for y=ln(x7 3x−9), to find y′ would require the chain rule. if y=f(g(x)), find an f(x) and g(x) that would allow you to use the chain rule

Answers

Answer 1

y' = (2x - 5)/(x^2 - 5x + 2)

Using the chain rule in this way allows us to differentiate more complicated functions by breaking them down into simpler functions and applying the chain rule appropriately.

In order to use the chain rule, we need to have a function of the form y=f(g(x)), where g(x) is the inner function and f(x) is the outer function.

One possible choice of f(x) and g(x) that would allow us to use the chain rule is:

g(x) = x^2 - 5x + 2
f(u) = ln(u)

Then, we can write:

y = f(g(x)) = ln(x^2 - 5x + 2)

To find y', we need to apply the chain rule:

y' = f'(g(x)) * g'(x) = 1/(x^2 - 5x + 2) * (2x - 5)

Therefore,

y' = (2x - 5)/(x^2 - 5x + 2)

Using the chain rule in this way allows us to differentiate more complicated functions by breaking them down into simpler functions and applying the chain rule appropriately.

Visit to know more about Chain rule:-

brainly.com/question/30396691

#SPJ11


Related Questions

PLEASE HELP
Brenna can install 225 patio stones in 3 hours. If installing each patio stone takes the same amount of time, how long will it take her to install 525 patio stone?

Answers

Answer: Brenna will install 525 patio stones in 7 hours

Step-by-step explanation:

If it takes 3 hours to install 225 stones then

225/3=75

this means she installs 75 stones per hour. So,

525/75=7

So Brenna will install 525 patio stones in 7 hours.

Where does the normal line to the paraboloid z = x^2 y^2 at the point (4, 4, 32) intersect the paraboloid a second time?

Answers

The normal line to the paraboloid z = x² + y² at the point (4, 4, 32) intersects the paraboloid a second time at the point (-4, -4, 32).

To find this, first calculate the gradient of the paraboloid at the given point (4, 4, 32) using partial derivatives:
∂z/∂x = 2x and ∂z/∂y = 2y

At the point (4, 4, 32), the gradient is (8, 8). Now, find the equation of the normal line using the gradient and the given point:
x - 4 = -8t
y - 4 = -8t
z - 32 = 32t

Solve for t by substituting the x and y equations into the paraboloid equation (z = x² + y²):
32 - 32t = (-8t + 4)² + (-8t + 4)²

Solve the quadratic equation for t, disregarding the t = 0 solution (since it corresponds to the original point). The other solution gives the second intersection point (-4, -4, 32).

To know more about partial derivatives click on below link:

https://brainly.com/question/31397807#

#SPJ11

How would a knowledge in conversion of fraction to decimal or percent, and vice versa help you in your future career?

Answers

Every fraction can also be written as a decimal - Knowledge will enable you to work more efficiently and effectively.

Having a strong knowledge of the conversion of fractions to decimals or percentages and vice versa is an important skill to have in many careers.

This is because it is essential to understand and interpret data, statistics, and financial information accurately.

As such, a good understanding of fractions, decimals, and percentages can be a valuable asset in fields such as finance, accounting, marketing, and data analysis.
For instance,

In finance and accounting,

Knowledge of conversions between fractions, decimals, and percentages is critical when calculating interest rates, compound interest, and other financial metrics.

It also enables financial analysts to interpret complex data and reports, calculate percentages and ratios, and make sound investment decisions.
In the field of marketing, fractions, decimals, and percentages are used in analyzing market trends, determining market shares, and calculating the return on investment (ROI).

Understanding the concepts behind these conversions also enables marketers to create compelling sales pitches, product pricing, and promotional strategies that are rooted in data and statistical analysis.
In data analysis,

A good knowledge of fractions, decimals, and percentages is essential in interpreting and presenting data.

It helps to identify trends, make accurate forecasts, and create visual representations of data that can be easily understood by stakeholders.
In conclusion,

Having a strong knowledge of the conversion of fractions to decimals or percentages and vice versa can help you in your future career in many ways.

It enables you to make accurate calculations, interpret complex data, and make informed decisions.  

It is an important skill that can make you stand out in the job market and advance in your career.

For similar question on decimal:

https://brainly.com/question/30958821

#SPJ11

Let X and W be random variable. Let Y = 3X + W and suppose that the joint probability density of X and Y is fx,y(x, y) = k. (x² + y^2) if 0

Answers

The final expression is

fy(y) = ky³ [arcsin(y/√(2y² + 1)) + (1/2) ln((2y²)/(2y² + 1))]fx|y(x|y) = (2 / √(1 - x²)) / [3π arcsin(y/√(2y² + 1)) + (3/2) ln((2y²)/(2y² + 1))]where k ≈ 3.017 and the joint probability density function is given by:fx,y(x, y) = k(x² + y²) / (√(1 - x²) / 2) for 0 < x < y < 2.How to integrate the joint probability density and find k value?

To determine the value of the constant k,

we need to integrate the joint probability density over the entire range of X and Y:

∫∫ fx,y(x, y) dx dy = 1

Since the support of the joint probability density is the region 0 < X < Y and 0 < Y < 2, we have:

∫∫ fx,y(x, y) dx dy = ∫0² ∫x √(1 - x²) / 2 (x² + y²) dx dy                    = ∫0² ∫0y √(1 - x²) / 2 (x² + y²) dx dy                    = ∫0² [(1/2) arctan(y/√(1 - y²)) + (1/2) ln(y² + 1)] dy                    = [(1/2) (y arctan(y/√(1 - y²)) - ln(y² + 1))] from 0 to 2                    = (1/2) (2 arctan(2/√3) - ln(5))                    ≈ 0.3313

Therefore, we have k = 1 / 0.3313 ≈ 3.017.

Now, we can calculate the marginal density of Y as follows:

fy(y) = ∫ fx,y(x, y) dx      = ∫0y k(x² + y²) / (√(1 - x²) / 2) dx      = ky³ ∫0y (1 + x²/y²) / (√(1 - x²/y²)) dx      = ky³ [arcsin(y/√(2y² + 1)) + (1/2) ln((2y²)/(2y² + 1))]

Similarly, we can calculate the conditional density of X given Y as follows:

fx|y(x|y) = fx,y(x, y) / fy(y)  = k(x² + y²) / (√(1 - x²) / 2) / ky³ [arcsin(y/√(2y² + 1)) + (1/2) ln((2y²)/(2y² + 1))]          = (2 / √(1 - x²)) / [3π arcsin(y/√(2y² + 1)) + (3/2) ln((2y²)/(2y² + 1))]

Note that the conditional density is undefined for |x| ≥ √(1 - y²).

Learn more about  joint probability

brainly.com/question/29582649

#SPJ11

Find the area of the shape below

Answers

The calculated value of the area of the figure  is 21 sq meters

Finding the area of the figure

From the question, we have the following parameters that can be used in our computation:

Composite figure

The shapes in the composite figure are

SquareRectangleTriangle

This means that

Area = Square + Triangle + Rectangle

Using the area formulas on the dimensions of the individual figures, we have

Area = 2 * 2 + 3 * 4+ 1/2 * 2 * 5

Evaluate

Area = 21

Hence, the area of the figure  is 21 sq meters

Read more about area

brainly.com/question/24487155

#SPJ1

For the following exercise, determine whether the equation represents exponential growth, exponential decay, or neither. Explain.
y = 300(1 − t)5

Answers

We cannot determine the value of the base (1 - t), we cannot classify the equation as exponential growth, exponential decay, or neither.

How to determine if the given equation represents exponential growth, exponential decay, or neither?

We need to analyze the equation:

y = 300(1 - t)⁵

Step 1: Identify the base.
The base of the equation is (1 - t), which is raised to the power of 5.

Step 2: Determine if the base is greater than 1, less than 1 but greater than 0, or neither.
Since t is a variable, we cannot determine a fixed value for the base (1 - t). Therefore, we cannot determine if it's greater than 1, less than 1 but greater than 0, or neither.

Step 3: Conclusion
Because we cannot determine the value of the base (1 - t), we cannot classify the equation as exponential growth, exponential decay, or neither.

Learn more about exponential growth.

brainly.com/question/12490064

#SPJ11

we begin by first looking for rational zeros. we can apply the rational zero theorem because the polynomial has integer coefficients.m(x) = 3x^3 - x^2 - 39x +13possible rational zeros :factors of __ / factors of __ = +1, +13 / +1, +3= +1, +1/3, +13, +13/3

Answers

We can now use synthetic division or polynomial long division to check which of these values are actually zeros of the polynomial.

To use the rational zero theorem, we need to find all possible rational zeros of the polynomial m(x) = 3x^3 - x^2 - 39x + 13. These are of the form p/q, where p is a factor of the constant term (13 in this case) and q is a factor of the leading coefficient (3 in this case).

The factors of 13 are ±1 and ±13, and the factors of 3 are ±1 and ±3. So the possible rational zeros are:

±1/3, ±1, ±13/3, ±13

We can now use synthetic division or polynomial long division to check which of these values are actually zeros of the polynomial.

To learn more about polynomial visit:

https://brainly.com/question/11536910

#SPJ11

Bond A has greater convexity than Bond B. All other things equal, bond A is preferred to bond B.

Answers

A bond with higher convexity will experience a greater price increase when interest rates decrease and a smaller price decrease when interest rates increase compared to a bond with lower convexity.

Convexity is a measure of the sensitivity of bond prices to changes in interest rates
Therefore, if Bond A has greater convexity than Bond B and all other factors are equal, Bond A would be preferred because it would provide greater price appreciation in a falling interest rate environment and less price depreciation in a rising interest rate environment compared to Bond B.

FOR MORE INFORMATION ON convexity SEE:

https://brainly.com/question/30557617

#SPJ11

On a certain day, the depth of snow at Paoli Peaks Ski Resort melts at a rate modeled by the function Mt) given by M(t)= 3π sin (πt / 12). a snowmaking machine adds snow at a rate modeled by the function (t) given by S(t) = 0.14t^3 -0.16t^2 +0.54t -0.1. Both Mand S are measured in inches per hour and t is measured in hours for 0

Answers

The net change in the depth of snow at Paoli Peaks Ski Resort is given by the function N(t) = 3π sin (πt / 12) + 0.14t³ - 0.16t² + 0.54t - 0.1.

The depth of snow at Paoli Peaks Ski Resort changes due to both melting and snowmaking. The rate of melting is modeled by the function M(t) = 3π sin (πt / 12), where t is the number of hours after midnight. The rate of snowmaking is modeled by the function S(t) = 0.14t³ - 0.16t² + 0.54t - 0.1.

The net change in the depth of snow is the difference between the rate of snowmaking and the rate of melting, which is given by N(t) = S(t) - M(t). We can simplify this expression by substituting the given functions for S(t) and M(t), resulting in the expression N(t) = 0.14t³ - 0.16t² + 0.54t - 0.1 - 3π sin (πt / 12).

Therefore, the net change in the depth of snow at Paoli Peaks Ski Resort is given by the function N(t) = 3π sin (πt / 12) + 0.14t³ - 0.16t² + 0.54t - 0.1.

To learn more about function, here

https://brainly.com/question/12431044

#SPJ4

given n. generate all numbers with number of digits equal to n, such that the digit to the right is greater than the left digit (ai 1 > ai). e.g. if n=3 (123,124,125,……129,234,…..789)

Answers

This function returns a list of all numbers with n digits where the digit to the right is greater than the left digit. For example, generate_numbers(3) returns the list ['123', '124', '125', ..., '789'].

To generate all numbers with a number of digits equal to n, where the digit to the right is greater than the left digit, we can use a recursive approach. We can start by generating all possible numbers with one digit less than n and add a digit to the right that is greater than the last digit.

For example, if n=3, we can start with all possible numbers with two digits: 12, 13, 14, ..., 89. Then, for each of these numbers, we can add a digit to the right that is greater than the last digit, so we get:

123, 124, 125, ..., 129
134, 135, 136, ..., 139
145, 146, 147, ..., 149
...
789

We can implement this recursively by defining a function that takes two parameters: n, the number of digits, and last_digit, the last digit of the number generated so far. The function can start by generating all possible numbers with one digit less than n and passing the last digit as the second parameter. Then, for each of these numbers, it can add a digit to the right that is greater than the last_digit and call itself recursively with n-1 and the new last digit.

Here is a Python code example:

def generate_numbers(n, last_digit=0):
   if n == 0:
       return []
   if n == 1:
       return [str(digit) for digit in range(last_digit+1, 10)]
   numbers = []
   for digit in range(last_digit+1, 10):
       numbers.extend([str(digit) + number for number in generate_numbers(n-1, digit)])
   return numbers

This function returns a list of all numbers with n digits where the digit to the right is greater than the left digit. For example, generate_numbers(3) returns the list ['123', '124', '125', ..., '789'].

to learn more about digits click here:

https://brainly.com/question/14961670

#SPJ11

consider the following data 6,7,17,51,3,17,23, and 69 the range and the median are

Answers

For the following data 6,7,17,51,3,17,23, and 69 the range is 66 and the median is 17.

We need to find the range and median of the given dataset: 3, 6, 7, 17, 17, 23, 51, 69.

Range: The range is the difference between the largest and smallest values in the dataset. To find it, first identify the largest and smallest numbers:

Largest number: 69
Smallest number: 3

Next, subtract the smallest number from the largest number:

Range = 69 - 3 = 66

Median: The median is the middle value in an ordered dataset. Since there are 8 numbers in our dataset, there will be two middle values (as 8 is an even number). To find the median, first arrange the dataset in ascending order, which we've already done: 3, 6, 7, 17, 17, 23, 51, 69. Now, identify the two middle values:

Middle values: 17 and 17

To find the median, calculate the average of these two middle values:

Median = (17 + 17) / 2 = 34 / 2 = 17

So, for the given dataset, the range is 66 and the median is 17. The range represents the spread of the data, showing how the numbers vary from the smallest to the largest value. The median, on the other hand, is a measure of central tendency that represents the middle value of the dataset, providing an idea of where the center of the data lies.

To know more about range and median refer here:

https://brainly.com/question/21324459

#SPJ11

given a normal population whose mean is 640 and whose standard deviation is 20, find each of the following: a. the probability that a random sample of 3 has a mean between 641 and 646

Answers

The probability that a random sample of 3 has a mean between 641 and 646 is approximately 0.2023 or 20.23%.

To solve this problem, we need to use the central limit theorem, which states that the sampling distribution of the sample means is approximately normal, with mean equal to the population mean and standard deviation equal to the population standard deviation divided by the square root of the sample size.

Let X be the random variable representing the weight of a single item in the sample. Since we have a normal population, we know that X is normally distributed with mean μ = 640 and standard deviation σ = 20.

Let Y be the random variable representing the sample mean weight. Then, Y is also normally distributed with mean μ = μ = 640 and standard deviation σ = σ/√n, where n is the sample size. Since n = 3, we have σ = 20/√3 ≈ 11.55.

We want to find the probability that the sample mean weight is between 641 and 646. This can be written as P(641 ≤ Y ≤ 646). To standardize Y, we use the formula Z = (Y - μ)/σ, which gives us Z = (641 - 640)/11.55 ≈ 0.09 and Z = (646 - 640)/11.55 ≈ 0.52.

Using a standard normal distribution table or calculator, we can find the probability that Z is between 0.09 and 0.52, which is approximately 0.2023.

To learn more about sample click on,

https://brainly.com/question/29035655

#SPJ4

calculate the area of the trapezium shown below​

Answers

Answer:

45

Step-by-step explanation:

Trapeziod Area - 1/2(a + b)×h

1/2(6 + 12)×5

1/2(18)×5

(9) × 5

Area= 45 cm sq.

What is the area of this figure?

Answers

Answer:

  264.5 yd²

Step-by-step explanation:

You want the area of the figure shown.

Composition

The given figure can be decomposed into a triangle and two rectangles.

Triangle

The area of triangle ABH is ...

  A = 1/2bh

  A = 1/2(23 yd)(17 yd) = 195.5 yd²

Rectangles

The area of rectangle CDIH is ...

  A = LW

  A = (9 yd)(5 yd) = 45 yd²

The area of rectangle EFGI is ...

  A = (6 yd)(4 yd) = 24 yd²

Total area

The area of the figure is the sum of the areas of its parts:

  total area = triangle area + rectangle CDIH area + rectangle EFGI area

  total area = 195.5 yd² + 45 yd² + 24 yd²

  total area = 264.5 yd²

find the slope of the line passing through the origin which forms an angle of 4pi/7 with the positive x-axis

Answers

Therefore, the slope of the line passing through the origin which forms an angle of [tex]4\pi /7[/tex] with the positive x-axis is 0.

To find the slope of the line passing through the origin which forms an angle of [tex]4\pi /7[/tex]with the positive x-axis, we need to use trigonometry. The slope of a line is defined as the ratio of the change in y-coordinates to the change in x-coordinates, or rise over run.

Since the line passes through the origin, its y-intercept is zero. This means that we only need to find the x-intercept to determine the slope. We can use the angle formed by the line with the positive x-axis to find the x-intercept.

Let's call the angle formed by the line with the positive x-axis θ. Since the line passes through the origin, we can also say that it passes through the point (0,0). Using trigonometry, we can find the x-coordinate of the point where the line intersects the x-axis:

θ = [tex]4\pi /7[/tex]

cos θ = a/h = x/1

x = cos θ



In this case, θ = [tex]4\pi /7[/tex] so:
[tex]x = 2cos(4\pi /7)[/tex]

Now we can calculate the slope:

slope = rise/run = y-coordinate/x-coordinate = y/x

Since the line passes through the origin, the y-coordinate at the x-intercept is also zero. This means that the slope is simply:

slope = 0/x = [tex]0/cos(4\pi /7)[/tex]= 0

Learn more about slope here:

https://brainly.com/question/29184253

#SPJ11

Suppose that the wave function for a particle in a one-dimensional box is given by the superposition:

Ψ(x) = cΨn(x) + c'Ψn'(x)


where th Ψn(x) and Ψn' (x) are any two normalized stationary states of the particle. Normalize this wave function to obtain the condition that the complex constants c and c' must satisfy. Interpret this result. (Use the fact that the particle-in-a-box Ψn(x) are orthogonal.)

Answers

[tex]|c|^2 + |c'|^2 = 1[/tex]

This is the condition that the complex constants c and c' must satisfy in order for the wave function to be normalized.

To normalize the given wave function, we need to ensure that the total probability of finding the particle in the box is equal to one. Mathematically, this means that the integral of the absolute square of the wave function over the entire box must be equal to one.

The normalized wave function is given by:

Ψ_norm(x) = AΨ(x) = A[cΨn(x) + c'Ψn'(x)]

where A is a normalization constant.

To find the value of A, we use the orthogonality property of the stationary states Ψn(x) and Ψn'(x) of the particle in a box. The property states that:

∫Ψn(x)Ψn'(x) dx = 0 (for n ≠ n')

Using this property, we can calculate the value of A as follows:

1 = ∫|Ψ_norm(x)|² dx

= A²[|c|²∫|Ψn(x)|² dx + |c'|²∫|Ψn'(x)|² dx + cc'∫Ψn(x)Ψn'(x) dx + cc'∫Ψn'(x)Ψn(x) dx]

= A²[|c|² + |c'|² + 2Re(c*c'∫Ψn(x)Ψn'(x) dx)]

= A²[|c|² + |c'|²] (as ∫Ψn(x)Ψn'(x) dx = 0)

Therefore, the normalization constant is:

A = [(|c|² + |c'|²)][tex]^{(-1/2)[/tex]

This means that the complex constants c and c' must satisfy the condition:

|c|² + |c'|² = 1

Interpretation:

The above result means that for the wave function Ψ(x) to be normalized, the complex constants c and c' must satisfy the condition that the sum of the absolute squares of their magnitudes is equal to one. This is a manifestation of the conservation of probability in quantum mechanics. It ensures that the total probability of finding the particle in the box is always equal to one, irrespective of the state of the particle described by the wave function.

To know more about wave function, refer to the link below:

https://brainly.com/question/31744030#

#SPJ11

This is the condition that the complex constants c and c' must satisfy in order for the wave function to be normalized. So |c|² + |c'|² + 2Re(c*c') = 1

To obtain this result, we first use the orthogonality of the stationary states Ψn(x) and Ψn'(x), which means that

∫Ψn(x)Ψn'(x) dx = 0.

Then, we normalize the superposition wave function by requiring that

|cΨn(x) + c'Ψn'(x)|² = 1.

Expanding this expression and using the orthogonality relation, we obtain the above normalization condition.

This result shows that the complex constants c and c' must satisfy a certain constraint in order for the wave function to be normalized. This means that the probability of finding the particle in the box must be equal to 1, which is a fundamental requirement of quantum mechanics. The result also shows that the interference between the two stationary states Ψn(x) and Ψn'(x) is characterized by the phase difference between the complex constants c and c'.

Learn more about wave function:

https://brainly.com/question/15021026

#SPJ4

find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. x = sin(9t) cos(t), y = cos(9t) − sin(t); t =

Answers

The equation of the tangent is simply x = sin(9t) cos(t).

How to find the equation of the tangent?

To find the equation of the tangent to the curve at the point corresponding to the given value of the parameter, we first need to find the derivative of y with respect to x.

dy/dx = (dy/dt)/(dx/dt)

= (-9sin(9t)sin(t) - cos(t)cos(9t)) / (9cos(9t)cos(t) - sin(9t)sin(t))

= -9tan(t) - cot(9t)

Now, we can find the slope of the tangent at the given point by substituting the value of t:

slope = -9tan(t) - cot(9t)

slope at t =

= -9tan() - cot()

= -9(0) - cot(0)

= -∞

This means that the tangent is vertical at the point corresponding to the given value of the parameter.

Therefore, the equation of the tangent is simply x = sin(9t) cos(t).

Learn more about equation of the tangent

brainly.com/question/28994498

#SPJ11

Darius recently obtained a loan for $15,000 at an interest rate of 6.8% for 4 years. Use the monthly payment formula to complete the statement.

M = monthly payment
P = principal
r = interest rate
t = number of years

His monthly payment for the loan is ________
, __________ and the total finance charge for the loan is

Answers

To calculate the monthly payment and total finance charge for Darius's loan, we can use the following formula:

M = P * r * (1 + r)^n / [(1 + r)^n - 1]

Where:

P = Principal = $15,000

r = Monthly interest rate = 6.8% / 12 = 0.0056667

n = Total number of payments = 4 years * 12 months/year = 48

Plugging in these values, we get:

M = 15000 * 0.0056667 * (1 + 0.0056667)^48 / [(1 + 0.0056667)^48 - 1]

M = $357.60

Therefore, Darius's monthly payment for the loan is $357.60.

To calculate the total finance charge, we can multiply the monthly payment by the total number of payments and subtract the principal amount. So,

Total finance charge = M * n - P

Total finance charge = $357.60 * 48 - $15,000

Total finance charge = $2,116.80

Therefore, the total finance charge for the loan is $2,116.80.

His monthly payment for the loan is $357.80, and the total finance charge for the loan is $2,174.40. I just got it right on the practice.

Find the lengths of the sides of the triangle?

Answers

Step-by-step explanation:

it is a right-angled triangle.

so, Pythagoras applies.

c² = a² + b²

c is the Hypotenuse (the side opposite of the 90° angle), a and b are the legs.

so, in our case

(x + 4)² = x² + (x + 1)²

x² + 8x + 16 = x² + x² + 2x + 1 = 2x² + 2x + 1

6x + 15 = x²

0 = x² - 6x - 15

a quadratic equation

ax² + bx + c = 0

has the general solution

x = (-b ± sqrt(b² - 4ac))/(2a)

in our case

a = 1

b = -6

c = -15

x = (6 ± sqrt((-6)² - 4×1×-15))/(2×1) =

= (6 ± sqrt(36 + 60))/2 =

= (6 ± sqrt(96))/2 =

= (6 ± sqrt(16×6))/2 =

= (6 ± 4×sqrt(6))/2 = 3 ± 2×sqrt(6)

x1 = 3 + 2×sqrt(6) = 7.898979486... ≈ 7.9

x2 = 3 - 2×sqrt(6) = -1.898979486... ≈ -1.9

a negative value for x would give us negative side lengths, which does not make any sense.

so, x1 is our only solution.

that means

x = 7.9

x + 1 = 8.9

x + 4 = 11.9

find the first partial derivatives of the function. f(x, y, z) = 6x sin(y − z) w=3zexyz

Answers

The partial derivative of w=3zexyz with respect to z is obtained by differentiating exyz with respect to z, treating x and y as constants. This gives ∂w/∂z = 3exyz.

To find the partial derivatives of the given function f(x,y,z), we need to differentiate the function with respect to each variable, treating the other variables as constants.

We have the function:

f(x, y, z) = 6x sin(y − z) w=3zexyz

Let's find the first partial derivative of f with respect to x, y, and z.

Partial derivative of f with respect to x:

f_x = ∂f/∂x

f_x = 6 sin(y - z)

Partial derivative of f with respect to y:

f_y = ∂f/∂y

f_y = 6x cos(y - z)

Partial derivative of f with respect to z:

f_z = ∂f/∂z

f_z = -6x cos(y - z) + 3exyz

The partial derivative of w=3zexyz with respect to z is obtained by differentiating exyz with respect to z, treating x and y as constants. This gives ∂w/∂z = 3exyz.

Learn more about partial derivative

https://brainly.com/question/31397807

#SPJ4

A pool measuring 14 meters by 28 meters is surrounded by a path of uniform​ width, as shown in the figure. If the area of the pool and the path combined is 1176 square​ meters, what is the width of the​ path?

Answers

Let's call the width of the path "x". The dimensions of the pool plus the path will be 14+2x by 28+2x.

The total area of the pool plus the path can be found by multiplying the length and width together:

(14+2x) * (28+2x) = 1176

Expanding the brackets, we get:

392 + 56x + 28x + 4x^2 = 1176

Simplifying, we get:

4x^2 + 84x - 784 = 0

Dividing both sides by 4, we get:

x^2 + 21x - 196 = 0

This is a quadratic equation, which can be solved using the quadratic formula:

x = (-b ± sqrt(b^2 - 4ac)) / 2a

In this case, a = 1, b = 21, and c = -196. Plugging these values into the formula gives:

x = (-21 ± sqrt(21^2 - 4(1)(-196))) / 2(1)

x = (-21 ± sqrt(1681)) / 2

x = (-21 ± 41) / 2

The positive solution is:

x = (-21 + 41) / 2

x = 10/2

x = 5

Therefore, the width of the path is 5 meters.

When a meter has more than 4 beats per repetition, it is called____

a: complex meter
b : syncopation
c: simple subdivision
d; polymeter

Answers

Answer:Complex

Step-by-step explanation:When a meter has more than 4 beats per repetition, it is called a "complex meter." Examples of complex meters include 5/4, 7/8, and 11/8, among others. In contrast, meters with 4 beats per repetition or fewer are called "simple meters."

compare all the complexities for the sorting algorithms radix sort, counting sort, bin sort.

Answers

The time complexity of radix sort, counting sort, and bucket sort is better than many comparison-based sorting algorithms.

How to compare all the complexities for the sorting algorithms radix sort, counting sort, bin sort?

Radix sort, counting sort, and bin sort are three non-comparison based sorting algorithms that have better asymptotic time complexity than many comparison-based sorting algorithms.

Radix sort sorts the elements by comparing the digits of each element starting from the least significant digit to the most significant digit.

The time complexity of radix sort is O(d(n+k)), where d is the number of digits, n is the number of elements, and k is the range of values of the digits. The space complexity of radix sort is also O(n+k).

Counting sort works by counting the number of occurrences of each element in the input and using this information to determine the position of each element in the sorted output.

The time complexity of counting sort is O(n+k), where n is the number of elements and k is the range of values of the elements. The space complexity of counting sort is O(n+k).

Bucket sort works by dividing the input into a number of smaller buckets and sorting the elements in each bucket individually using a sorting algorithm such as insertion sort.

The time complexity of bucket sort depends on the sorting algorithm used to sort the individual buckets. The space complexity of bucket sort is O(n+k).

From the above complexity analysis, it can be concluded that:

Radix sort has a time complexity of O(d(n+k)), which can be better than O(nlogn) in some cases where the number of digits d is small.Counting sort has a time complexity of O(n+k), which can be faster than O(nlogn) in cases where the range of values k is small compared to n.Bucket sort has a time complexity that depends on the sorting algorithm used to sort the individual buckets, but can be efficient for distributing elements uniformly across buckets.

Overall, the time complexity of radix sort, counting sort, and bucket sort is better than many comparison-based sorting algorithms.

The choice of sorting algorithm depends on the characteristics of the input data and the available resources, such as memory and processing power.

Learn more about algorithms

brainly.com/question/22984934

#SPJ11

PLEASE HELP ME
Ice cream is packaged in cylindrical gallon tubs. A tub of ice cream has a total surface area of 387.79 square inches.

If the diameter of the tub is 10 inches, what is its height? Use π = 3.14.

7.35 inches
7.65 inches
14.7 inches
17.35 inches

Answers

Answer: 7.35 inches

Step-by-step explanation:

The formula for the surface area of a cylinder is 2πrh + 2πr^2, where r is the radius and h is the height of the cylinder.

Given that the diameter of the tub is 10 inches, the radius (r) is half of that, which is 5 inches.

So, the equation for the surface area of the cylinder can be written as:

2π(5)(h) + 2π(5)^2 = 387.79

Simplifying the equation gives:

10πh + 50π = 387.79

Dividing both sides by 10π gives:

h + 5 = 12.34

Subtracting 5 from both sides gives:

h = 7.34

Therefore, the height of the tub is 7.35 inches (rounded to two decimal places).

estimate the probability that out of 10,000 poker hands (of 5 cards) we will see at most two four of a kinds. use either the normal or the poisson approximation, whichever is appropriate.

Answers

The estimated probability of seeing at most two four of a kinds in 10,000 poker hands is approximately 0.987, using the Poisson approximation.

Let p be the probability of getting a four of a kind in a single hand. To find p, we need to count the number of ways to choose the four of a kind and the fifth card from a deck of 52 cards, and divide by the total number of ways to choose 5 cards from the deck:

p = (13 * C(4,1) * C(48,1)) / C(52,5) ≈ 0.000240096

where C(n,k) is the number of combinations of k items from a set of n items.

Now, let X be the number of four of a kinds in 10,000 hands. X follows a binomial distribution with parameters n = 10,000 and p = 0.000240096. We want to find P(X ≤ 2).

Using the Poisson approximation, we can approximate X with a Poisson distribution with parameter λ = np = 2.40096. Then,

P(X ≤ 2) ≈ P(Y ≤ 2)

where Y is a Poisson random variable with parameter λ = 2.40096. Using the Poisson distribution formula, we get:

P(Y ≤ 2) = e^(-λ) * (λ^0/0! + λ^1/1! + λ^2/2!) ≈ 0.987

To know more about probability, here

brainly.com/question/31488405

#SPJ4

Just give the answer

Answers

Answer:

- 3, - 2, 0, 5

Step-by-step explanation:

1.4 (d - 2) - 0.2d ≤ 3.2 ← distribute parenthesis and simplify left side

1.4d - 2.8 - 0.2d ≤ 3.2

1.2d - 2.8 ≤ 3.2 ( add 2.8 to both sides )

1.2d ≤ 6 ( divide both sides by 1.2 )

d ≤ 5

the only value less than or equal to 5 are

- 3, - 2, 0 ,5

Write the equation of a circle in center-radius form with center at
(-5,3),passing through the point (-1,7).

Answers

The equation of a circle is (x+5)² + (y-3)² = 32.

We have,

Center = (-5, 3) and passing point (-1, 7).

We know the Equation of circle

(x-h)² + (y-k)² = r²

where (h, k) is center and r is the radius.

Now, the radius of circle

= √(7-3)² + (-1 +5)²

= √4² + 4²

= √32

= 4√2

Now, the equation of circle is

(x-(-5))² + (y - 3)² = (4√2)²

(x+5)² + (y-3)² = 32

Learn more about Equation of circle here:

https://brainly.com/question/29288238

#SPJ1

Im so lost please help! Circle Y has points W, T,V, and U on the circle. Secant lines WM and UM intersect at point M outside the circle. The mUW = 145°, mTV = 31°, and m

Answers

A formula that can be used to find the value of x MU² - UM * MV - MV * TV = x² * (MU - UM). The value of x is x ≈ ±3.55.

What is angle measures?

Angle measures refer to the size or magnitude of an angle, usually expressed in degrees or radians. The measure of an angle can be determined by the amount of rotation between the two sides of the angle, with a full rotation being 360 degrees or 2π radians.

According to question:

1) From the given information, we know that <UMV is an exterior angle of triangle TMV, so <UMV = <TMV + <MTV. Substituting the given angle measures, we get:

m<UMV = x² + 31

Also, by the intersecting secants theorem, we have:

MU * MW = MV * MT

Substituting the given segment lengths, we get:

(MU + UW) * (MU - UW) = MV * TV

Simplifying this equation, we get:

MU² - UW² = MV * TV - UW * MU

Substituting the given angle measure and simplifying further, we get:

MU² - UW² = MV * TV - UW * MU

MU² - MW² - UW² = -UW * MU

(MU - MW) * (MU + MW) - UW² = -UW * MU

(MU + MW) = (UW² - MU * UW) / (MU - UW)

Substituting the given angle measure, we get:

tan(145) = UW / UM

Simplifying this equation, we get:

UW = UM * tan(145)

Substituting this expression for UW, we get:

MU + UM * tan(145) = (UM² - MU * UM) / (MU - UM)

Simplifying further, we get:

MU² - UM * MV - MV * TV = x² * (MU - UM)

2) Substituting the given angle measures and segment lengths into the formula from part 1, we get:

MU² - UM * MV - MV * TV = x² * (MU - UM)

MU² - 2 * MU * MV * sin(31) - MV * sin(x²) = x² * (MU - UM)

Substituting the expression for UW from part 1, we get:

MU + UM * tan(145) = (UM² - MU * UM) / (MU - UM)

MU² - MU * UM - UM * tan(145) = -MU * (MU - UM)

MU * (MU - UM + UM * tan(145)) = MU² - UM * tan(145)

MU = (UM * tan(145)) / (1 - tan(145))

Substituting this expression for MU, we get:

(UM * tan(145))² / (1 - tan(145)) + UM * MV * sin(31) - MV * sin(x²) = x² * ((UM * tan(145)) / (1 - tan(145)) - UM)

Simplifying this equation and solving for x, we get:

x ≈ ±3.55

To know more about angle measures visit:

https://brainly.com/question/30958464

#SPJ1

A formula that can be used to find the value of x MU² - UM * MV - MV * TV = x² * (MU - UM). The value of x is x ≈ ±3.55.

What is angle measures?

Angle measures refer to the size or magnitude of an angle, usually expressed in degrees or radians. The measure of an angle can be determined by the amount of rotation between the two sides of the angle, with a full rotation being 360 degrees or 2π radians.

According to question:

1) From the given information, we know that <UMV is an exterior angle of triangle TMV, so <UMV = <TMV + <MTV. Substituting the given angle measures, we get:

m<UMV = x² + 31

Also, by the intersecting secants theorem, we have:

MU * MW = MV * MT

Substituting the given segment lengths, we get:

(MU + UW) * (MU - UW) = MV * TV

Simplifying this equation, we get:

MU² - UW² = MV * TV - UW * MU

Substituting the given angle measure and simplifying further, we get:

MU² - UW² = MV * TV - UW * MU

MU² - MW² - UW² = -UW * MU

(MU - MW) * (MU + MW) - UW² = -UW * MU

(MU + MW) = (UW² - MU * UW) / (MU - UW)

Substituting the given angle measure, we get:

tan(145) = UW / UM

Simplifying this equation, we get:

UW = UM * tan(145)

Substituting this expression for UW, we get:

MU + UM * tan(145) = (UM² - MU * UM) / (MU - UM)

Simplifying further, we get:

MU² - UM * MV - MV * TV = x² * (MU - UM)

2) Substituting the given angle measures and segment lengths into the formula from part 1, we get:

MU² - UM * MV - MV * TV = x² * (MU - UM)

MU² - 2 * MU * MV * sin(31) - MV * sin(x²) = x² * (MU - UM)

Substituting the expression for UW from part 1, we get:

MU + UM * tan(145) = (UM² - MU * UM) / (MU - UM)

MU² - MU * UM - UM * tan(145) = -MU * (MU - UM)

MU * (MU - UM + UM * tan(145)) = MU² - UM * tan(145)

MU = (UM * tan(145)) / (1 - tan(145))

Substituting this expression for MU, we get:

(UM * tan(145))² / (1 - tan(145)) + UM * MV * sin(31) - MV * sin(x²) = x² * ((UM * tan(145)) / (1 - tan(145)) - UM)

Simplifying this equation and solving for x, we get:

x ≈ ±3.55

To know more about angle measures visit:

https://brainly.com/question/30958464

#SPJ1

Describe the relationship, "the more clouds there are, the more rain will fall", as being either a positive or negative correlation, and state whether or not the relationship is causal.

Answers

While there is a positive correlation between clouds and rain, this does not necessarily mean that one variable causes the other.

What is correlation?

Correlation is a statistical measure that describes the strength and direction of a relationship between two variables.

According to given information:

The relationship "the more clouds there are, the more rain will fall" is a positive correlation. Positive correlation means that as one variable increases, the other variable also increases.

However, it's important to note that correlation does not imply causation. In this case, the relationship between clouds and rain is not necessarily causal. While it is true that more clouds can lead to more rain, there are also other factors that can influence rainfall, such as temperature, humidity, and wind patterns.

Additionally, it is possible that rain could cause more clouds to form, rather than the other way around.

Therefore, while there is a positive correlation between clouds and rain, this does not necessarily mean that one variable causes the other.

To know more about correlation visit:

https://brainly.com/question/13879362

#SPJ1

In the following enthymemes, determine whether the missing statement is a premise or a conclusion. Then supply the missing statement, attempting whenever possible to convert the enthymeme, into a valid argument. The missing statement need not be expressed as a standard-form categorical proposition.Carrie Underwood is a talented singer. After all, she’s won several Grammy awards.

Answers

The missing statement in the given argument is a premise.

Premise: Carrie Underwood has won several Grammy awards.

Conclusion: Carrie Underwood is a talented singer.

Revised argument:

Premise: Winning several Grammy awards is an indication of talent.

Premise: Carrie Underwood has won several Grammy awards.

Conclusion: Therefore, Carrie Underwood is a talented singer.

How to determine that the missing statement is premises or a conclusion?

The given statement is an example of an enthymeme, which is an argument with an implied premise or conclusion. In this case, the implied premise is that winning several Grammy awards is an indication of talent.

The argument is based on the assumption that the audience agrees with this premise, and therefore, the conclusion that Carrie Underwood is a talented singer follows logically.

However, it is important to note that the relationship between winning Grammy awards and talent is not necessarily causative, as other factors such as marketing, popularity, and the preferences of the voting committee can also influence the outcome.

Learn more about enthymeme

brainly.com/question/14583716

#SPJ11

Other Questions
in the last question, you wrote an vlookup function to show whatever 2018 metric is referenced in cell h11. do you need to include a range lookup parameter to get the correct answer? Eye Color of Males Surveyed Green 5- Blue 16 -Brown 27 * Eye Color of Females Surveyed Blue 19- Brown 18- Green 3 Acerca de % son mujeres o tienen ojos verdes. Acerca de El % son machos que no tienen ojos verdes. La suma de estos dos porcentajes es A crate is acted upon by a net force of 100 N. An acceleration of 4.0 m/s2 results. The weight of the crate is O 25 lb 0 25 N. 25 kg 245 N. 245 lb Mission Chandrayan 1 was launched by India to the moon, the explorer found ice on the moon? Do you think there is a possibility for human to settle on the moon in future. Give your opinion Let X be a random variable with probability density function (1) c(1-) for 0 Suppose 0.50 l of a hno3 solution has a ph of 3.30. how many moles of hno3 must have been initially dissolved in the solution? The DFW International Airport currently operates with one runway. Airplanes arrive at a rate of 17 per hour and the average landing time is three minutes. The estimated average fuel consumption for an aircraft stacking in the air is 10 liters per minute, and a liter of fuel costs $20. Answer the following question under the assumptions of Poisson arrivals and exponential service times. What is the average number of planes stacking in the air and waiting for permission to land?What is the average cost of fuel burned by an aircraft waiting to land?What is the chance of finding less than three airplanes in the airport area including those that are in the waiting line and the one that is landing?How heavily is the runway used on the average? Please solve this question! The thirst center is located in the parathyroid center. True or false Which phrases from Martin Luther King Jr.s "I Have a Dream speech contain strong emotional connotations? Grammar position of adverbs, expressions of frequency a Are the sentences right () or wrong (? Correct the wrong sentencese. Drag statements and reasons to each row to show why the slopeof the line between D and E is the same as the slope between Eand F, given that triangles A and B are similar.04D16312ETriangle AFTriangle B I need help yall Please? The elements in the ________ period of the periodic table have a core-electron configuration that is the same as the electron configuration of neon. A) firstB) secondC) thirdD) fourthE) fifth If you're reading this, I'll assume you've had a Reese's peanut butter cup at least once in yourWhat are two red flags in this headline that suggest it may be clickbait?A.The use of nounsB.The use of second person ("you")C.The verb "eating"D.The exclamation point (!) the typical slaveholder owned group of answer choices fewer than 10 slaves. more than 20 slaves. between 10 and 15 slaves. only one or two slaves. A large (200-ft-square) structure is to be built on a downtown site where subsurface conditions are as shown in Figure 10.27. The structure founda- tions are to be placed on the surface of the dense sand. A 4-ft-deep gravel fill is then to be placed above the sand to support the basement floor. Streets and sidewalks surround the property. The structure walls proposed extend to within 5 ft of the sidewalk line. Propose a method for support ing the excavation walls. Use sketches and justify your assumptions. Find an equation of the tangent line to the graph of y = g(x) at x = 2 if g(2) = 5 and g'(2) = 6. (Enter your answer as an equation in terms of y and x.) if the rotational inertia of a disk is 30 kg m2, its radius r is 3.6 m, and its angular velocity omega is 6.7 rad/s, determine the linear velocity v of a point on the edge of the disk Which concept is designed to eliminate small claims and help in reducing the cost of insurance?a) Deductiblesb) Exclusionsc) Franchised) Coinsurance