
No recombination of homologs occurs?
No recombination of homologs occurs in mitosis.
Mitosis is a stage of the cell cycle during which replicated chromosomes are separated into two new nuclei. Mitosis results in the formation of genetically identical cells with the same number of chromosomes. As a result, mitosis is also referred to as equational division.
Mitosis is only found in eukaryotic cells. Prokaryotic cells, which lack a nucleus, divide through a process known as binary fission. Mitosis differs from organism to organism. Animal cells, for example, go through "open" mitosis, in which the nuclear envelope breaks down before the chromosomes separate, whereas fungi go through "closed" mitosis, in which the chromosomes divide within an intact cell nucleus.
To learn more about mitosis, here
https://brainly.com/question/29768164
#SPJ4
What are the 3 phases of the Calvin cycle and what happens during each phase?
Answer: The three phases are carbon fixation, reduction, and regeneration.
Explanation: In stage 1, the enzyme RuBisCO incorporates carbon dioxide into an organic molecule. In stage 2, The 3-PGA molecules created through carbon fixation are converted into molecules of simple sugar–glucose. This stage obtains energy from ATP and NADPH formed during the light-dependent reactions of photosynthesis. The organic molecule is reduced. In stage 3, RuBP, the molecule that starts the cycle, is regenerated so that the cycle can continue.
Hope this helps Good Luck!
Eukaryotic processing of the primary transcript includes __________.
The main transcript is processed by eukaryotes by splicing out introns and adding a 5 cap and 3 poly-A tail.
The harder part comes first. Termination does not involve stem-loop structures. Three enzymes carry out transcription (RNA polymerases I, II and III).Transcription is more tightly regulated in prokaryotes. In eukaryotes, translation begins when mRNA leaves the nucleus and begins transcription inside the nucleus. RNA polymerase is directed to start producing RNA by a promoter site on the 5' side of the transcriptional start site. The RNA polymerase transcribes the sense (-) strand of the DNA template.In eukaryotes, the original RNA transcript is converted into mRNA by a process called maturation.
To know more about Eukaryotic
https://brainly.com/question/29053386
#SPJ4
What is reproductive mutation?
the ______ is fenestrated.
A hole in the tracheostomy tube's shaft that is above the curvature and, thus, above the cuff of a cuffed trach tube is known as a fenestration.
A fenestration's function is to enable airflow past the vocal cords and upward. A tracheostomy patient cannot create voice without airflow via the vocal cords. How a Voice is Produced has further details about voice production.
It is not necessary to have a fenestration in order to speak with a tracheostomy tube, although it will probably make speaking louder and easier. See Speaking with a Tracheostomy Tube for more details.
Although a fenestrated tube can greatly ease speaking for tracheostomy patients, it's crucial to realise that in order to fully benefit from the fenestration, you must also utilise a fenestrated inner cannula. Standard, non-fenestrated inner cannulas will obstruct the fenestration, obstructing the benefits of airflow as well (most common).
To learn more about fenestration, refer: https://brainly.com/question/14930054
#SPJ4
what happens when the body uses its fat stores to provide tissues with energy during fasting, when there is not enough food energy?
When the body uses its fat stores to provide tissues with energy during fasting, a process called lipolysis occurs. Lipolysis is the breakdown of stored fat into fatty acids and glycerol, which can then be used by the body for energy. The fatty acids are broken down further into molecules called ketone bodies, which can be used by the body for energy.
when the body uses its fat stores to provide tissues with energy during fasting Fat cells release fatty acids into the blood by breaking down stored fat.
The activation of hormone-sensitive lipase (HSL) is the first step in the breakdown of triglycerides. During fasting, plasma levels of glucagon, epinephrine, growth hormone, and cortisol all rise, stimulating this enzyme. HSL is triggered by each of these hormones in a different way. Cyclic AMP is produced when glucagon and epinephrine bind to adenylyl cyclase on the cell membrane. Protein kinase A (PKA), which in turn activates HSL, is triggered by cyclic AMP. The glucocorticoid receptor alpha (GR-alpha) in the cell's cytosol is where cortisol binds.
Know more about lipase here: https://brainly.com/question/16496348
#SPJ4
What is non homeostatic?
Consuming certain foods or minerals in proportions that do not support health is known as non-homeostatic eating (i.e., disproportional to need). Understanding the neurobiology behind excessive intake of fat and sugar has been the subject of a lot of research.
Non-homeostatic mechanisms include learning, memory, and cognitive processes that can affect feeding based on previously learned experiences and hedonic aspects of food, in contrast to homeostatic mechanisms, which regulate feeding in response to general energy deficit or other types of metabolic need.
The opposite of equilibrium The salt content of ocean waves remains constant. Example of Environmental Response. A chameleon changing their color to their environment.
Learn more about non homeostatic to visit this link
https://brainly.com/question/7272693
#SPJ4