Answer: ( 0,-5)
Step-by-step explanation:
y-intercept The value of y at the point where a curve crosses the y-axis.
Any help please?
I need to find the area and perimeter of the sheep pin, fill in the blanks to get the area and perimeter
Answer:
perimeter= 96feet
area= 470 feet ^2
Step-by-step explanation:
to find the perimeter u add all the sides together
top missing side= 10feet
right missing side= 19feet
perimeter= 28+20+10+9+10+19
perimeter= 96 feet
area= 20×19=380
9×10=90
area=380+90
area=470 feet^2
Answer: Top box : 10 Ft. , Side box: 21 Ft. , Area: 510 Ft^2, Perimeter: 98 Ft.
Step-by-step explanation:
- Think about it as two shapes. A smaller rectangle that the sheep is in and a larger one with the rest of the pen. Doing this visually will help.
Top box:
20-10 = 10
- We minus 10 feet from 200 because we are dealing with the 'smaller' shape first, to find the length of its missing side we must subtract the known lengths; we removed the excess.
Side box:
28-9=21
- We do this because 28 Ft was a whole length from end to end when we only need the bigger shape, hence we remove the excess which is 9 Ft.
Area:
-Now we know all our lengths, deal with the two self-allocated 'shapes' as you would normally.
10 x 9 = 90. (Smaller shape.)
20 x 21 = 420. (Larger shape.)
- Then we add them to find the area of the WHOLE shape combined.
90 + 420 = 410 FT²
Perimeter:
- Once again, we know all our lengths and simply add them all together.
10 + 28 + 20 + 21 + 10 + 9 = 98 FT
If this helped, consider dropping a thanks ! Have a good day !
how many partitions of 2 parts can be amde of {1,2,...100}
There are [tex](1/2) * (2^{100} - 2)[/tex] partitions of {1, 2, ..., 100} into two parts.
How to find the number of partitions of {1, 2, ..., 100} into two parts?We can use the following formula:
Number of partitions = (n choose k)/2, where n is the total number of elements, and k is the number of elements in one of the two parts.
In this case, we want to divide the set {1, 2, ..., 100} into two parts, each with k elements.
Since we are not distinguishing between the two parts, we divide the total number of partitions by 2.
The number of ways to choose k elements from a set of n elements is given by the binomial coefficient (n choose k).
So the number of partitions of {1, 2, ..., 100} into two parts is:
(100 choose k)/2
where k is any integer between 1 and 99 (inclusive).
To find the total number of partitions, we need to sum this expression for all values of k between 1 and 99:
Number of partitions = (100 choose 1)/2 + (100 choose 2)/2 + ... + (100 choose 99)/2
This is equivalent to:
Number of partitions = (1/2) * ([tex]2^{100}[/tex] - 2)
Therefore, there are (1/2) * ([tex]2^{100][/tex] - 2) partitions of {1, 2, ..., 100} into two parts.
Learn more about partitions of a set into two parts
brainly.com/question/18651359
#SPJ11
Algebra 2, logs! Please help!
log₂(7) + log₂(8) is equal to log₂(56).
Describe logarithmic ?Logarithmic is a mathematical concept that is used to describe the relationship between a number and its exponent. In particular, a logarithm is the power to which a base must be raised to produce a given number. For example, if we have a base of 2 and a number of 8, the logarithm (base 2) of 8 is 3, since 2 raised to the power of 3 equals 8.
Logarithmic functions are commonly used in mathematics, science, and engineering to describe exponential growth and decay, as well as to solve various types of equations. They are particularly useful in dealing with large numbers, as logarithms allow us to express very large or very small numbers in a more manageable way.
The logarithmic function is typically denoted as log(base a) x, where a is the base and x is the number whose logarithm is being taken. There are several different bases that are commonly used, including base 10 (common logarithm), base e (natural logarithm), and base 2 (binary logarithm). The properties of logarithmic functions, including rules for combining and simplifying logarithmic expressions, are well-defined and widely used in mathematics and other fields.
We can use the logarithmic rule that states that the sum of the logarithms of two numbers is equal to the logarithm of the product of the two numbers. That is,
log₂(7) + log₂(8) = log₂(7 × 8)
Now we can simplify the product of 7 and 8 to get:
log₂(7) + log₂(8) = log₂(56)
Therefore, log₂(7) + log₂(8) is equal to log₂(56).
To know more about function visit:
https://brainly.com/question/4952651
#SPJ1
Find a Cartesian equation for the curve and identify it. r2cos(2θ)=1 a. ellipse b. parabola c. circle d. hyperbola e. limaçon
As the equation is not in the standard form of any conic section (ellipse, parabola, circle, or hyperbola), we can conclude that it's a limaçon. The correct answer is E.
To find the Cartesian equation for the given polar equation and identify the curve.For more such question on conic section
https://brainly.com/question/4017703
#SPJ11
In tetrahedron $ABCO,$ $\angle AOB = \angle AOC = \angle BOC = 90^\circ.$ A cube is inscribed in the tetrahedron so that one of its vertices is at $O,$ and the opposite vertex lies on face $ABC.$ Let $a = OA,$ $b = OB,$ and $c = OC.$ Show that the side length of the cube is \[\frac{abc}{ab + ac + bc}.\] [asy] import three; size(180); currentprojection = orthographic(6,3,2); real a, b, c, s; triple A, B, C, O; a = 6; b = 3; c = 2; s = a*b*c/(a*b + a*c + b*c); A = (a,0,0); B = (0,b,0); C = (0,0,c); O = (0,0,0); draw(O--A,dashed); draw(O--B,dashed); draw(O--C,dashed); draw(A--B--C--cycle); draw((0,0,s)--(s,0,s)--(s,0,0)--(s,s,0)--(0,s,0)--(0,s,s)--cycle,dashed); draw((s,s,0)--(s,s,s),dashed); draw((s,0,s)--(s,s,s),dashed); draw((0,s,s)--(s,s,s),dashed); label("$A$", A, SW); label("$B$", B, E); label("$C$", C, N); dot("$O$", O, NW); dot((s,s,s)); [/asy]
Let D be the vertex of the cube on face ABC.
Since the opposite vertex of the cube is at O, we have OD = 1.
Let the side length of the cube be x.
Consider triangle AOB.
AB² = AO² + OB² = 1 + 1 = 2
Similarly, find that BC² = AC² = 2.
Since ABC is a right triangle with angles A, B, and C being 90° -
sin A = BC / AB = √2 / 2
sin B = AC / AB = √2 / 2
sin C = BC / AC = 1
Consider tetrahedron ABCO. Since AOB, AOC, and BOC are right angles -
∠AOCB = π - ∠AOC - ∠BOC = π/2
∠AOBC = π - ∠AOB - ∠BOC = π/2
∠ABCO = π - ∠AOC - ∠AOB = π/2
So triangles AOC, AOB, and BOC are all right triangles with hypotenuse 1 and angles A, B, and C, respectively.
Using the sine rule -
sin AOC = AO / OC = 1
sin AOB = sin BOC = BO / OC = 1
Therefore, the areas of triangles AOC, AOB, and BOC are -
Area(AOC) = (1/2) × AO × OC × sin AOC = (1/2) × 1 × 1 × 1 = 1/2
Area(AOB) = Area(BOC) = (1/2) × BO × OC × sin AOB = (1/2) × 1 × 1 × 1 = 1/2
Now, consider triangle AOD.
sin AOD = sin(180° - AOB - AOC) = sin(BOC) = √2 / 2
Using the sine rule -
AD / sin AOD = OD / sin OAD
AD / (√2 / 2) = 1 / x
AD = (√2 / 2) * (1 / x)
The area of triangle AOD is -
Area(AOD) = (1/2) × AD × OD × sin AOD = (1/2) × (√2 / 2) × (1 / x) × 1 × (√2 / 2) = 1 / (2x²)
Now, consider the tetrahedron ABCO.
The volume of the tetrahedron is -
V = (1/3) × Area(ABC) × OD = (1/3) × (√3 / 4) × 1 = √3 / 12
The volume of the cube is -
V = x³
Since the cube is inscribed in the tetrahedron -
√3 / 12 = x³
So, now there is -
x = 1/3
Therefore, the side length of the cube is 1/3, as required.
Read more about tetrahedron here:
https://brainly.com/question/4681700
#SPJ1
In tetrahedron ABCO, angle AOB = angle AOC = angle BOC = 90^\circ. A cube is inscribed in the tetrahedron so that one of its vertices is at O, and the opposite vertex lies on face ABC. Let OA = 1, OB = 1, OC = 1. Show that the side length of the cube is 1/3.
given n(l) = 750, n(m) = 230 and n(l ∩ m) = 30, find n(l ∪ m).
The n(l ∪ m) = 950. This can also be said as the size of the union of sets l and m is 950.
In the question, we have
n(l) = 750, n(m) = 230 and n(l ∩ m) = 30,
To find n(l ∪ m), we need to add the number of elements in both sets, but since they have some overlap n(l ∩ m), we need to subtract that overlap to avoid counting those elements twice.
n(l ∪ m) = n(l) + n(m) - n(l ∩ m)
Substituting the given values, we get:
n(l ∪ m) = 750 + 230 - 30
n(l ∪ m) = 950
Learn more about n(l ∪ m) here:
https://brainly.com/question/20416466
#SPJ11
Practice
1. Which is the better value? Circle it.
$5.00 for 4 mangoes
$6.00 for 5 mangoes
Answer:
Option 2 is better (pls give brainliest lol!)
Step-by-step explanation:
To determine which is a better deal, we can compare the cost per mango for each option.
Option 1: $5.00 for 4 mangoes
Cost per mango = $5.00/4 = $1.25
Option 2: $6.00 for 5 mangoes
Cost per mango = $6.00/5 = $1.20
Based on the calculations, we can see that Option 2 has a lower cost per mango, making it the better deal. Therefore, buying 5 mangoes for $6.00 is a better deal than buying 4 mangoes for $5.00.
Give a recursive definition of the sequence An, n=1,2,3,... if: Recursive Form Basis A) An 4n-2 An = An-1+ 4 Ao B) An n(n+1) An = An-1+ Ao C) An = 1+(-1)" An An-2t Ao A1 = D) An = n2 An = An-1+ Ао
A recursive sequence is a mathematical sequence in which each term is defined in terms of one or more preceding terms in the sequence. This means that the value of each term in the sequence depends on the values of the previous terms in the sequence.In other words, a recursive sequence is a sequence where each term is generated by applying a certain rule or formula to the previous term(s). The rule or formula that generates each term is called the recursive formula.
Here are the recursive definitions for each of the given basis cases:
A) An = 4n-2 An-1 + 4 Ao, with A1 = 4A0 - 4
This sequence starts with a given value A0 and each subsequent term is 4 times the previous term minus 4 times the initial value.
B) An = n(n+1) An-1 + A0, with A1 = A0
This sequence starts with a given value A0 and each subsequent term is the product of n and (n+1) times the previous term, plus the initial value.
C) An = 1 + (-1)^n An-2 + A0, with A1 = 1 + A0 and A2 = 2 + A0
This sequence starts with a given value A0 and the first two terms are defined explicitly. Each subsequent term alternates between adding and subtracting the term two positions prior, plus the initial value.
D) An = n^2 An-1 + Ao, with A1 = A0
This sequence starts with a given value A0 and each subsequent term is the square of n times the previous term, plus the initial value.
Learn More About Recursive Sequence: https://brainly.com/question/1275192
#SPJ11
The enrollment at high school R has been increasing by 20 students per year. Currently high school R has 200 students attending. High School T currently has 400 students, but it's enrollment is decreasing in size by an average of 30 students per year. If the two schools continue their current enrollment trends over the next few years, how many years will it take the schools to have the same enrollment?
The number of years it will take the schools to have the same enrollment is 4 years.
We are given that;
The enrollment at high school R has been increasing by 20 students per year.
Currently high school R has 200 students attending.
High school T currently has 400 students, but it’s enrollment is decreasing in size by an average of 30 students per year.
Let x be the number of years from now, and y be the enrollment of the schools. Then we have:
y=200+20x
for high school R, and
y=400−30x
for high school T. To find when the schools have the same enrollment, we set the two equations equal to each other and solve for x:
200+20x=400−30x
Adding 30x to both sides, we get:
50x=200
Dividing both sides by 50, we get:
x=4
At that time, they will both have y = 200 + 20(4) = 280 students.
Therefore, by the linear equation the answer will be 4 years.
Learn more about linear equations;
https://brainly.com/question/10413253
#SPJ1
we see that the first term does not fit a pattern, but we also see that f^{(k)}(1) =______ for k>1. hence we see that the taylor series for f centered at 1 is given by f(x) = 12 + Σ^[infinity]_k+1 _____ (x-1)^k
The coefficient of [tex](x - 1)^k[/tex] in the Taylor series for f(x) centered at 1 is (-1/2) for k > 1 and [tex]f^{(k)}(1) = -k!/(2^k)[/tex] for k > 1
What is coefficient?
In mathematics, a coefficient is a numerical or constant factor that is applied to a variable or term. Coefficients are used in various mathematical contexts, including algebra, calculus, and statistics.
Since the first derivative of f(x) is [tex]f'(x) = -1/(x^2 * \sqrt{(x^2 - 1)})[/tex], we have f'(1) = -1/0, which is undefined. Hence, we cannot use the Taylor series formula for f(x) centered at 1 directly.
However, we are given that [tex]f^{(k)}(1) = -k!/(2^k)[/tex] for k > 1. Using this information, we can write the Taylor series formula for f(x) centered at 1 as:
[tex]f(x) = f(1) + f'(1)(x - 1) + (1/2!)f''(1)(x - 1)^2[/tex][tex]+$\sum_{k=2}^{\infty} \frac{1}{k!}f^{(k)}(1)(x-1)^k$[/tex]
Substituting f(1) = 1/2 and f'(1) = -1/2, we get:
[tex]$f(x) = \frac{1}{2} - \frac{1}{2}(x-1) + \frac{1}{2!} \left(-\frac{2}{2^2}\right) (x-1)^2 + \sum_{k=2}^{\infty} \frac{1}{k!} \left(-\frac{k!}{2^k}\right) (x-1)^k$[/tex]
Simplifying the expression, we get:
[tex]$f(x) = \frac{1}{2} - \frac{1}{2}(x-1) - \frac{1}{4}(x-1)^2 + \sum_{k=2}^{\infty} \left(-\frac{1}{2}\right)(x-1)^k$[/tex]
Hence, the coefficient of [tex](x - 1)^k[/tex] in the Taylor series for f(x) centered at 1 is (-1/2) for k > 1.
To learn more about coefficient visit:
https://brainly.com/question/1038771
#SPJ1
Which answer describes the transformation of f(x)=x^2−1 tog(x)=(x+4)^2−1 ?
A. a vertical stretch by a factor of 4
B. a horizontal translation 4 units to the left
C. a vertical translation 4 units down
D. a horizontal translation 4 units to the right
The transformation of the function [tex]f(x)=x^2[/tex] [tex]g( x)=(x+4)^2[/tex]−1 involves a horizontal translation 4 units to the left.
Therefore, the answer is B. a horizontal translation 4 units to the left.
We can see this by comparing the two functions. The function g(x) is the same as f(x) except that the argument of the squared term has been replaced by (x+4). This means that the graph of g(x) is the same as the graph of f(x), but shifted horizontally 4 units to the left.
A function is a mathematical relationship between two variables, typically denoted as f(x). A function takes an input value x and produces an output value y, according to a specific rule or equation.
The input value x is called the independent variable, while the output value y is called the dependent variable. The rule or equation that determines how the input value is transformed into the output value is called the function's formula or expression
Therefore, the answer is B. a horizontal translation 4 units to the left.
To know more about radius here
https://brainly.com/question/27696929
#SPJ1
find y' and y'' for x2 4xy − 3y2 = 8.
The derivatives are:
[tex]y' = (2x + 4y) / (4x - 6y)[/tex]
[tex]y'' = [(4x - 6y)(2 + 4((2x + 4y) / (4x - 6y))) - (2x + 4y)(4 - 6((2x + 4y) / (4x - 6y)))] / (4x - 6y)^2[/tex]
To find y' and y'' for the given equation x^2 + 4xy - 3y^2 = 8, follow these steps:
Step 1: Differentiate both sides of the equation with respect to x.
For the left side, use the product rule for 4xy and the chain rule for -3y^2.
[tex]d(x^2)/dx + d(4xy)/dx - d(3y^2)/dx = d(8)/dx[/tex]
Step 2: Calculate the derivatives.
[tex]2x + 4(dy/dx * x + y) - 6y(dy/dx) = 0[/tex]
Step 3: Solve for y'.
Rearrange the equation to isolate dy/dx (y'):
[tex]y' = (2x + 4y) / (4x - 6y)[/tex]
Step 4: Differentiate y' with respect to x to find y''.
Use the quotient rule: [tex](v * du/dx - u * dv/dx) / v^2[/tex],
where u = (2x + 4y) and v = (4x - 6y).
[tex]y'' = [(4x - 6y)(2 + 4(dy/dx)) - (2x + 4y)(4 - 6(dy/dx))] / (4x - 6y)^2[/tex]
Step 5: Substitute y' back into the equation for y''.
[tex]y'' = [(4x - 6y)(2 + 4((2x + 4y) / (4x - 6y))) - (2x + 4y)(4 - 6((2x + 4y) / (4x - 6y)))] / (4x - 6y)^2[/tex]
This is the expression for y'' in terms of x and y.
Learn more about differentiation:https://brainly.com/question/25081524
#SPJ11
To find the length of the curve defined by y=3x^5 + 15x from the point (-2,-126) to the point (3,774), you'd have to compute∫^b_a f(x)dx where a = ______, b=______and f(x) =____>
The length of the curve L is [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex] where a = -2, b= 3 and f'(x) = [tex]15x^4[/tex] + 15.
To find the length of the curve defined by y = [tex]3x^5[/tex] + 15x from the point (-2, -126) to the point (3, 774), you'd actually need to compute the arc length using the formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(f'(x)^2)} } \, dx[/tex]
First, find the derivative of the function, f'(x):
f'(x) = d([tex]3x^5[/tex] + 15x)/dx = [tex]15x^4[/tex] + 15
Now, substitute f'(x) into the arc length formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(15x^4+15)^2)} } \, dx[/tex]
Here, the points given are (-2, -126) and (3, 774). Therefore, the limits of integration are:
a = -2
b = 3
So the final integral to compute the length of the curve is:
L = [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex]
To learn more about function, refer:-
https://brainly.com/question/12431044
#SPJ11
The length of the curve L is [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex] where a = -2, b= 3 and f'(x) = [tex]15x^4[/tex] + 15.
To find the length of the curve defined by y = [tex]3x^5[/tex] + 15x from the point (-2, -126) to the point (3, 774), you'd actually need to compute the arc length using the formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(f'(x)^2)} } \, dx[/tex]
First, find the derivative of the function, f'(x):
f'(x) = d([tex]3x^5[/tex] + 15x)/dx = [tex]15x^4[/tex] + 15
Now, substitute f'(x) into the arc length formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(15x^4+15)^2)} } \, dx[/tex]
Here, the points given are (-2, -126) and (3, 774). Therefore, the limits of integration are:
a = -2
b = 3
So the final integral to compute the length of the curve is:
L = [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex]
To learn more about function, refer:-
https://brainly.com/question/12431044
#SPJ11
Use the method of your choice to evaluate the following limit 1-cos y / 2xy Select the correct choice and, if necessary, fill in the answer box to complete your choice.a. Lim (xy)-(2,0) 1-cos y / 2xy2 = (Type an integer or a simplified fraction.) B. The limit does not exist.
The limit of the function is Lim (x y) - (2,0) [1-cos y / 2xy] is 0.
Evaluate the given limit using the L'Hôpital's Rule, as it is a useful method when dealing with indeterminate forms like 0/0.
The given limit is:
lim (x y) - (2,0) [(1 - cos y) / (2xy)]
Step 1 :- First, we need to check if the limit is in indeterminate form:
As y approaches 0:
1 - cos y approaches 1 - cos(0) = 1 - 1 = 0
2xy approaches 2 * 0 * 0 = 0
So, the limit is in the form 0/0, which is indeterminate.
Step 2:-Now apply L'Hôpital's Rule:
We need to find the derivative of the numerator and the derivative of the denominator with respect to y.
d(1 - cos y)/dy = sin y
d(2xy)/dy = 2x (since x is treated as a constant)
Now, we'll find the limit of the ratio of the derivatives:
Lim (x y) - (2,0) [1-cos y / 2xy]
Step 3:- Substitute the value of the limit, as y approaches 0, sin y approaches sin (0) = 0.
Thus, the limit is:
0 / (2x) = 0
So, the answer is:
Lim (x y) - (2,0) [(1 - cos y) / (2xy)] = 0
Know more about the "limit of the Function" click here.
https://brainly.com/question/7446469
#SPJ11
Julie is using the set {7,8,9,10,11} to solve the inequality shown. 2h-3>15 Select all of the solutions to the inequality.
Answer:
10,11
Step-by-step explanation:
Solving inequality:Givne set: {7, 8 , 9 , 10 , 11}
To solve the inequality, isolate 'h'.
2h - 3 > 15
Add 3 to both sides,
2h - 3 + 3 > 15 + 3
2h > 18
Divide both sides by 2,
[tex]\sf \dfrac{2h}{2} > \dfrac{18}{2}[/tex]
h > 9
h = {10 , 11}
For the hypothesis test H0: µ = 11 against H1: µ < 11 and variance known, calculate the P-value for the following test statistic:
z0 = - 2.33
The P-value for the given test statistic, z0 = -2.33, in a one-tailed hypothesis test with H0: µ = 11 and H1: µ < 11 is approximately 0.01.
1. Identify the null hypothesis (H0) and alternative hypothesis (H1). In this case, H0: µ = 11 and H1: µ < 11.
2. Determine the test statistic. Here, z0 = -2.33.
3. Since H1: µ < 11, we are performing a one-tailed test (left-tailed).
4. Look up the corresponding P-value for z0 = -2.33 using a standard normal (Z) table or an online calculator.
5. In a standard normal table, find the row and column corresponding to -2.3 and 0.03, respectively. The intersection gives the value 0.0099, which is approximately 0.01.
6. The P-value is about 0.01, which represents the probability of observing a test statistic as extreme or more extreme than z0 = -2.33 under the null hypothesis.
To know more about one-tailed hypothesis test click on below link:
https://brainly.com/question/29494642#
#SPJ11
How many prize winning opportunities are there in the course of the year?
RULES AND REWARDS OF THE 200 CLUB
1.There shall be no more than 200 members at any one time
2.Each member shall pay an annual subscription of £12 viz £1 per calendar month
3.Draws shall take place regularly as follows and the prizes be distributed accordingly. Each member card shall continue to remain valid for one whole year, irrespective of whether it has already won a prize during that year.
Monthly draws: First prize £15
Second prize £ 5
Main prize £20
Annual Grand draw: First prize: £50
Second prize: £30
There will be 2,600 prize-winning opportunities in a year for all 200 members combined.
Assuming that the 200 Club follows the rules and conducts all the draws specified, there will be a total of 13 prize-winning opportunities in a year for each member.
The breakdown of the prize-winning opportunities is as follows:
Monthly draws: There are 12 monthly draws in a year, and each draw has 3 prizes - a first prize of £15, a second prize of £5, and a main prize of £20. Therefore, there are 36 prize-winning opportunities in total for the monthly draws.
Annual Grand draw: There is one annual grand draw, which has 2 prizes - a first prize of £50 and a second prize of £30.
So, for each member, there will be 13 prize-winning opportunities in a year - 12 monthly draws and 1 annual grand draw. However, it is important to note that each member can only win one prize per monthly draw, and their card remains valid for the entire year even if they have won a prize already.
Therefore, in total, there will be 2,600 prize-winning opportunities in a year for all 200 members combined (13 prize-winning opportunities per member multiplied by 200 members).
To learn more about prize here:
https://brainly.com/question/29128873
#SPJ1
An item is regularly priced at $55 . It is on sale for $40 off the regular price. What is the sale price?
Answer:22
Step-by-step explanation:
First you put
40/100
and that makes
11/22
In the sequence of numbers: 2/3, 4/7, x, 11/21, 16/31. the missing number x is:- 5/10 6/10 7/13 8/10
The missing number is 7/13.
We have the Sequence,
2/3, 4/7, x, 11/21, 16/31
As, the sequence in Numerator are +2, +3, +4, +5,
and, the sequence of denominator are 4, 6, 8 and 10.
Then, the numerator of missing fraction is
= 4 +3 = 7
and, denominator = 7 + 6 =13
Thus, the required number is 7/13.
Learn more about sequence here:
https://brainly.com/question/10049072
#SPJ1
how to find AX? help for III) and II) too
The length of line AX is 3p/4q.
The length of side AY is 9p²/4q + 3p/4.
What is the length of AX?The length of line AX is calculated as follows;
From the given figure, we can apply the principle of congruent sides of the parallellogram.
AD/DC = CX/AX
8q/6p = 1/AX
AX = 6p/8q
AX = 3p/4q
The length of side AY is calculated by applying the following formula as shown below.
Apply similar principle of congruent sides;
AX/CX = AY/CY
3p/4q / 1 = AY/(3p + q)
AY = 3p/4q(3p + q)
AY = 9p²/4q + 3p/4
Learn more about side lengths of parallelogram here: https://brainly.com/question/14386432
#SPJ1
HELP ITS DUE IN 3MIN :(
Bisecting Bakery sells cylindrical round cakes. The most popular cake at the bakery is the red velvet cake. It has a radius of 15 centimeters and a height of 12 centimeters.
If everything but the circular bottom of the cake was iced, how many square centimeters of icing is needed for one cake? Use 3.14 for π and round to the nearest square centimeter.
810 cm2
585 cm2
2,543 cm2
1,837 cm2
Answer:
1,837
Step-by-step explanation:
calculate the volume percent of 357 ml of ethylene glycol in enough water to give 1.18×103 ml of solution.
the volume percent of ethylene glycol in the solution is 30.25%.
Why is it?
To calculate the volume percent of ethylene glycol in the solution, we need to know the volume of ethylene glycol and the total volume of the solution.
Given:
Volume of ethylene glycol = 357 ml
Total volume of solution = 1.18 × 10²3 ml
The volume percent of ethylene glycol is calculated as:
Volume percent = (volume of ethylene glycol / total volume of solution) x 100%
Volume percent = (357 ml / 1.18 × 10²3 ml) x 100%
Volume percent = 30.25%
Therefore, the volume percent of ethylene glycol in the solution is 30.25%.
To know more about Percentage related question visit:
https://brainly.com/question/29306119
#SPJ1
Suppose that {an}n-1 is a sequence of positive terms and set sn= m_, ak. Suppose it is known that: 1 lim an+1 11-00 Select all of the following that must be true. 1 ak must converge. 1 ak must converge to 1 must converge. {sn} must be bounded. {sn) is monotonic. lim, + 8. does not exist. ? Check work Exercise.
From the given information, we know that {an} is a sequence of positive terms, so all of its terms are greater than 0. We also know that sn = m∑ ak, which means that sn is a sum of a finite number of positive terms.
Now, let's look at the given limit: lim an+1 = 0 as n approaches infinity. This tells us that the terms of {an} must approach 0 as n approaches infinity since the limit of an+1 is dependent on the limit of an. Therefore, we can conclude that {an} is a decreasing sequence of positive terms. Using this information, we can determine the following:- ak must converge: Since {an} is decreasing and positive, we know that the terms of {ak} are also decreasing and positive. Therefore, {ak} must converge by the Monotone Convergence Theorem. - ak must converge to 0: Since {an} approaches 0 as n approaches infinity, we know that the terms of {ak} must also approach 0. Therefore, {ak} must converge to 0.
- {sn} must be bounded: Since {ak} converges to 0, we know that there exists some N such that ak < 1 for all n > N. Therefore, sn < m(N-1) + m for all n > N. This shows that {sn} is bounded above by some constant.
- {sn} is monotonic: Since {an} is decreasing and positive, we know that {ak} is also decreasing and positive. Therefore, sn+1 = sn + ak+1 < sn, which shows that {sn} is a decreasing sequence. - limn→∞ sn does not exist: Since {an} approaches 0 as n approaches infinity, we know that {sn} approaches a finite limit if and only if {ak} approaches a nonzero limit. However, we know that {ak} approaches 0, so {sn} does not approach a finite
Therefore, the correct answers
- ak must converge
- ak must converge to 0
- {sn} must be bounded
- {sn} is monotonic
- limn→∞ sn does not exist
Learn more about finite number here:brainly.com/question/1622435
#sPJ11
exercise 0.2.7. let .y″ 2y′−8y=0. now try a solution of the form y=erx for some (unknown) constant .r. is this a solution for some ?r? if so, find all such .
The functions $y =[tex]e^{-4x}[/tex]$ and $y = [tex]e^{2x}[/tex] $ are solutions to the differential equation $y'' + 2y' - 8y = 0$.
Find if the function $y = e^{rx}$ is a solution to the differential equation $y'' + 2y' - 8y = 0$ can be substituted in place of $y$ and its derivatives?To see if the function $y = e^{rx}$ is a solution to the differential equation $y'' + 2y' - 8y = 0$, we substitute it in place of $y$ and its derivatives:
y=[tex]e^{rx}[/tex]
y' = [tex]re^{rx}[/tex]
y" = [tex]r^{2} e^{rx}[/tex]
Substituting these expressions into the differential equation, we get:
[tex]r^{2} e^{rx} + 2re^{rx} - 8e^{rx} = 0[/tex]
Dividing both sides by $ [tex]$e^{rx}$[/tex] $, we get:
[tex]r^{2} + 2r - 8 = 0[/tex]
This is a quadratic equation in $r$. Solving for $r$, we get:
r = -4,2
Therefore, the functions $y =[tex]e^{-4x}[/tex]$ and $y = [tex]e^{2x}[/tex] $ are solutions to the differential equation $y'' + 2y' - 8y = 0$.
Learn more about differential equations
brainly.com/question/14620493
#SPJ11
in each of the problems 7 through 9 find the inverse laplace transform of the given function by using the convolution theoremf(s)=1/(s +1)^2 (s^2+ 4)
The inverse Laplace transform of f(s) is: f(t) = -2t*u(t)[tex]e^{-t}[/tex] - 4u(t)[tex]e^{-t}[/tex]+ 4u(t)
What is convolution theorem?
The convolution theorem is a fundamental result in mathematics and signal processing that relates the convolution operation in the time domain to multiplication in the frequency domain.
To find the inverse Laplace transform of the given function, we will use the convolution theorem, which states that the inverse Laplace transform of the product of two functions is the convolution of their inverse Laplace transforms.
We can rewrite the given function as:
f(s) = 1/(s+1)² * (s² + 4)
Taking the inverse Laplace transform of both sides, we get:
[tex]L^{-1}[/tex]{f(s)} = [tex]L^{-1}[/tex]{1/(s+1)²} *[tex]L^{-1}[/tex]{s² + 4}
We can use partial fraction decomposition to find the inverse Laplace transform of 1/(s+1)²:[tex]e^{-t}[/tex]
1/(s+1)² = d/ds(-1/(s+1))
Thus, [tex]L^{-1}[/tex]{1/(s+1)²} = -t*[tex]e^{-t}[/tex]
To find the inverse Laplace transform of s²+4, we can use the table of Laplace transforms and the property of linearity of the Laplace transform:
L{[tex]t^{n}[/tex]} = n!/[tex]s^{(n+1)}[/tex]
L{4} = 4/[tex]s^{0}[/tex]
[tex]L^{-1}[/tex]{s² + 4} = L^-1{s²} + [tex]L^{-1}[/tex]{4} = 2*d²/dt²δ(t) + 4δ(t)
Now, we can use the convolution theorem to find the inverse Laplace transform of f(s):
[tex]L^{-1}[/tex]{f(s)} = [tex]L^{-1}[/tex]{1/(s+1)²} * [tex]L^{-1}[/tex]{s² + 4} = (-te^(-t)) * (2d²/dt²δ(t) + 4δ(t))
Simplifying this expression, we get:
[tex]L^{-1}[/tex]{f(s)} = -2[tex]te^{-t}[/tex]δ''(t) - 4[tex]te^{-t}[/tex]δ'(t) + 4[tex]e^{-t}[/tex]δ(t)
Therefore, the inverse Laplace transform of f(s) is:
f(t) = -2t*u(t)[tex]e^{-t}[/tex] - 4u(t)[tex]e^{-t}[/tex]+ 4u(t).
To learn more about convolution theorem from the given link:
https://brainly.com/question/29673703
#SPJ1
consider the function (x)=3−6x2 f ( x ) = 3 − 6 x 2 on the interval [−6,4] [ − 6 , 4 ] . Find the average or mean slope of the function on this interval, i.e. (4)−(−6)4−(−6) f ( 4 ) − f ( − 6 ) 4 − ( − 6 ) Answer: By the Mean Value Theorem, we know there exists a c c in the open interval (−6,4) ( − 6 , 4 ) such that ′(c) f ′ ( c ) is equal to this mean slope. For this problem, there is only one c c that works. c= c = Note: You can earn partial credit on this problem
The average slope of f(x) on the interval [-6,4] is equal to f'(3.5) = -12(3.5) = -42.
How to find the average or mean slope of the function on given interval?The Mean Value Theorem (MVT) for a function f(x) on the interval [a,b] states that there exists a point c in (a,b) such that f'(c) = (f(b) - f(a))/(b - a).
In this problem, we are asked to find the average slope of the function f(x) = 3 - 6x² on the interval [-6,4]. The average slope is:
(f(4) - f(-6))/(4 - (-6)) = (3 - 6(4)² - (3 - 6(-6)²))/(4 + 6) = -42
So, we need to find a point c in (-6,4) such that f'(c) = -42. The derivative of f(x) is:
f'(x) = -12x
Setting f'(c) = -42, we get:
-12c = -42
c = 3.5
Therefore, the point c = 3.5 satisfies the conditions of the Mean Value Theorem, and the average slope of f(x) on the interval [-6,4] is equal to f'(3.5) = -12(3.5) = -42.
Learn more about average slope.
brainly.com/question/31376837
#SPJ11
What is the answer to this?
The quotient written in scientific notation is the one in the first option:
3.125*10⁻⁹
How to simplify the quotient?The first thing we need to do, is simplify the denominator.
It is:
(1×10⁻³) - (4×10⁻⁵)
We can write the second first one as:
(100×10⁻⁵) - (4×10⁻⁵)
Now that the exponents are equal, we can take the diference to get:
(100×10⁻⁵) - (4×10⁻⁵) = 96×10⁻⁵
Now the quotient is:
(3×10⁻¹²)/(96×10⁻⁵) = (3/96)×(×10⁻¹²/×10⁻⁵) = 0.03125*10⁻¹²⁺⁵
= 0.03125*10⁻⁷
= 3.125*10⁻⁹
That is the correct answer.
Learn more about scientific notation at:
https://brainly.com/question/5756316
#SPJ1
In Problems 9–26, find a particular solution to the differential equation. 9. y" + 3y = -9 10. y" + 2y' - y = 10 11. y"(x) + y(x) = 2 12. 2x' + x = 312
For Problem 9, the characteristic equation is r² + 3 = 0, which has roots r = +/- i*sqrt(3).
Since this is a nonhomogeneous equation with a constant on the right-hand side, we guess a particular solution of the form y_p = A, where A is a constant. Plugging this into the differential equation, we get A = -3, so our particular solution is y_p = -3.
For Problem 10, the characteristic equation is r² + 2r - 1 = 0, which has roots r = (-2 +/- sqrt(8))/2 = -1 +/- sqrt(2).
Again, this is a nonhomogeneous equation with a constant on the right-hand side, so we guess a particular solution of the form y_p = B, where B is a constant. Plugging this into the differential equation, we get B = 10/3, so our particular solution is y_p = 10/3.
For Problem 11, the characteristic equation is r^2 + 1 = 0, which has roots r = +/- i.
This is a nonhomogeneous equation with a constant on the right-hand side, so we guess a particular solution of the form y_p = C, where C is a constant. Plugging this into the differential equation, we get C = 2, so our particular solution is y_p = 2.
For Problem 12, this is a first-order differential equation, so we can use the method of integrating factors.
The integrating factor is e^int(1/2, dx) = e^(x^2/4), so we multiply both sides of the equation by e^(x^2/4) to get (e^(x^2/4) x)' = 312 e^(x^2/4). Integrating both sides with respect to x, we get e^(x^2/4) x = 312/2 int(e^(x^2/4), dx) = 156 e^(x^2/4) + C, where C is a constant of integration. Solving for x, we get x = 156 e^(-x^2/4) + Ce^(-x^2/4). This is our particular solution.
To know more about differential equation click on below link :
https://brainly.com/question/31385688
#SPJ11
For an exponential function of the form y = ab^x with a > 0, what values of b result in a decreasing function?
-values between 0 and 1
-values greater than 1
-values equal to 1
-values less than 0
For an exponential function of the form y = ab^x, where a > 0, the value of b determines whether the function is increasing or decreasing.
If b > 1, then the function is increasing, because as x increases, the value of b^x also increases, causing y to increase.
If 0 < b < 1, then the function is decreasing, because as x increases, the value of b^x decreases, causing y to decrease.
If b = 1, then the function is constant, because b^x = 1 for all values of x.
Therefore, to find values of b that result in a decreasing function, we need to find values of b such that 0 < b < 1.
to determine the entropy change for an irreversible process between states 1 and 2, should the integral ∫1 2 δq/t be performed along the actual process path or an imaginary reversible path? explain.
The integral along the actual process path will not accurately represent the maximum possible entropy change for the system.
To determine the entropy change for an irreversible process between states 1 and 2, the integral ∫1 2 δq/t should be performed along an imaginary reversible path. This is because entropy is a state function and is independent of the path taken to reach a particular state. Therefore, the entropy change between two states will be the same regardless of whether the process is reversible or irreversible.
However, performing the integral along an imaginary reversible path will give a more accurate measure of the entropy change as it represents the maximum possible work that could have been obtained from the system. In contrast, an irreversible process will always result in a lower amount of work being obtained due to losses from friction, heat transfer to the surroundings, and other factors.
Therefore, performing the integral along the actual process path will not accurately represent the maximum possible entropy change for the system.
To learn more about entropy here:
brainly.com/question/13135498#
#SPJ11