how does sodium sulfate dry a solution intramolecular forces

Answers

Answer 1

Sodium sulfate dry a solution intramolecular forces by attract and bind with water molecules.

Sodium sulfate is a salt that has the ability to absorb water molecules from a solution through a process called hydration. When sodium sulfate is added to a solution, it can attract and bind with water molecules, which decreases the amount of water present in the solution. This process is driven by the intramolecular forces between sodium ions and water molecules.

Intramolecular forces are the forces that exist between atoms within a molecule. In the case of sodium sulfate, the intramolecular forces between the sodium and sulfate ions are strong enough to allow them to attract and bind with water molecules. As a result, the water molecules become trapped within the crystal structure of the sodium sulfate, effectively removing them from the solution.

The removal of water from a solution can have several effects. It can increase the concentration of solutes in the solution, making it more viscous and less likely to freeze at low temperatures. It can also decrease the pH of the solution, as the water molecules that are removed often play a role in maintaining the pH balance.

Overall, the ability of sodium sulfate to dry a solution is due to its strong intramolecular forces, which allow it to attract and bind with water molecules. This process effectively removes water from the solution, resulting in a more concentrated and stable mixture.

Learn more about intramolecular forces: https://brainly.com/question/30788811

#SPJ11


Related Questions

A substance that causes the oxidation of another substance is called an oxidizing agent.

a. true
b. false

Answers

The given statement, A substance that causes the oxidation of another substance is called an oxidizing agent is True because the oxidizing agent is a substance that causes the oxidation of another substance.

Oxidation is a chemical reaction in which electrons are transferred from one molecule to another, resulting in the formation of new molecules. Oxidizing agents can be various compounds such as oxygen, halogens, and certain metal ions.

Oxygen is the most common oxidizing agent and is used in many oxidation reactions. Halogens, such as chlorine, bromine and iodine, are also used as oxidizing agents in certain reactions.

Metal ions, such as iron, copper and manganese, may also act as oxidizing agents in reactions. Oxidizing agents are essential in biological processes such as respiration and metabolism, as well as industrial processes such as electricity generation and chemical manufacturing.

Know more about oxidizing agent here

https://brainly.com/question/10547418#

#SPJ11

What is the volume of 4.56 moles of gas at 0.634 atm and 75 °C?

Show your work

Answers

Answer:

Volume = 205

Explanation:

Using; PV = nRT

P (Pressure) = 0.634atm

V (Volume) = ?

n (Number of moles) = 4.56mol

R (Universal Gas Constant) = 0.082

T (Absolute Temperature) = 75+273 = 348K

0.634 × V = 4.56 × 0.082 × 348

V = 130.12416 ÷ 0.634

V = 205

Determine the molecular geometry around each carbon atom in maltose. a) linear b) trigonal pyramidal c) bent d) tetrahedral e) trigonal planar

Answers

The first  carbon in each glucose molecule has a linear molecular geometry; the second carbon in each glucose molecule has trigonal pyramidal molecular geometry; the third carbon has a tetrahedral molecular geometry; the fourth carbon has trigonal planar molecular geometry; and, the fifth carbon has tetrahedral molecular geometry.

The molecular geometry of maltose is complex due to the presence of multiple carbon atoms and different types of bonds.

Maltose is a disaccharide made up of two glucose molecules linked together by a glycosidic bond. Each glucose molecule has five carbon atoms. The molecular geometry around each carbon atom in maltose depends on the types of bonds and the number of lone pairs of electrons on each carbon.

a) The first carbon in each glucose molecule is part of a linear chain of atoms, so it has a linear molecular geometry.

b) The second carbon in each glucose molecule is bonded to three other atoms (two carbons and one oxygen) and has one lone pair of electrons. This arrangement results in a trigonal pyramidal molecular geometry.

c) The third carbon in each glucose molecule is bonded to four other atoms (three carbons and one oxygen) and has no lone pairs of electrons. This arrangement results in a tetrahedral molecular geometry.

d) The fourth carbon in each glucose molecule is bonded to three other atoms (two carbons and one oxygen) and has one lone pair of electrons. This arrangement results in a trigonal planar molecular geometry.

e) The fifth carbon in each glucose molecule is bonded to four other atoms (three carbons and one oxygen) and has no lone pairs of electrons. This arrangement also results in a tetrahedral molecular geometry.

To learn more about molecular geometry of maltose, visit: https://brainly.com/question/31044827

#SPJ11

In a saturated solution of cadmium carbonate at 25 °C both [Cd^2+]and [CO2^−3]=1.0×10^−6 M.[Write an equilibrium expression for this compound.Ksp=Calculate the value of Ksp for this compound.Ksp=

Answers

1. The equilibrium expression for the compound is:

[Cd²⁺] [CO₃²⁻] / [CdCO₃]

2. The solubility of product, Ksp for the compound is  1.0×10⁻¹²

1. How do i write the equilibrium expression?

Equilibrium constant, Keq for a given chemical reaction is written as shown below:

nReactant ⇌ mProduct

Equilibrium constant (Keq) = [Product]ᵐ / [Reactant]ⁿ

Now, we can shall determine the equilibrium expression, Keq for the reaction. Details below:

CdCO₃(aq) ⇌ Cd²⁺(aq) +  CO₃²⁻(aq)

Equilibrium constant (Keq) = [Product]ᵐ / [Reactant]ⁿ

Equilibrium constant expression = [Cd²⁺] [CO₃²⁻]/ [CdCO₃]

2. How do i determine the solubility of product, Ksp?

The solubility of product, Ksp for the compound ca be obtained as follow:

Concentration of cadmiun ion,  [Cd²⁺] = 1.0×10⁻⁶ MConcentration of carbonate ion, [CO₃²⁻] = 1.0×10⁻⁶ MSolubility of product (Ksp) =?

Ksp = [Cd²⁺] × [CO₃²⁻]

Ksp = 1.0×10⁻⁶ × 1.0×10⁻⁶

Ksp = 1.0×10⁻¹²

Learn more about equilibrium constant:

https://brainly.com/question/16589765

#SPJ1

In the laboratory, you are given the task of separating Ca2+ and Ba2+ ions in aqueous solution. Can the reagent Na2CO3 be used for this process? If so, write the formula of the precipitate.

Answers

Na2CO3  (sodium carbonate) can be used to separate Ca2+ and Ba2+ ions in aqueous solution. When Na2CO3 is added to the solution, it will react with the Ca2+ and Ba2+ ions to form insoluble carbonates, which will precipitate out of the solution. The formulas of the precipitates are CaCO3 (calcium carbonate) and BaCO3 (barium carbonate).

For calcium ions (Ca2+), the reaction is:
Ca2+ (aq) + CO3^2- (aq) → CaCO3 (s)


For barium ions (Ba2+), the reaction is:
Ba2+ (aq) + CO3^2- (aq) → BaCO3 (s)

A precipitation reaction is a reaction taking place in an aqueous solution in which two ionic bonds join, resulting in the formation of an insoluble salt. The insoluble salts formed in these reactions are called precipitates. These reactions can be used to find the presence of a particular element in the given solution.
The precipitates formed in this question are calcium carbonate (CaCO3) and barium carbonate (BaCO3). These solid precipitates can be separated from the aqueous solution by filtration or centrifugation.

For more questions on precipitation reactions: https://brainly.com/question/29990706

#SPJ11

Na2CO3  (sodium carbonate) can be used to separate Ca2+ and Ba2+ ions in aqueous solution. When Na2CO3 is added to the solution, it will react with the Ca2+ and Ba2+ ions to form insoluble carbonates, which will precipitate out of the solution. The formulas of the precipitates are CaCO3 (calcium carbonate) and BaCO3 (barium carbonate).

For calcium ions (Ca2+), the reaction is:
Ca2+ (aq) + CO3^2- (aq) → CaCO3 (s)


For barium ions (Ba2+), the reaction is:
Ba2+ (aq) + CO3^2- (aq) → BaCO3 (s)

A precipitation reaction is a reaction taking place in an aqueous solution in which two ionic bonds join, resulting in the formation of an insoluble salt. The insoluble salts formed in these reactions are called precipitates. These reactions can be used to find the presence of a particular element in the given solution.
The precipitates formed in this question are calcium carbonate (CaCO3) and barium carbonate (BaCO3). These solid precipitates can be separated from the aqueous solution by filtration or centrifugation.

For more questions on precipitation reactions: https://brainly.com/question/29990706

#SPJ11

Write the systemic name of Hg(NO3)2 H20
_________

Answers

Answer:

[tex]The \: systemic \: name \: of \: the \: \\ compound \: is[/tex]

Mercuric nitrate

hope it helps <3

Complete and balance the following redox reaction in acidic solution. Be sure to include the proper phases for all species within the reaction. Te0.2 (aq) + N20 g) - Te(s) + NO, (aq) Complete and balance the following redox reaction in basic solution. Be sure to include the proper phases for all species within the reaction. Cr20-2 (aq) + Hg(0) -- Hg2+(aq) + Cr* (aq) Complete and balance the following redox reaction in basic solution. Be sure to include the proper phases for all species within the reaction. Re04 (aq) + Pb2+(aq) - Re(s) + PbO2 (s)

Answers

To complete and balance the following redox reactions in acidic and basic solutions, here are the balanced equations with proper phases for each species involved:

Redox reaction in acidic solution:

[tex]TeO_{2}(aq) + N_{2}O(g) = Te(s) + NO(g)[/tex]

Redox reaction in basic solution:

[tex]Cr2O_{72-}(aq) + Hg(0) = Hg_{2+} (aq) + Cr_{3+} (aq)[/tex]

Redox reaction in basic solution:

[tex]ReO_{4_}(aq) + Pb_{2+} (aq) = Re(s) + PbO_{2} (s)[/tex]

Redox reactions, also known as oxidation-reduction reactions, involve the transfer of electrons between chemical species. In a redox reaction, one species undergoes oxidation, which involves the loss of electrons, while another species undergoes reduction, which involves the gain of electrons.

The species that undergoes oxidation is called the reducing agent or reductant because it donates electrons, while the species that undergoes reduction is called the oxidizing agent or oxidant because it accepts electrons. Redox reactions involve a simultaneous occurrence of both oxidation and reduction.

For more details regarding redox reactions, visit:

https://brainly.com/question/28300253

#SPJ12

Why do the Group A compounds, each with the same concentration (0.05 M), have such large differences in conductivity values? Hint: Write an equation for the dissociation of each. Explain.

Answers

Conductivity depends on the number of ions present in the solution and their mobility, a compound that produces more ions will have higher conductivity. In this example, A2X2 will have higher conductivity than A1X due to the greater number of ions it produces.

The Group A compounds with the same concentration (0.05 M) have large differences in conductivity values because their degree of dissociation varies. The degree of dissociation refers to the extent to which a compound breaks down into its constituent ions in a solution.
For example, let's consider two Group A compounds: sodium chloride (NaCl) and calcium chloride (CaCl2). NaCl dissociates completely in water to form Na+ and Cl- ions, while CaCl2 dissociates partially to form Ca2+ and 2Cl- ions.
The dissociation equation for NaCl is: NaCl → Na+ + Cl-
The dissociation equation for CaCl2 is: CaCl2 → Ca2+ + 2Cl-
Since NaCl dissociates completely, it produces a higher concentration of ions in solution, resulting in higher conductivity. On the other hand, CaCl2 only partially dissociates, resulting in a lower concentration of ions in solution and lower conductivity.
Therefore, the differences in conductivity values between Group A compounds with the same concentration (0.05 M) can be attributed to their varying degree of dissociation.
The Group A compounds have large differences in conductivity values at the same concentration (0.05 M) due to the varying degrees of dissociation and the number of ions produced by each compound when dissolved in a solution.
For instance, consider two Group A compounds, A1X and A2X2:
1. A1X dissociates as:
  A1X → A1⁺ + X⁻
  In this case, one molecule of A1X produces two ions in the solution.
2. A2X2 dissociates as:
  A2X2 → A2⁴⁺ + 2X²⁻
  Here, one molecule of A2X2 produces three ions in the solution.
Since conductivity depends on the number of ions present in the solution and their mobility, a compound that produces more ions will have higher conductivity. In this example, A2X2 will have higher conductivity than A1X due to the greater number of ions it produces.

To learn more about Conductivity, click here:

brainly.com/question/31364875

#SPJ11

upload a single file of all the skeletal structures for the molecules in the table. make sure that each structure is clearly labeled with the name of the molecule.

Answers

To upload a single file of all the skeletal structures for the molecules in the table, you can use a program like ChemDraw or MarvinSketch to draw the structures and save them as individual files. Then, you can combine them into a single PDF or image file using a tool like Adobe Acrobat or Microsoft Paint. Just make sure that each structure is clearly labeled with the name of the molecule to avoid any confusion.

Let us discuss this in detail.

To upload a single file of all the skeletal structures for the molecules in the table, follow these steps:

1. Gather the skeletal structures: Collect images or create diagrams of the skeletal structures for each molecule listed in the table. Make sure they are accurate and clear.

2. Label the structures: For each skeletal structure, add a label that clearly indicates the name of the molecule. You can do this using image editing software or by creating the labels directly on the diagrams if you are drawing them.

3. Combine the structures into a single file: Arrange all the labeled skeletal structures in a document or image file, ensuring that each structure is easily distinguishable and well-organized. You can use software like Microsoft Word, PowerPoint, or an image editor like GIMP or Photoshop for this purpose.

4. Save the file: Save your document or image file with an appropriate name that reflects its contents, such as "Skeletal_Structures_of_Molecules."

5. Upload the file: Finally, upload the single file containing all the labeled skeletal structures for the molecules in the table to the designated platform or as per the given instructions.

By following these steps, you will have successfully created and uploaded a single file of all the skeletal structures for the molecules in the table.

Learn more about skeletal structures at https://brainly.com/question/29165067

#SPJ11

when one of the ions of the compound is already present in solution, its concentration at equilibrium will be higher, therefore making ksp larger.
True False

Answers

The statement "when one of the ions of the compound is already present in solution, its concentration at equilibrium will be higher, therefore making Ksp larger" is false, because Ksp remains constant if the concentration at equilibrium Will be higher.

The presence of one of the ions in the solution does not make the Ksp larger. The Ksp (solubility product constant) is a fixed value for a particular compound at a specific temperature, and it does not change based on the concentration of the ions in the solution. The ion concentrations may affect the position of the equilibrium, but the Ksp value remains constant.

Learn more about Ksp: https://brainly.com/question/23719355

#SPJ11

draw the structure of the major organic product you would expect from the reaction of 1-bromopropane with koc(ch3)3.

Answers

The major organic product formed from the reaction of 1-bromopropane with KOCH(CH3)3 is 1-propoxypropane.

The reaction involves a substitution reaction where the bromine atom of 1-bromopropane is replaced by the alkoxide group (OC(CH3)3) from potassium tert-butoxide (KOCH(CH3)3). The tert-butoxide ion is a strong nucleophile, attacking the electrophilic carbon of 1-bromopropane to form a new carbon-oxygen bond.

This results in the formation of 1-propoxypropane as the major product, where the tert-butoxide group replaces the bromine atom. The reaction occurs via an S_N2 mechanism, where the nucleophile attacks the substrate from the backside, resulting in inversion of configuration at the reaction center.

For more questions like Reaction click the link below:

https://brainly.com/question/28984750

#SPJ11

write a balanced net ionic equation for the reaction of nibr2(aq) with (nh4)2s(aq).

Answers

The balanced net ionic equation for the reaction of NiBr2(aq) with (NH4)2S(aq) is:

Ni2+(aq) + S2-(aq) → NiS(s)

Note that the spectator ions NH4+ and Br- do not participate in the reaction and are not included in the net ionic equation.

Spectator ions are ions that do not participate in a chemical reaction, meaning they do not undergo any chemical change during the reaction. They are present in both the reactants and the products and do not affect the outcome of the reaction.

Spectator ions can be identified by looking at the balanced chemical equation of the reaction and canceling out ions that appear on both sides of the equation.

Visit here to learn more about spectator ions brainly.com/question/28913274

#SPJ11

The balanced net ionic equation for the reaction of NiBr2(aq) with (NH4)2S(aq) is:

Ni2+(aq) + S2-(aq) → NiS(s)

Note that the spectator ions NH4+ and Br- do not participate in the reaction and are not included in the net ionic equation.

Spectator ions are ions that do not participate in a chemical reaction, meaning they do not undergo any chemical change during the reaction. They are present in both the reactants and the products and do not affect the outcome of the reaction.

Spectator ions can be identified by looking at the balanced chemical equation of the reaction and canceling out ions that appear on both sides of the equation.

Visit here to learn more about spectator ions brainly.com/question/28913274

#SPJ11

the beta decay product of mo-98 is (hint mo is atomic number 42) group of answer choices nb-97 tc 96 nb - 98 tc - 98

Answers

The beta decay product of Mo-98 (Molybdenum-98, atomic number 42) is Tc-98 (Technetium-98).

Here's a step-by-step explanation:

1. Mo-98 undergoes beta decay, where a neutron is converted into a proton and an electron (beta particle) is emitted.
2. As a result, the atomic number increases by 1 (from 42 to 43) and the element changes from Mo (Molybdenum) to Tc (Technetium).
3. The mass number remains the same (98), so the final product is Tc-98 (Technetium-98).

So, the correct choice among the given options is Tc-98.

To learn more about beta decay, visit:

https://brainly.com/question/31394531

#SPJ11

The H NMR spectra of formic acid HCO2H, maleic acid cis - HO2CCH = CHCO2H and malonic acid HO2CCH2CO2H are similar in that each is characterized by two singlets of equal intensity. Match these compounds with the designations A, B and C on the basis of the appropriate H NMR chemical shift data. Compound A: signals at δ 3.2 and δ12.4Compound B: signals at δ 6.3 and δ12.4Compound C: signals at δ 8.0 and δ11.4

Answers

Based on the given H NMR chemical shift data, we can match the compounds as follows:
Compound A (δ 3.2 and δ 12.4) corresponds to malonic acid (HO2CCH2CO2H), as the two singlets result from the two chemically equivalent methylene (CH2) protons and the two carboxylic acid (CO2H) protons.

Compound B (δ 6.3 and δ 12.4) corresponds to maleic acid (cis-HO2CCH=CHCO2H). The signal at δ 6.3 is due to the two equivalent vinylic protons (CH=CH), while the signal at δ 12.4 results from the two carboxylic acid (CO2H) protons.

Compound C (δ 8.0 and δ 11.4) corresponds to formic acid (HCO2H). The signal at δ 8.0 arises from the single aldehyde proton (CH), and the signal at δ 11.4 is attributed to the carboxylic acid (CO2H) proton.

To know more about chemical shift click here:

https://brainly.com/question/30579222

#SPJ11

Consider the reaction between calcium chloride and silver nitrate to produce silver chloride and calcium nitrate.
Right and balance the equation for this reaction. Include states of matter for all compounds.

What species is the precipitate?

Write and complete the ionic equation

Identify the spectator ions

And write the net ionic equation

Answers

The balanced equation for the reaction between calcium chloride ([tex]CaCl_{2}[/tex]) and silver nitrate ([tex]AgNO_{3}[/tex]) to produce silver chloride (AgCl) and calcium nitrate ([tex]Ca(NO_{3})_{2}[/tex]) is:

CaCl2 (aq) + 2AgNO3 (aq) → 2AgCl (s) + Ca(NO3)2 (aq)

The precipitate in this reaction is silver chloride (AgCl), which is a white solid that is insoluble in water.

The ionic equation for this reaction can be written by first breaking down all the soluble compounds into their constituent ions:

Ca2+ (aq) + 2Cl- (aq) + 2Ag+ (aq) + 2NO3- (aq) → 2AgCl (s) + Ca2+ (aq) + 2NO3- (aq)

In this equation, Ca2+ and NO3- are spectator ions since they appear on both sides of the equation and do not undergo any chemical change.

The net ionic equation for the reaction can be obtained by removing the spectator ions from the ionic equation:

2Ag+ (aq) + 2Cl- (aq) → 2AgCl (s)

The net ionic equation shows only the species that participate in the actual chemical reaction, which in this case is the formation of silver chloride.

Learn more about iconic equations, here:

https://brainly.com/question/30379359

#SPJ1

How does mass relate to density?

Answers

Answer:

Density is grams / cm^3

Explanation:

Since The formular for density is mass over volume, most commonly cm^3, we can find the mass of a quantity given the volume. Say D=.5 g/cm^3. If we have 1 mL of a substance then we do 1 mL = 1cm^3

1 cm^3 x (.5 g / cm^3) = .5 g of the substance

how many mmol of naoh will react completely with 50. ml of 1.9 m h2c2o4 ?

Answers

Thus, 0.19 mol or 190 mmol of NaOH will react completely with 50 mL of 1.9 M H2C2O4.

To determine how many mmol of NaOH will react completely with 50 mL of 1.9 M H2C2O4, we first need to find the mmol of H2C2O4:

moles of H2C2O4 = (1.9 mol/L) * (50 mL * (1 L / 1000 mL)) = 0.095 mol H2C2O4

Since the balanced equation for the reaction between NaOH and H2C2O4 is:

H2C2O4 + 2 NaOH → Na2C2O4 + 2 H2O

From the balanced equation, 2 moles of NaOH react with 1 mole of H2C2O4. Therefore, we can find the mmol of NaOH:

mmol of NaOH = 0.095 mol H2C2O4 * (2 mol NaOH / 1 mol H2C2O4) = 0.19 mol NaOH

Thus, 0.19 mol or 190 mmol of NaOH will react completely with 50 mL of 1.9 M H2C2O4.

Know more about Balanced Chemical Equation here:

https://brainly.com/question/28383671

#SPJ11

In the traditional saponification process, what substance is added to a fat to produce glycerol and soap molecules? A. A strong acid B. A buffer C. A strong base D. A weak acid E. A weak base

Answers

In the traditional saponification process, a strong base (C) is added to a fat to produce glycerol and soap molecules.

What is Saponification Process?

The strong base breaks the ester bonds in the fat, resulting in the formation of glycerol and fatty acid salts, which are soap molecules.

This is a hydrolysis reaction where the ester bonds in the fat or oil are cleaved by the base, resulting in the formation of glycerol (also known as glycerin) and fatty acid salts, which are soap molecules. The process involves the reaction of the base with the triglycerides (fats) present in the fat or oil, leading to the production of soap, which can be used for cleaning and emulsifying properties, and glycerol, which has various applications in cosmetics, food, and pharmaceutical industries.

To know more about Saponification Process:

https://brainly.com/question/2263502

#SPJ11

1.802 grams of khp is dissolved in 20.0 ml of distilled water

Answers

Answer:

0.441 M KHP

Explanation:

KHP has a molar mass of 204.22 g/mol. It is Not actually KHP, it has its own longer formula C8H5KO4, Potassium hydrogen phthalate.

To find the molarity we will simply do moles/L

moles = 1.802 g x (1 mol KHP / 204.22 g) = 0.008824 mol KHP

The volume needs to be in L so divide by 1000, 20.0/10000 = 0.0200 L

Molarity = moles / L = 0.008824 moles / 0.0200 L = 0.441 M = [KHP]

A concentrated sucrose solution is poured into a cylinder of diameter 5.0 cm. The solution consisted of 10 g of sugar in 5.0 cm3 of water. A further 1.0 L of water is then poured very carefully on top of the layer, without disturbing the layer. Ignore gravitational effects, and pay attention only to diffusional processes. Find the concentration at 5.0 cm above the lower layer after a laps of the following time
a. 24 s __ M
b. 2.4 y ___ M

Answers

Since we are ignoring gravitational effects, we can assume that the sucrose solution and the water on top of it will mix through diffusion.



a)After 24 s, some diffusion will have occurred, but the concentration profile will not have fully mixed yet. We can use Fick's second law to find the concentration at 5.0 cm above the lower layer: ∂C/∂t = D(∂^2C/∂x^2).



where C is the concentration, t is time, x is distance, and D is the diffusion coefficient. Since we are only interested in the concentration at 5.0 cm above the lower layer, we can set x = 0.05 m. The diffusion coefficient for sucrose in water at room temperature is about 5.2 x 10^-10 m^2/s.



Using the initial conditions of 10 g of sugar in 5.0 cm^3 of water, we can calculate the initial concentration: C(0,0.05) = 10 g / (5.0 cm^3) = 2 g/cm^3, Now we can solve Fick's second law for C(24,0.05): C(24,0.05) = C(0,0.05) erfc[(0.05)/(2 sqrt(D t))].



erfc is the complementary error function, which can be found in tables or using a calculator. Plugging in the values, we get: C(24,0.05) = 1.10 g/cm^3
To convert to molarity, we need to divide by the molecular weight of sucrose (342.3 g/mol) and multiply by 1000 to convert from g/cm^3 to g/L: C(24,0.05) = 1.10 g/cm^3 / 342.3 g/mol * 1000 g/L = 3.21 x 10^-3 M.



b. After 2.4 years, diffusion will have had ample time to fully mix the solution. We can use the same initial conditions and diffusion coefficient as before, but now we need to solve Fick's second law for a much longer time: C(t,0.05) = C(0,0.05) erfc[(0.05)/(2 sqrt(D t))]
Plugging in the values, we get: C(2.4 years,0.05) = 0.5 g/cm^3
Converting to molarity as before, we get: C(2.4 years,0.05) = 0.5 g/cm^3 / 342.3 g/mol * 1000 g/L = 1.46 x 10^-3 M.

To know more about molarity click here

brainly.com/question/23686981

#SPJ11

A student used an average of 11.28 mL of
0.008500 mol/L KMnO4 (aq) to titrate 10.00
mL of diluted acidified hydrogen peroxide.
Determine the concentration of the stock
hydrogen peroxide in mol/L if it was diluted by
a factor of 30. (Record your answer to four
decimal places)

Answers

Answer: The concentration of the stock hydrogen peroxide solution is 0.0086 mol/L (rounded to four decimal places).

Explanation:

5 H2O2 + 2 KMnO4 + 3 H2SO4 → K2SO4 + 2 MnSO4 + 8 H2O + 5 O2

moles H2O2 = (0.008500 mol/L) x (11.28 mL/1000 mL) x 30 = 0.009684 mol

Since 10.00 mL of the diluted solution was titrated, the number of moles of H2O2 in the undiluted (stock) solution is:

moles H2O2 = (0.009684 mol/11.28 mL) x 10.00 mL = 0.008577 mol

concentration = moles H2O2/volume of stock solution = 0.008577 mol/L

Answer:

0.7191 mol/L

Explanation:

To solve it, we need to use the information given to determine the number of moles of potassium permanganate (KMnO4) that were used in the titration. The concentration of the KMnO4 solution is 0.008500 mol/L and the average volume used in the titration was 11.28 mL, so the number of moles of KMnO4 used is (0.008500 mol/L) * (11.28 mL) * (1 L / 1000 mL) = 0.00009588 mol.

The balanced chemical equation for the reaction between potassium permanganate and hydrogen peroxide in an acidic solution is:

2MnO4- + 5H2O2 + 6H+ -> 2Mn2+ + 5O2 + 8H2O

According to this equation, two moles of MnO4- react with five moles of H2O2. This means that for every two moles of MnO4- that react, five moles of H2O2 are consumed.

Since we have 0.00009588 moles of MnO4-, we can expect that (5 moles H2O2 / 2 moles MnO4-) * 0.00009588 moles MnO4- = 0.0002397 moles of H2O2 were consumed in the reaction.

The volume of the diluted hydrogen peroxide solution that was titrated was 10.00 mL, so its concentration is (0.0002397 mol) / (10.00 mL) * (1000 mL / L) = 0.02397 mol/L.

Since this solution was diluted by a factor of 30, the concentration of the stock hydrogen peroxide solution must be 30 times greater than the concentration of the diluted solution: 30 * 0.02397 mol/L = 0.7191 mol/L.

be sure to answer all parts. rank the species in order of increasing nucleophilicity in acetone. a. ch3sh b. ch3oh c. ch3nh2

Answers

The order of increasing nucleophilicity in acetone is [tex]CH_3OH (b) < CH_3NH_2 (c) < CH_3SH (a).[/tex]

In acetone, the nucleophilicity of a species depends on its ability to donate a pair of electrons and react with an electrophile. The three species to consider are [tex]CH_3SH (a), CH_3OH (b), and CH_3NH_2 (c)[/tex]. To rank them in order of increasing nucleophilicity, we need to analyze their electron-donating abilities, which are influenced by factors such as the size of the atom, electronegativity, and the stability of the conjugate base.

a. [tex]CH_3SH[/tex]: The sulfur atom in [tex]CH_3SH[/tex] is larger and less electronegative than oxygen and nitrogen. This makes the electron cloud more dispersed, allowing it to donate electrons more easily.

b. [tex]CH_3OH[/tex]: The oxygen atom in [tex]CH_3OH[/tex] is more electronegative than sulfur and nitrogen. However, it is a relatively small atom, which leads to a higher electron density around the oxygen, resulting in reduced nucleophilicity compared to [tex]CH_3SH[/tex].

c. [tex]CH_3NH_2[/tex]: The nitrogen atom in [tex]CH_3NH_2[/tex] is less electronegative than oxygen but more electronegative than sulfur. It is also smaller than sulfur, resulting in a more concentrated electron cloud. However, its lower electronegativity compared to oxygen makes it a better nucleophile than [tex]CH_3OH.[/tex]

In conclusion, the order of increasing nucleophilicity in acetone is as follows: [tex]CH_3OH (b) < CH_3NH_2 (c) < CH_3SH (a).[/tex] This means that [tex]CH_3SH[/tex] is the strongest nucleophile among the three species, while [tex]CH_3OH[/tex] is the weakest.

For more such questions on Nucleophilicity.

https://brainly.com/question/29563504#

#SPJ11

The diagrams show gases that are stored in two separate but similar containers. 2 identical containers have gas particles, represented by small balls with arrows representing movement in random directions. The Gas 1 container has many fewer balls than the Gas 2 container. If both gases are at the same temperature, which one has the greater pressure? gas 1 because the particles are moving much faster gas 1 because it has fewer particles that are close together gas 2 because it has more particles that are colliding gas 2 because the particles have more space between them Mark this and return

Answers

Answer:

que es un compuesto ionico

What type of intermediate is present in the SN2 reaction of cyanide with bromoethane?
A) carbocation
B) free radical
C) carbene
D) carbanion
E) This reaction has no intermediate.

Answers

The type of intermediate is present in the SN2 reaction of cyanide with bromoethane is reaction has no intermediate. The correct answer is E.

In the SN2 reaction of cyanide with bromoethane, SN2 reactions involve a direct, one-step process where the nucleophile (in this case, cyanide) attacks the electrophile (bromoethane) simultaneously as the leaving group (bromide ion) departs. Hence, there is no intermediate formed in an SN2 reaction.The correct answer is E.

To learn more about SN2 reaction, visit:  

https://brainly.com/question/25175580

#SPJ11

Convert your experiment solubility of KHT (in mol L^-1) to g KHT per 100 mL. Compare this solubility to the literature value, obtainable from a chemistry handbook

Answers

The literature value for KHT solubility is 0.042 g/100 mL. The value obtained from the experiment is slightly higher than the literature value.

What is solubility?

Solubility is the ability of a substance to dissolve in a solvent, usually a liquid, to form a homogeneous solution. It is expressed as the maximum amount of solute that can dissolve in a given quantity of solvent or solution. It can also be expressed in terms of concentration, as the amount of solute that dissolves in a given volume of solvent or solution at a given temperature. A substance is considered soluble if it dissolves in a solvent at a rate sufficient to reach equilibrium.

Given: Solubility of KHT in mol L⁻¹ = 0.00025 mol/L

Conversion: 0.00025 mol/L x 204.22 g/mol = 0.0505 g KHT/100 mL

The literature value for KHT solubility is 0.042 g/100 mL. The value obtained from the experiment is slightly higher than the literature value.

To learn more about solubility

https://brainly.com/question/23946616

#SPJ1

What is the pH of a 0.100 M NH3 solution that has Kb = 1.8 x 10^-52. The equation for the dissociation of NH3 is NH3(aq) H2o() = NHAt(aq) 0H-(aq). A) 11.13 B) 12.13 C) 1.87 D) 2.87

Answers

The pH of a 0.100 M NH₃ solution with Kb = 1.8 x 10⁻⁵ is 11.13. (A)


1. Write the Kb expression: Kb = [NH₄⁺][OH⁻] / [NH₃]


2. Set up an ICE table: Initial concentrations are [NH₃] = 0.100 M, [NH₄⁺] = 0, [OH⁻] = 0. Changes are -x for NH₃ and +x for NH₄⁺ and OH⁻.


3. Substitute values into the Kb expression: (1.8 x 10⁻⁵) = (x)(x) / (0.100 - x)


4. Since x is small compared to 0.100, we can approximate by removing x in the denominator.


5. Solve for x: x² = (1.8 x 10⁻⁵)(0.100) ⟹ x = 1.34 x 10⁻³ M


6. Calculate the pOH: pOH = -log(1.34 x 10⁻³) ≈ 2.87


7. Find the pH: pH = 14 - pOH ≈ 11.13(A)

To know more about ICE table click on below link:

https://brainly.com/question/30642088#

#SPJ11

what volume of a 25M solution can be prepared with 28.5g of K2S molar mass 110.26g

Answers

Answer:

10.34 mL

Explanation:

The molar mass of K2S is 110.26g/mol.

Number of moles of K2S = mass / molar mass

Number of moles of K2S = 28.5g / 110.26g/mol = 0.2586 mol

Now, we can use the definition of molarity to calculate the volume of the solution that can be prepared.

Molarity = number of moles / volume of solution (in liters)

Rearranging the equation, we get:

Volume of solution = number of moles / molarity

Volume of solution = 0.2586 mol / 25 mol/L = 0.010344 L = 10.34 mL

Therefore, 10.34 mL of a 25M solution of K2S can be prepared from 28.5g of K2S.

the vapor pressure of water at 20 v ◦c is 17.54 torr. using this data and ∆h ap= 40.65 kj/mol for water calculate ∆g0 298 for the change h2o(`) → h2o(g)?

Answers

The vapor pressure of water at 25°C (298 K) is approximately 606.8 atm, b- the standard free energy change for the change H2O(l) → H2O(g) is -32.5 kJ/mol.

To calculate ∆G°298 for the change H2O(l) → H2O(g), we need to use the following thermodynamic equation:

∆G°298 = ∆H°298 - T∆S°298

where ∆H°298 is the standard enthalpy change, ∆S°298 is the standard entropy change, and T is the temperature in Kelvin.

First, we need to calculate ∆S°298 for the change H2O(l) → H2O(g). We can use the Clausius-Clapeyron equation:

ln(P2/P1) = (∆Hvap/R)(1/T1 - 1/T2)

where P1 is the vapor pressure of water at temperature T1, P2 is the vapor pressure of water at temperature T2, ∆Hvap is the enthalpy of vaporization of water, R is the gas constant (8.314 J/mol*K), and T1 and T2 are the temperatures in Kelvin.

We are given that the vapor pressure of water at 20°C (293 K) is 17.54 torr. We can convert this to atmospheres (atm) by dividing by 760 torr/atm:

P1 = 17.54/760 = 0.023 atm

We are also given ∆Hvap = 40.65 kJ/mol. Converting this to J/mol and dividing by R gives:

(40.65 * 1000 J/mol) / (8.314 J/mol*K) = 4891 K

using this value, along with T1 = 293 K and T2 = 298 K, we can solve for ln(P2/P1)

ln(P2/0.023) = (4891 K)(1/293 K - 1/298 K)

ln(P2/0.023) = 26.84

P2/0.023 =e(26.84)

P2 = 606.8 atm

Next, we can calculate ∆S°298 using the equation:

∆S°298 = ∆H°vap/T + R ln(P2/P1)

∆S°298 = (40.65 * 1000 J/mol) / (298 K) + 8.314 J/mol*K * ln(606.8/0.023)

∆S°298 = 109.0 J/mol*K

Now we can plug in the values for ∆H°298 and ∆S°298, along with T = 298 K, into the equation for ∆G°298:

∆G°298 = ∆H°298 - T∆S°298

∆G°298 = (0 kJ/mol) - (298 K)(109.0 J/mol*K)

∆G°298 = -32.5 kJ/mol

learn more about standard free energy here:

https://brainly.com/question/15876696

#SPJ11

In the laboratory, you are given the task of separating Ca2+ and Zn2+ ions in aqueous solution. Can the reagent Na2S be used for this process? If so, write the formula of the precipitate.

Answers

Answer:

ZnS

Explanation:

Zinc sulfide is not soluble in water while Calcium sulfide is, therefore the former will precipitate but the latter won't

help pls 50 points

Which two trends increase as you move from left to right across a period and decrease as you move down a group?
electronegativity and ionization energy
atomic radius and electronegativity
atomic radius and ionization energy
valence electrons and ionization energy

Answers

Answer:

Electronegativity and ionization energy

Answer:

Electronegativity and ionization energy

Explanation:

Other Questions
a square pyramid has a base measuring 10 inches on each side. the height of the pyramid is 5 inches. a similar square pyramid has a base measuring 2.5 inches on each side. how do the surface areas of these pyramids compare? drag a value to the box to correctly complete the statement. put responses in the correct input to answer the question. select a response, navigate to the desired input and insert the response. responses can be selected and inserted using the space bar, enter key, left mouse button or touchpad. responses can also be moved by dragging with a mouse. the surface area of the larger pyramid is response area times the surface area of the smaller pyramid. Find the area of the irregular figure below. You have $4,500 on a credit card that charges a 19% interest rate. If you want to pay off the credit card in 5 years, how much will you need to pay each month (assuming you don't charge anything new to the card)? Clayton Corporation owns business realty that the county condemns on July 15, year 1. The county pays Clayton $400,000 for the property that has an allocated basis of $235,000.a. What is Clayton's realized and recognized gain, assuming it does not replace the property?b. What is its recognized gain, assuming it spends $350,000 on replacement property?c. What is its basis in the replacement property?d. What is its recognized gain, assuming it spends $500,000 on replacement property?e. What is its basis in the replacement property?f. If the corporation has a June 30 fiscal year-end, what is the last date that it can acquire qualifying replacement property? True learning means committing content to long-term memory. t or f According to the Bureau of Labor Statistics, 71.9% of Young women enroll in college directly after high school graduation. Suppose a random sample of 200 female high school graduates is selected and the proportion who enroll in college is obtained.a. What value should we expect for the sample proportion? b. What is the standard error? c. What effect would increasing the sample size to 500 have on the standard error? Conditional probability 3. Anya travels to work by car or by bicycle. The probability that she travels by car is 0.35 If she travels to work by car, the probability that she will be late is 0.12 If she travels to work by bicycle, the probability that she will be late is 0.25 a) Draw a probability tree diagram to show all the possible outcomes. b) Work out the probability that Anya will not be late. help quick will give brainlist To apply Ampre's law to find the magnetic field inside an infinite solenoid. In this problem we will apply Ampre's law, written B (r )dl =0Iencl, to calculate the magnetic field inside a very long solenoid (only a relatively short segment of the solenoid is shown in the pictures). The segment of the solenoid shown in (Figure 1) has length L, diameter D, and n turns per unit length with each carrying current I. It is usual to assume that the component of the current along the z axis is negligible. (This may be assured by winding two layers of closely spaced wires that spiral in opposite directions.) From symmetry considerations it is possible to show that far from the ends of the solenoid, the magnetic field is axial. find bin , the z component of the magnetic field inside the solenoid where ampre's law applies. express your answer in terms of l , d , n , i , and physical constants such as 0 . Are there more challenges than benefits when dealing with instant messaging with the youth of today What is the best choice of reagent(s) to perform Fisher Esterification? CH31, H2SO4 CH3OH, H2S04 NaOCH CH3L1 Determine the mass of solid NaCHCOO that must be dissolved in an existing 500.0 mL solution of 0.200 M CHCOOH to form a buffer with a pH equal to 5.00. The value of Ka for CHCOOH is 1.8 10.Find the ICE chart for CH3COOH(aq) + H2O - H3O++ CH3COO-(aq)And Solve for Ka= ? =1.8*10-5 The International Society for Automation (ISA) promotes that we must treat fairly and respectfully all colleagues and co-workers but also, :Question 4 options:(A) recognize each of their unique contributions and individual capabilities full of strengths and weaknesses.(B) realize some employees are woefully lacking at times such that providing financial support or perhaps some other incentive such that they may have a boost of motivation to succeed.(C) recognize that everyone is human too and will make mistakes such that no corrective action is ever necessary(D) judge their quality and/or quantity of work critically and rashly rather than constructively and supportive to foster helping aid in their development. Which has a higher exchange rate Euro or the U.S. dollar? choose the correct resonance structures for the following compound and use the resonance structures to determine if the substituent has an electron-donating or electron-withdrawing resonance effect. A group of students at a high school took a standardized test. The number of students who passed or failed the exam is broken down by gender in the following table. Determine whether gender and passing the test are independent by filling out the blanks in the sentence below, rounding all probabilities to the nearest thousandth.Passed FailedMale 33 8Female 66 16Since P(male)P(fail) = and P(male and fail) = , the two results are___ so the events are___ 35 yo F presents with a malodorous, profuse, frothy, greenish vaginal discharge with intense vaginal itching and discomfort. What the diagnose? 1. Consider an automated teller machine (ATM) to which users provide a personal identification number (PIN) and a card for account access. Give examples of confidentiality, integrity, and availability requirements associated with the system and, in each case, indicate the degree of importance of the requirement. Based on the number of moles of malachite that you started with, how many grams of water were produced? the molar mass of water is 18.0153 g/mol. choose the closest answer. Running laps: In this lab you will be reading in a file of student results. The students each ran 3 laps in a race and their times to complete each lap are posted in the order that they completed the lap (the students will not necessarily be in the same order each lap). You will be outputting a number of results based on the student performance. And it should go without saying that you cannot hard-code any of the values into your program as the values Ive given as an example are not the same values I will use to test it with. There is a maximum of 20 students that may participate in the race (though the example file only has 7). Hint: times in the files are given as minutes:seconds. But many times, you need to add or do calculations with them together. So you will need to convert them to total seconds to do these calculations. Then for displaying you will be converting them back. Hint #2: Do not store the values in your program. Many students get advice on how to do this from other sources and whereas this could have value in many situations (other labs maybe) here it is completely unnecessary. The text file stores the values already, so there is no need to use arrays or lists or anything of that kind to do what the text file already does. If you need to compare one value to another you can read the file multiple times. tldr: Yes, reading a file can be slower than accessing it from an array or list but not overly so. The only real slow down with using streams is that the stream could be on another source machine over a network for instance in that case an array to store the values is very much preferred. But here, we are using a file on a local machine (that will get cached anyways), so rereading the file x amount of times isnt really a problem. Objective 1: Output the final times of all the students. I also want to know who placed 1st, 2nd and 3rd overall. (Though if you have them all in order that will be sufficient). You can order values simply by setting aside 3 variables and when you calculate a new score you see if it is the best, if so move the old best into 2nd place and move the 2nd place into 3rd place. If it isnt the best, then move down to 2nd and try that one and so on. I should also note that you may read a file as many times as you want. Though it is not necessarily the most efficient solution you may read the file over again for each student that participated. Objective 2: I want the averages for each lap by all the students. Then output which students are above the average and which are below: Lap 1 average: 2:05 Below: Akano, Wes, Kye, Edward (note that Edward is right on the border and could be put in either) Above: Jess, Ally, Wilt Objective 3: Naturally, the students slowed down from lap to lap as they were running. I want the lap times and the difference between them posted for each student: Lap 1 2 3 Akano 1:48 2:28 2:25 +40 -3 (note that she is one of the few that needs a negative) Objective 4: Consistency in races is important. I want to know the total range of each students fastest and slowest lap. In the end I want to know the top 3 most consistent runners: Slowest fastest difference Akano: 2:28 1:48 40 sec Objective 5: Now you are going to use both the example files together. The second results file contains the same students (though my test data will be 2 files with different number and names than the files you are given). I want a comparison of the students overall times from each results file: 1 2 difference Akano: 6:41 5:49 -52 secLap 1:Akano 1:43Wes 1:45Kye 1:52Edward 2:05Jess 2:14Ally 2:26Wilt 2:30Lap 2:Edward 1:50Akano 2:00Wes 2:03Kye 2:15Jess 2:16Ally 2:23Wilt 2:54Lap 3:Kye 2:01Akano 2:06Ally 2:54Wes 3:03Wilt 3:11Jess 3:15Edward 3:21Lap 1:Akano 1:48Edward 1:50Wes 1:55Kye 1:59Ally 2:04Jess 2:18Wilt 2:44Lap 2:Edward 1:56Kye 2:21Jess 2:21Akano 2:28Ally 2:33Wes 2:43Wilt 3:14Lap 3:Kye 2:11Akano 2:25Wilt 3:01Ally 3:10Jess 3:11Wes 3:18Edward 3:34