How many D atoms are there in a molecule of the major organic product of the following reaction sequence? Mg.ether/anhydrous condtions CD2OD/(D=^2H) O 0O 1 O 2 O 3 O none of the above

Answers

Answer 1

There is 1 D atom in a molecule of the major organic product of the given reaction sequence.

Explain the D atom?

To determine the number of D atoms in a molecule of the major organic product of the given reaction sequence, please follow these steps:

Identify the starting material and reagents: In this case, the starting material is not provided, and the reagents are Mg in ether under anhydrous conditions, followed by CD2OD (where D is deuterium, ^2H).

Analyze the reaction conditions: Mg in ether is often used for the formation of Grignard reagents. Anhydrous conditions are necessary to ensure the Grignard reagent does not react with any water molecules.

Identify the reaction with CD2OD: The Grignard reagent formed in the first step will react with CD2OD, transferring one deuterium atom (D) from CD2OD to the carbon atom in the starting material, creating an alcohol with one deuterium atom.

Count the number of D atoms in the major organic product: Based on the reactions, the major organic product will contain one D atom in its molecule.

So, the answer to your question is: There is 1 D atom in a molecule of the major organic product of the given reaction sequence.

Learn more about D atom

brainly.com/question/1715047

#SPJ11


Related Questions

Which element has the highest (most negative) electron affinity?
Kr
S
Na
Ca
Cu

Answers

Among the elements listed, krypton has the highest electron affinity, with a value of -48.4 kJ/mol. Krypton is a noble gas located in group 18 of the periodic table, which means that it has a full valence electron shell and is generally inert chemically.

Its high electron affinity can be attributed to its small atomic size and large effective nuclear charge, which leads to a strong attraction between the nucleus and incoming electrons.

As a result, krypton readily accepts an additional electron to form the Kr^- ion, which is isoelectronic with the neighboring element, rubidium.

In contrast, the other elements listed (sulfur, sodium, calcium, and copper) all have positive electron affinities, indicating that they do not readily accept an additional electron.

This is because these elements have already filled or partially filled valence electron shells, making it energetically unfavorable to add another electron and disrupt the existing electron configuration.

Additionally, copper is a transition metal and tends to have lower electron affinities than main-group elements due to its partially filled d orbitals, which can shield the nuclear charge and reduce the attraction between the nucleus and incoming electrons. Kr is the correct answer.

Know more about valence electron here:

https://brainly.com/question/28977387

#SPJ11

An infinitely long, straight, cylindrical wire of radius RR has a uniform current density →J=J^zJ→=Jz^ in cylindrical coordinates.
Cross-sectional view
Side view
What is the magnitude of the magnetic field at some point inside the wire at a distance ri B=B=
Assuming JJ is positive, what is the direction of the magnetic field at some point inside the wire?
positive zz‑direction
negative zz‑direction
positive rr‑direction
negative rr‑direction
positive ϕϕ‑direction
negative ϕϕ‑direction

Answers

The magnitude of the magnetic field inside the wire at a distance ri is B = (μ₀ * J * ri) / 2. Assuming JJ is positive, Assuming JJ is positive, the direction of the magnetic field at some point inside the wire would be positive ϕ-direction.

To find the magnitude of the magnetic field inside the wire, we will use Ampere's Law, which relates the magnetic field around a closed loop to the current enclosed by that loop. In this case, the loop will be a circle of radius ri inside the wire.

Ampere's Law: ∮ B → · d l → = μ₀I_enclosed

First, we need to find the enclosed current, I_enclosed. To do this, we can multiply the current density J by the cross-sectional area of the circle with radius ri.

I_enclosed = J * π * (ri)^2

Now, we can apply Ampere's Law. For a symmetrical situation like this, the magnetic field B is constant along the circular loop, so we can simplify the equation as follows:

B * 2 * π * ri = μ₀ * J * π * (ri)^2

Next, we will solve for B:

B = (μ₀ * J * π * (ri)^2) / (2 * π * ri)

B = (μ₀ * J * ri) / 2

To find the direction of the magnetic field at a point inside the wire, we can use the right-hand rule. Place your thumb in the direction of the current, which is the positive z-direction. Your curled fingers will point in the direction of the magnetic field, which is the positive ϕ-direction.

Learn more about right-hand rule here:

brainly.com/question/10110531

#SPJ11

Consider the following reaction, which is thought to occur in a single step.

OH ˉ +CH3Br → CH3OH+Brˉ

What is the rate law?

Answers

The rate law for this reaction is derived from the rate equation, which is defined as the rate of reaction divided by the concentrations of the reactants. The rate law for this reaction is typically written as rate = k[OH⁻][CH₃Br], where k is the rate constant.

This means that the rate of this reaction is directly proportional to the concentrations of OH⁻ and CH₃Br. This indicates that the reaction rate increases as the concentrations of the reactants increase.

The rate law describes how the rate of a reaction changes with respect to changes in the concentrations of the reactants. It is determined by experimentally measuring the rate of the reaction at various concentrations of the reactants.

This rate law describes the rate of the reaction when the concentrations of the reactants are varied while all other factors, such as temperature and pressure, remain constant.

know more about reactants here

https://brainly.com/question/17096236#

#SPJ11

Whenever a gas expands isothermally, such as when you exhale or when a flask is opened, the gas undergoes an increase in entropy. A sample of methane gas of mass 15 g at 260 K and 105 kPa expands isothermally and (a) revers- ibly, (b) irreversibly until its pressure is 1.50 kPa. Calculate the change in entropy of the gas.

Answers

When a gas expands isothermally, its temperature remains constant throughout the process. Therefore, the change in entropy can be calculated using the equation:

ΔS = nRln(V₂/V₁)

where ΔS is the change in entropy, n is the number of moles of gas, R is the gas constant, V₁ is the initial volume, and V₂ is the final volume.

(a) Reversibly expanding the methane gas at 260 K and 105 kPa until its pressure is 1.50 kPa, we can use the ideal gas law to calculate the initial volume:

PV = nRT

V₁ = (nRT)/P₁ = (15 g)/(16.043 g/mol) x (0.08206 L·atm/(mol·K)) x 260 K/105 kPa = 0.286 L

Similarly, we can calculate the final volume:

V₂ = (nRT)/P₂ = (15 g)/(16.043 g/mol) x (0.08206 L·atm/(mol·K)) x 260 K/1.50 kPa = 5.00 L

Substituting these values into the entropy equation, we get:

ΔS = (15 g)/(16.043 g/mol) x (0.08206 L·atm/(mol·K)) x ln(5.00 L/0.286 L) = 25.1 J/K

Therefore, the change in entropy of the methane gas when it isothermally and reversibly expands from 105 kPa to 1.50 kPa is 25.1 J/K.

(b) Irreversibly expanding the methane gas until its pressure is 1.50 kPa, we cannot use the same equation as in part (a) because the process is not reversible. Instead, we need to use the equation:

ΔS = q/T

where q is the heat transferred and T is the temperature.

Since the expansion is irreversible, the heat transferred is not equal to the work done on or by the gas. However, we can use the fact that the internal energy of an ideal gas depends only on its temperature to write:

ΔU = 0 = q - w

where ΔU is the change in internal energy and w is the work done on or by the gas. Since the expansion is isothermally and the temperature remains constant, we can write:

w = nRTln(V₂/V₁) = -q

Therefore, the heat transferred can be calculated as:

q = -nRTln(V₂/V₁)

Substituting this into the entropy equation, we get:

ΔS = -(15 g)/(16.043 g/mol) x (0.08206 L·atm/(mol·K)) x ln(5.00 L/0.286 L) / 260 K = 22.1 J/K

Therefore, the change in entropy of the methane gas when it isothermally and irreversibly expands from 105 kPa to 1.50 kPa is 22.1 J/K.

Learn more about internal energy here:

https://brainly.com/question/11742607

#SPJ11

what happens to the percent yield of alum if too much sulfuric acid was added?

Answers

If too much sulfuric acid is added during the formation of alum, the percent yield may decrease. Sulfuric acid can react with the aluminum compound and create a by product, decrease the amount of alum produced.

According to the definition of percent yield, it is the percentage of actual yield to potential yield.

Simply dividing the theoretical yield by the actual yield and multiplying the result by 100 to obtain the result in percentage form allowed us to calculate the product's percent yield. Additionally, excess sulfuric acid can cause the reaction to become too acidic, which can also decrease the yield.  This is because an excess of sulfuric acid can lead to side reactions, producing unwanted by products, and consuming some of the desired reactants. As a result, less alum is formed, leading to a lower percent yield. Therefore, it is important to add the correct amount of sulfuric acid to the reaction mixture in order to achieve the highest possible percent yield of alum.

Learn more about percent yield here

https://brainly.com/question/17042787

#SPJ11

calculate the solubility of iron(ii) hydroxide (ksp=4.87×10−17)(ksp=4.87×10−17) in pure water in grams per 100.0 mlml of solution.

Answers

The solubility product expression for iron(II) hydroxide, Fe(OH)2, is:

Ksp = [Fe2+][OH-]^2 = 4.87×10^-17

Let's assume that the initial concentration of Fe2+ and OH- ions in pure water is x M. Then, the equilibrium concentration of Fe2+ and OH- ions will also be x M.

Therefore, the solubility product expression becomes:

Ksp = x * (2x)^2 = 4x^3

Solving for x:

4x^3 = 4.87×10^-17

x^3 = 1.2175×10^-17

x = (1.2175×10^-17)^(1/3)

x = 2.312×10^-6 M

The solubility of Fe(OH)2 is equal to the concentration of Fe2+ ions, which is x.

To convert this to grams per 100.0 ml of solution, we need to multiply by the molar mass of Fe(OH)2 and the volume of the solution:

solubility = x * molar mass * 100 / volume

Assuming the molar mass of Fe(OH)2 is 89.86 g/mol and the volume of the solution is 100.0 ml, we get:

solubility = (2.312×10^-6 M) * (89.86 g/mol) * 100 / 100.0 ml

solubility = 0.00208 g/100.0 ml

Therefore, the solubility of iron(II) hydroxide in pure water is 0.00208 g/100.0 ml of solution.

*IG:whis.sama_ent*

consider the following reaction and its δ∘ at 25.00 °c. fe2 (aq) zn(s)⟶fe(s) zn2 (aq)δ∘=−60.73 kj/mol calculate the standard cell potential, ∘cell, for the reaction.

Answers

The standard cell potential for the reaction is 0.315 V.

To calculate the standard cell potential (E°cell) for the given reaction, we can use the following equation:

E°cell = -ΔG° / (n * F)

Where:
- ΔG° is the standard Gibbs free energy change (-60.73 kJ/mol)
- n is the number of moles of electrons transferred in the reaction
- F is the Faraday constant (96,485 C/mol)

First, we need to determine the number of moles of electrons transferred (n) in the reaction. To do this, we look at the balanced half-reactions:

Fe²⁺(aq) + 2e⁻ → Fe(s)  [Reduction]
Zn(s) → Zn²⁺(aq) + 2e⁻   [Oxidation]

In both half-reactions, there are 2 moles of electrons transferred. So, n = 2.

Now, we can plug the values into the equation:

E°cell = -(-60.73 kJ/mol) / (2 * 96,485 C/mol)
E°cell = 60.73 kJ/mol / (2 * 96,485 C/mol)

Note that we need to convert kJ to J:

E°cell = 60,730 J/mol / (2 * 96,485 C/mol)

Now, solve for E°cell:

E°cell = 0.315 V

To know more about cell potential here:

https://brainly.com/question/29653954#

#SPJ11

using the chemical equation from the previous problem (question 4), identify the spectator ions:- Phosphide ion- Phosphite ion - Barium ion - Phosphate ion - Sulfate ion - Sulfite ion - Beryllium ion - Ammonium ion - Sulfide ionThe equation is 2(NH4)3PO4+3BaS=3(NH4)2S+Ba3(PO4)2

Answers

Ammonium ion (NH4+) and Phosphate ion (PO4^3-) are the spectators ions.

In the given chemical equation, 2(NH4)3PO4 + 3BaS → 3(NH4)2S + Ba3(PO4)2, the spectator ions are those that appear in both the reactants and products of the reaction, but do not undergo any chemical change. In this case, the ammonium ion (NH4+) and phosphate ion (PO43-) are spectator ions. They appear in both the reactant (NH4)3PO4 and product NH4)2S and Ba3(PO4)2 respectively.

However, the phosphide ion (P3-), phosphite ion (PO33-), sulfate ion (SO42-), sulfite ion (SO32-), and beryllium ion (Be2+) are the ions involved in the chemical reaction. These ions react with each other and result in the formation of new compounds.

It is essential to identify the spectator ions in a chemical equation to determine the actual reactants and products involved in the reaction. This information is crucial in determining the stoichiometry of the reaction and calculating the amount of product formed or reactant consumed, Thus, identifying the spectator ions helps in the accurate representation of the chemical reaction and its various aspects.

Know more about Stoichiometry here:

https://brainly.com/question/22288091

#SPJ11

Spacecraft bring back samples of two asteroids. One brings back a small sample, and the other brings back a large sample. Back on Earth, scientists observer that the samples have a similar color and hardness. Scientists weigh the samples and find that the small sample has a mass of 10 grams, and the large sample has a mass of 1,000 grams.

Write a set of procedures that will allow any scientist to be able to gather more evidence about whether the two samples are likely to be the same substance or not.

This is just confusing.

Answers

Here are some procedures that scientists can follow to gather more evidence about whether samples are the same substance or not: Conduct a chemical analysis, Conduct a spectroscopic analysis, Conduct a crystallographic analysis, Conduct a density analysis

Conduct a chemical analysis: If the samples have the same composition, then they are likely to be the same substance.

Conduct a spectroscopic analysis: If the spectral signatures are the same, then the samples are likely to be the same substance.

Conduct a crystallographic analysis: If the crystal structures are the same, then the samples are likely to be the same substance.

Conduct a density analysis: If the densities are the same, then the samples are likely to be the same substance.

To know more about spectral signatures, here

brainly.com/question/22636286

#SPJ1

Given the nitration reaction for this modulared2 247 g of methyl benzoate and 2.2 ml of concentrated nitric acid, what was the limiting reagent? A. Water B. Methyl benzoate C, Nitric acid D. Methyl 3-nitrobenzoate

Answers

The limiting reagent is Nitric acid (Option C)

How to determine the limiting reagent?

To determine the limiting reagent, we need to calculate the number of moles of each reactant and compare their mole ratios with the balanced equation.

The balanced equation for the nitration of methyl benzoate is:

C₆H₅COOCH₃ + HNO₃ → C₆H₄(NO₂)COOCH₃ + H₂O

The molar mass of methyl benzoate (C₆H₅COOCH₃) is:

Methyl benzoate = 151.16 g/mol

Number of moles of methyl benzoate used:

n = m/M = 247 g / 151.16 g/mol = 1.635 mol

The density of concentrated nitric acid is 1.42 g/mL, and its molar mass is 63.01 g/mol. Therefore, 2.2 mL of concentrated nitric acid is equal to:

m = V x ρ = 2.2 mL x 1.42 g/mL = 3.124 g

Number of moles of nitric acid used:

n = m/M = 3.124 g / 63.01 g/mol = 0.0495 mol

Using the balanced equation, the mole ratio between methyl benzoate and nitric acid is 1:1. Therefore, the limiting reagent is nitric acid since it is present in a lower amount than the amount required for the reaction to occur completely.

Answer: C. Nitric acid is the limiting reagent.

Learn more about Limiting reagent

brainly.com/question/26905271

#SPJ11

Draw the structures for each of the alcohols and USE ARIO to rank them in order of these relative acidities. Explain how you used ARIO. 1-Butanol, 2-Propanol(isopropanol), 2-Methyl-2-propanol(tert-Butanol), Phenol
What base can you use to deprotonate each of the alcohols
How would you use one of these specific tests in a specific different application? such as lucas tesr, ferric chloride, chromic acid,iodoform.

Answers

The relative acidities of 1-Butanol, 2-Propanol, 2-Methyl-2-propanol, and Phenol are ranked using ARIO as follows Phenol > 2-Methyl-2-propanol > 2-Propanol > 1-Butanol.

A strong base like sodium hydride (NaH) can deprotonate these alcohols.

The Ferric chloride test can be used to detect the presence of phenolic groups.


1. Atom: Phenol has the most acidic proton since it is attached to an oxygen atom in an aromatic ring.


2. Resonance: Phenol's acidity is further increased due to resonance stabilization of the resulting phenoxide ion.


3. Induction: 2-Methyl-2-propanol has a more acidic proton due to the electron-withdrawing inductive effect of the three methyl groups.


4. Orbitals: 2-Propanol and 1-Butanol have sp3 hybridized carbon atoms, making them less acidic than the others.

Ferric chloride test application: To test for the presence of phenolic groups, mix a few drops of the compound with a few drops of 1% aqueous ferric chloride solution. A positive test will show a color change, usually to purple or blue.

To know more about resonance stabilization click on below link:

https://brainly.com/question/31040880#

#SPJ11

calculate the poh of a solution that results from mixing 33.8 ml of 0.18 m ammonia with 20.7 ml of 0.15 m ammonium chloride. the kb value for nh3 is 1.8 x 10-5.

Answers

The pOH of the solution that results from mixing 33.8 ml of 0.18 m ammonia with 20.7 ml of 0.15 m ammonium chloride is 1.28.

To calculate the pOH of the solution, we first need to find the concentration of hydroxide ions (OH-) in the solution.
First, let's calculate the moles of ammonia and ammonium chloride in the solution:
moles of NH3 = (0.18 M) x (33.8 mL/1000 mL) = 0.006084 mol
moles of NH4Cl = (0.15 M) x (20.7 mL/1000 mL) = 0.003105 mol

Next, let's determine which species will react to form hydroxide ions: NH3 + H2O <-> NH4+ + OH-
Since we have excess NH3, all of the NH4+ will react with the NH3 to form NH3 and water. This means that the moles of NH4+ will be equal to the moles of OH- produced:
moles of NH4+ = 0.003105 mol
moles of OH- = 0.003105 mol

Now we can calculate the concentration of OH- in the solution:
[OH-] = moles of OH- / total volume of solution
[OH-] = 0.003105 mol / (33.8 mL + 20.7 mL) = 0.0527 M

Finally, we can calculate the pOH of the solution:
pOH = -log[OH-]
pOH = -log(0.0527)
pOH = 1.28

Therefore, the pOH of the solution is 1.28.

Learn more about pOH at https://brainly.com/question/27586088

#SPJ11

For the following molecules classify them as aromatic, antiaromatic, or nonaromatic. H. CH Н N 1 II = nonaromatic; II = aromatic O l = nonaromatic; Il = antiaromatic o l = antiaromatic; Il = nonaromatic O I = aromatic; Il = antiaromatic O I = aromatic; 1l = nonaromatic

Answers

H₂ is nonaromatic. CH₂ is nonaromatic. NH is aromatic. O₂ is antiaromatic.

Aromatic, nonaromatic, and antiaromatic are terms used to describe the stability of cyclic organic compounds based on their electronic structure. H₂ is nonaromatic because it is not a cyclic compound. CH₂ is nonaromatic because it is not a cyclic compound. NH is aromatic because it is cyclic, planar, and possesses a delocalized pi electron system with 4n+2 π electrons, where n is an integer. O₂ is antiaromatic because it is cyclic, planar, and possesses a delocalized pi electron system with 4 π electrons, which is 4n π electrons, where n is an integer.

To know more about aromatic, here

brainly.com/question/30171805

#SPJ4

--The complete question is, Can you classify the following molecules as aromatic, antiaromatic, or nonaromatic: H₂, CH₂, NH, O₂?--

There are two reactions in glycolysis which involve the isomerization of an aldose to a ketose or vice-versa. What enzymes catalyze those two reactions?

Answers

The two reactions are: Conversion of aldose to ketose and Conversion of  ketose to aldose and phosphohexose isomerase and triose phosphate isomerase are enzymes catalyze those two reactions

Conversion of glucose-6-phosphate (an aldose) to fructose-6-phosphate (a ketose) by the enzyme glucose-6-phosphate isomerase (also known as phosphohexose isomerase).

Conversion of dihydroxyacetone phosphate (a ketose) to glyceraldehyde-3-phosphate (an aldose) by the enzyme triose phosphate isomerase.

These isomerization reactions are important in glycolysis because they allow the intermediates of the pathway to be interconverted and used in subsequent reactions, leading to the production of ATP and other metabolic intermediates.

Know more about glycolysis here:

https://brainly.com/question/14076989

#SPJ11

When 2.65 g of an unknown weak acid (HA) with a molar mass of 85.0 g/mol is dissolved in 250.0 g of water, the freezing point of the resulting solution is -0.259 ?C. Part A Calculate Ka for the unknown weak acid.

Answers

When 2.65 g of an unknown weak acid (HA) with a molar mass of 85.0 g/mol is dissolved in 250.0 g of water, the Kₐ for the unknown weak acid is 2.367 × 10⁻⁴

We know that,

dT = Kf ×molality × i

    = Kf×m×i

"i" is the van't Hoff factor.

Molality is defined as the number of moles of solute divided by the mass of solvent in kg.

i.e. molality

= (no of moles of solute) / Kg of solvent

= 2.65g /250g x 1 mol /85 g x1000g/kg

=0.1247 moles

and Kf for water = - 1.86 and dT = -0.259

by substitution

0.259 = 1.86× 0.1247 × i

Therefore, i = 1.116

when the degree of dissociation formula is:

when n=2 and  i = 1.116

a= i-1/n-1

= (1.116 -1)/(2-1)

= 0.116

Substituting these values to find Kₐ

∴K = Ca^2/(1-a)

    = (0.1247 × 0.116)² / (1-0.116)

    = 2.367 × 10⁻⁴

To know more about  Kₐ here

https://brainly.com/question/9173788

#SPJ4

H2SO4 is a stronger acid than H2SO3 because:
a. It has more oxygens to stengthen the H-O bond
b. it had more oxygens to weaken the H-O bond
c. The extra oxygen donates electrons to the H-O bond
d. The extra oxygen makes the H-S bind shorter

Answers

The reason why [tex]H_{2} SO_{4}[/tex] is a stronger acid than [tex]H_{2} SO_{3}[/tex] is due to the presence of more oxygen atoms in its structure. This is because oxygen has a higher electronegativity than sulfur, meaning that it attracts electrons more strongly. The correct option is c.

As a result, the oxygen atoms in [tex]H_{2} SO_{4}[/tex] can more effectively pull electrons away from the hydrogen atom that is bonded to them, weakening the H-O bond and making it more likely to dissociate and release H+ ions.

Furthermore, the extra oxygen atom in [tex]H_{2} SO_{4}[/tex] can also donate electrons to the H-O bond, further destabilizing it and making it easier to break. This donation of electrons is due to the lone pairs of electrons present on the oxygen atom, which can interact with the positively charged hydrogen ion and facilitate its release.

On the other hand, [tex]H_{2} SO_{3}[/tex] has fewer oxygen atoms in its structure and hence a weaker ability to attract and donate electrons. As a result, the H-O bond in [tex]H_{2} SO_{3}[/tex] is stronger and less likely to dissociate, making it a weaker acid than [tex]H_{2} SO_{4}[/tex].

Additionally, the extra oxygen atom in [tex]H_{2} SO_{4}[/tex] does not affect the length of the H-S bond, as this bond is not directly affected by the presence of oxygen. Therefore, options b and d are incorrect.

In summary, the stronger acid strength of [tex]H_{2} SO_{4}[/tex] compared to [tex]H_{2} SO_{3}[/tex] is due to the extra oxygen atoms in its structure, which enhance the electronegativity and electron-donating ability of the molecule, leading to a weaker H-O bond and easier dissociation of H+ ions.

Here you can learn more about electronegativity

https://brainly.com/question/17762711#

#SPJ11  

(0)
The exact position of the equilibrium between ketones/aldehydes and their hydrates depends on the structure of the carbonyl compound. Although the equilibrium favors the carbonyl compound in most cases, cyclopropanone forms a stable hydrate. Explain this phenomena based on the structures of cyclopropanone and its hydrate. Use diagrams if it helps.

Answers

Cyclopropanone forms a stable hydrate due to the ring strain in its cyclic structure, which destabilizes the carbonyl compound and shifts the equilibrium towards the hydrate form.

Cyclopropanone is a cyclic ketone with a three-membered ring, which results in significant ring strain. The angle strain and steric strain associated with the ring make cyclopropanone less stable compared to other ketones.

The presence of the unstable three-membered ring in cyclopropanone makes it more susceptible to hydration, resulting in the formation of a stable hydrate.

The hydrate form of cyclopropanone has a hemiacetal structure, where the oxygen of the ketone group forms a hydrogen bond with the acidic α-hydrogen, stabilizing the hydrate form. This favorable stabilization of the hydrate form over the carbonyl form shifts the equilibrium towards the hydrate in the case of cyclopropanone.

For more questions like Equilibrium click the link below:

https://brainly.com/question/31027606

#SPJ11

: A 25 ml solution of HBr is completely neutralized by 18 mL of 1.0 M LiOH. What is the concentration of the HBr solution? Would you consider the acid solution to be concentrated or dilute? Justify your answer. Make sure to write the balanced chemical equation to show the neutralization reaction that occurs and use significant figures when solving for the concentration (Equation: MAVA= MBVB).

Answers

The HBr solution with a concentration of 0.72 M would be considered concentrated.

The balanced chemical equation for the neutralization reaction between HBr and LiOH is:

HBr + LiOH → LiBr + H2O

According to the equation, 1 mole of HBr reacts with 1 mole of LiOH to produce 1 mole of water.

Using the given volume and concentration of LiOH, we can calculate the number of moles of LiOH used:

moles of LiOH = M x V = 1.0 M x 0.018 L = 0.018 moles

Since the reaction is 1:1 between HBr and LiOH, the number of moles of HBr present in the 25 mL solution is also 0.018 moles.

Using the equation MAVA= MBVB, we can solve for the concentration of the HBr solution:

MA = (MB x VB) / VA = (1.0 M x 0.018 L) / 0.025 L = 0.72 M

Therefore, the concentration of the HBr solution is 0.72 M.

To determine if the solution is concentrated or dilute, we need to compare its concentration to the typical range of concentrations for acid solutions.

Acid solutions with concentrations less than 0.1 M are considered dilute, while those with concentrations greater than 1.0 M are considered concentrated.

learn more about moles here:

https://brainly.com/question/28239680

#SPJ11

The HBr solution with a concentration of 0.72 M would be considered concentrated.

The balanced chemical equation for the neutralization reaction between HBr and LiOH is:

HBr + LiOH → LiBr + H2O

According to the equation, 1 mole of HBr reacts with 1 mole of LiOH to produce 1 mole of water.

Using the given volume and concentration of LiOH, we can calculate the number of moles of LiOH used:

moles of LiOH = M x V = 1.0 M x 0.018 L = 0.018 moles

Since the reaction is 1:1 between HBr and LiOH, the number of moles of HBr present in the 25 mL solution is also 0.018 moles.

Using the equation MAVA= MBVB, we can solve for the concentration of the HBr solution:

MA = (MB x VB) / VA = (1.0 M x 0.018 L) / 0.025 L = 0.72 M

Therefore, the concentration of the HBr solution is 0.72 M.

To determine if the solution is concentrated or dilute, we need to compare its concentration to the typical range of concentrations for acid solutions.

Acid solutions with concentrations less than 0.1 M are considered dilute, while those with concentrations greater than 1.0 M are considered concentrated.

learn more about moles here:

https://brainly.com/question/28239680

#SPJ11

For the reaction: N2O4(g) rightarrow 2 NO2(g) the number of moles of N204(g) is What is the number of moles of moles of NO2(g) at t = 10 min?(Assume moles of NO2(g) = 0 at t = 0.) a) 0.280 b) 0.120 c) 0.110 d) 0.060

Answers

This is a chemical reaction in which N2O4(g) is converted into 2 moles of NO2(g).

For the reaction: N2O4(g) rightarrow 2 NO2(g) the number of moles of N204(g) is What is the number of moles of moles of NO2(g) at t = 10 min?

This is a chemical reaction in which N2O4(g) is converted into 2 moles of NO2(g). The reaction rate can be expressed using the rate equation:

rate = k[N2O4]

where k is the rate constant and [N2O4] is the concentration of N2O4 at any given time.

The problem does not provide any information about the concentration of N2O4 or the rate constant. Therefore, we cannot directly calculate the number of moles of N2O4 or NO2 at any given time.

However, assuming the reaction is first-order with respect to N2O4, we can use the half-life formula to determine the number of moles of N2O4 and NO2 at a specific time. The half-life of a first-order reaction is given by:

t1/2 = ln(2) / k

where ln is the natural logarithm. Solving for k, we get:

k = ln(2) / t1/2

where t1/2 is the half-life of the reaction.

Using the given information that the half-life of the reaction is 4 minutes, we can calculate the rate constant as:

k = ln(2) / 4 = 0.1733 min^-1

At t = 10 min, the fraction of N2O4 remaining is given by:

[N2O4] / [N2O4]0 = e^(-kt) = e^(-0.1733 * 10) = 0.227

where [N2O4]0 is the initial concentration of N2O4. Therefore, the number of moles of N2O4 at t = 10 min is:

moles of N2O4 = [N2O4] * volume of container / molar mass of N2O4

We don't have any information about the volume of the container, so we can't calculate the moles of N2O4.

However, since we know that 1 mole of N2O4 produces 2 moles of NO2, we can calculate the number of moles of NO2 produced at t = 10 min:

moles of NO2 = 2 * moles of N2O4 * 0.227

Substituting the value of moles of N2O4 from above, we get:

moles of NO2 = 0.227 * volume of container / molar mass of N2O4

Since we don't have any information about the volume of the container or the molar mass of N2O4, we can't calculate the moles of NO2.

Therefore, the answer to the question cannot be determined without additional information.

Learn more about N2O4(g)

brainly.com/question/29620266

#SPJ11

determine whether each salt is generally classified as soluble or insoluble in water.
MgCO₃ =
Ba(NO₃)₂ =
Ca₃(PO₄)₂ =
AgBr =
Ag₂SO₄ =
Na₂SO₄ =
NaNO₃ =
Al₂(SO₄)₃ =

Answers

Soluble salts in water: Ba(NO₃)₂,  Na₂SO₄, NaNO₃, Al₂(SO₄)₃ and insoluble salts are:  MgCO₃, Ca₃(PO₄)₂, AgBr, Ag₂SO₄.

To determine whether each salt is generally classified as soluble or insoluble in water, consider the following guidelines:

1. Most nitrate (NO₃⁻) and alkali metal (Group 1) salts are soluble.
2. Most sulfate (SO₄²⁻) salts are soluble, with some exceptions.
3. Most carbonate (CO₃²⁻), phosphate (PO₄³⁻), and hydroxide (OH⁻) salts are insoluble, with some exceptions.
4. Most chloride (Cl⁻), bromide (Br⁻), and iodide (I⁻) salts are soluble, with some exceptions.

Based on these guidelines:

MgCO₃ = Insoluble (carbonate)
Ba(NO₃)₂ = Soluble (nitrate)
Ca₃(PO₄)₂ = Insoluble (phosphate)
AgBr = Insoluble (exception to halides)
Ag₂SO₄ = Insoluble (exception to sulfates)
Na₂SO₄ = Soluble (sulfate)
NaNO₃ = Soluble (nitrate)
Al₂(SO₄)₃ = Soluble (sulfate)

Know more about Salts here:

https://brainly.com/question/14467184

#SPJ11

Determine whether each substance will sink or float in corn syrup, which has a density of 1.36 g/cm3. Write “sink” or “float” in the blanks.

Gasoline

Water

Honey

Titanium

Answers

Gasoline; float,  Water; float, Honey; neither sink nor float (suspended) and Titanium; sink.

To determine whether each substance will sink or float in corn syrup, we need to compare the density of each substance with the density of corn syrup, which is 1.36 g/cm³. If the density of a substance is greater than the density of corn syrup, it will sink. If the density of a substance is less than the density of corn syrup, it will float.

Gasoline has a density of about 0.68 g/cm³, which is less than the density of corn syrup. Therefore, gasoline will float in corn syrup.

Water has a density of 1 g/cm³, which is less than the density of corn syrup. Therefore, water will float in the corn syrup.

Honey has a density of about 1.36 g/cm³, which is equal to the density of corn syrup. Therefore, honey will neither sink nor float in corn syrup. It will stay suspended in middle.

Titanium has a density of about 4.51 g/cm³, which is greater than the density of corn syrup. Therefore, titanium will sink in corn syrup.

To know more about density here

https://brainly.com/question/29775886

#SPJ1

What concentration of aqueous NH3 is necessary to just start precipitation of Mn(OH)2 from a 0.020 M solution MnSO4? Kb for NH3 is 1.8 × 10−5 and Ksp for Mn(OH)2 is 4.6 × 10−14.
a. 1.4 × 10^−5 M
b. 3.7 × 10^−7 M
c. 1.6 × 10^−6 M
d. 1.3 × 10^−7 M
e. 8.4 × 10^−2 M

Answers

The concentration of aqueous NH3 required to just start precipitation of Mn(OH)2 from a 0.020 M solution of MnSO4 is 8.4 × 10^−2 M

To determine the concentration of aqueous NH3 necessary to just start precipitation of Mn(OH)2 from a 0.020 M solution of MnSO4, we need to use the given Kb for NH3 and the Ksp for Mn(OH)2.

First, find the concentration of OH- ions needed to start the precipitation using the Ksp expression for Mn(OH)2:

Ksp = [Mn2+][OH-]^2
4.6 × 10^−14 = (0.020)[OH-]^2

Solve for [OH-]:
[OH-] = √(4.6 × 10^−14 / 0.020) ≈ 4.8 × 10^−7 M

Now, use the Kb expression for NH3 to find the required concentration of NH3:

Kb = [NH4+][OH-] / [NH3]
1.8 × 10^−5 = [NH4+][4.8 × 10^−7] / [NH3]

Assume that [NH4+] and [OH-] are equal since they come from the same source (NH3). Therefore:

1.8 × 10^−5 = [4.8 × 10^−7]^2 / [NH3]

Solve for [NH3]:


[NH3] ≈ 8.4 × 10^−2 M

Your answer: e. 8.4 × 10^−2 M

Know more about Ksp here:

https://brainly.com/question/27132799

#SPJ11

how to calculate the cell potential for the galvanic cell described as C(s)| H2(g) | H+(aq) || OH-(aq) | O2(g) | Pt(s)

Answers

The cell potential for the given galvanic cell is +0.401 V.

The cell potential for the given galvanic cell. Here's a step-by-step explanation:

1. Identify the half-reactions: In the given galvanic cell, the half-reactions are:
  - Anode (oxidation): H2(g) → 2H+(aq) + 2e-
  - Cathode (reduction): O2(g) + 2H2O(l) + 4e- → 4OH-(aq)

2. Determine the standard reduction potentials (E°): You can find the standard reduction potentials for the half-reactions in a standard reduction potential table. For the given reactions, we have:
  - E°(H2/H+) = 0 V (as it is the reference value)
  - E°(O2/OH-) = +0.401 V

3. Calculate the cell potential (Ecell): To calculate the cell potential, use the equation Ecell = E°cathode - E°anode. In this case, it would be:

  Ecell = E°(O2/OH-) - E°(H2/H+) = +0.401 V - 0 V = +0.401 V

Therefore, the cell potential for the given galvanic cell is +0.401 V.

Know more about Galvanic Cell here:

https://brainly.com/question/13031093

#SPJ11

How many kilograms of sodium chloride will be needed to produce 17kg of chlorine?​

Answers

To make 17 kg of chlorine, around 7.0031 kg of sodium chloride will be required.

Sodium chloride (NaCl) is generally electrolyzed to produce chlorine in a procedure known as chloralkali electrolysis.

The Chemical Equation for this reaction is:

2 NaCl + 2 H₂O → 2 NaOH + Cl₂ + H₂

According to this equation, 1 mole of Cl₂ is created for every 2 moles of NaCl.

NaCl has a molar mass of roughly 58.44 g/mol, while Cl₂ has a molar mass of roughly 70.90 g/mol.

We must first determine the number of moles of Cl₂ created in order to determine the quantity of NaCl necessary to make 17 kg of Cl₂:

Number of moles of Cl₂ = (17 kg) / (70.90 g/mol) = 240.03 mol

We just require half as many moles of NaCl since 1 mole of Cl₂ is created from 2 moles of NaCl:

Number of moles of NaCl = 1/2 × 240.03 mol = 120.015 mol

Finally, we can determine the necessary mass of NaCl:

Mass of NaCl = (120.015 mol) × (58.44 g/mol) = 7,003.1 g = 7.0031 kg

In order to make 17 kg of chlorine, roughly 7.0031 kg of sodium chloride will be required.

To learn more about Stoichiometry:

https://brainly.com/question/14935523

Calculate the minimum (least negative) cathode potential (versus SHE) needed to begin electroplating nickel from 0.250 M Ni2+ onto a piece of iron. Assume that the overpotential for the reduction of Ni2+ on an iron electrode is negligible (The reduction potential of Ni2+ vs. SHE is –0.257 V).

Answers

We first need to take into account the reduction potential of Ni2+ vs. SHE, which is -0.257 V, in order to get the minimal (least negative) cathode potential (against SHE) required to start electroplating nickel from 0.250 M Ni2+ onto a piece of iron.

The Ni2+ ions will start to be decreased at the cathode at this voltage. As a result, in order to start electroplating nickel from 0.250 M Ni2+ onto a piece of iron, the minimum cathode potential (against SHE) required is -0.257 V.

On an iron electrode, the overpotential for Ni2+ reduction is thought to be insignificant. This indicates that to start electroplating nickel from 0.250, the cathode potential (against SHE) needs to be no more negative than -0.257 V.

Learn more about  cathode potential at:

https://brainly.com/question/32247139

#SPJ12

We first need to take into account the reduction potential of Ni2+ vs. SHE, which is -0.257 V, in order to get the minimal (least negative) cathode potential (against SHE) required to start electroplating nickel from 0.250 M Ni2+ onto a piece of iron.

The Ni2+ ions will start to be decreased at the cathode at this voltage. As a result, in order to start electroplating nickel from 0.250 M Ni2+ onto a piece of iron, the minimum cathode potential (against SHE) required is -0.257 V.

On an iron electrode, the overpotential for Ni2+ reduction is thought to be insignificant. This indicates that to start electroplating nickel from 0.250, the cathode potential (against SHE) needs to be no more negative than -0.257 V.

Learn more about  cathode potential at:

https://brainly.com/question/32247139

#SPJ12

explain why hc--ch is more acidic than ch3ch3, even though the c-h bond in hc-ch has a higher bond dissociation energy than the ch bond in ch3ch3

Answers

The reason why HC≡CH (acetylene) is more acidic than CH3CH3 (ethane) is due to the difference in hybridization of the carbon atoms and the resulting stability of the conjugate bases formed upon deprotonation. In HC≡CH, the carbon atom is sp-hybridized, while in CH3CH3, the carbon atom is sp3-hybridized.

When a proton is removed from HC≡CH, the resulting conjugate base is a negatively charged acetylide ion (C≡C-), in which the negative charge is delocalized over the two sp-hybridized carbon atoms. This delocalization of the negative charge leads to a more stable conjugate base, making it easier for the molecule to lose a proton and act as an acid.

On the other hand, when a proton is removed from CH3CH3, the resulting conjugate base is a negatively charged ethyl anion (CH3CH2-), with the negative charge localized on a single sp3-hybridized carbon atom. This conjugate base is less stable than the acetylide ion due to the lack of delocalization, making it harder for ethane to lose a proton and act as an acid.

Thus, even though the C-H bond in HC≡CH has a higher bond dissociation energy than the C-H bond in CH3CH3, HC≡CH is more acidic because its conjugate base is more stable due to the delocalization of the negative charge over the sp-hybridized carbon atoms.

To know more about conjugate bases click here:

https://brainly.com/question/12883745

#SPJ11

What mass in grams of Na2S2O3 is needed to dissolve 4.7 g of AgBr in a solution volume of 1.0 L, given that Ksp for AgBr is 3.3 x 10^-13 and Kq for [Ag(S,O3)213- is 4.7 x 10^13?

Answers

To dissolve 4.7 g of AgBr, you need 22.2 g of Na₂S₂O₃.

To find the mass of Na₂S₂O₃ needed, follow these steps:

1. Calculate the moles of AgBr: 4.7 g / 187.77 g/mol (molar mass of AgBr) = 0.025 mol AgBr.
2. Use the Ksp value to determine the concentration of Ag⁺ ions: [Ag⁺] = √(Ksp) = √(3.3 x 10⁻¹³) = 1.82 x 10⁻⁷ M.
3. Calculate the moles of Ag⁺ ions: (1.82 x 10⁻⁷ M) x 1.0 L = 1.82 x 10⁻⁷ mol Ag⁺.
4. Use the stoichiometry of the reaction to find the moles of Na₂S₂O₃ needed: 1 mol Na₂S₂O₃ / 2 mol Ag⁺ = 0.5 mol Na₂S₂O₃/mol Ag⁺.
5. Calculate the moles of Na₂S₂O₃ required: 0.5 mol Na₂S₂O₃/mol Ag⁺ x 1.82 x 10⁻⁷ mol Ag⁺ = 9.1 x 10⁻⁸ mol Na₂S₂O₃.
6. Convert moles of Na₂S₂O₃ to grams: 9.1 x 10⁻⁸ mol Na₂S₂O₃ x 158.11 g/mol (molar mass of Na₂S₂O₃) = 22.2 g Na₂S₂O₃.

To know more about molar mass click on below link:

https://brainly.com/question/22997914#

#SPJ11

C8H18(l)+252O2(g)→8CO2(g)+9H2O(g)
Part A
Calculate ΔHrxn for the combustion of octane (C8H18), a component of gasoline, by using average bond energies.
Express your answer using three significant figures.
ΔHrxn = -5030 kJ/mol
Part B
Calculate ΔHrxn for the combustion of octane by using enthalpies of formation from Appendix IIB in the textbook. The standart enthalpy of formation of C8H18 is -250 kJ/mol.
Express your answer using three significant figures.
ΔHrxn = kJ/mol
Part C
What is the percent difference between the two results?
Express your answer using two significant figures.
%
Part D
Which result would you expect to be more accurate?
-the value calculated from the heats of formation
-the value calculated from the average bond energies

Answers

ΔHrxn for the combustion of octane using average bond energies is -5030 kJ/mol.

What is Combustion?

Combustion is a chemical reaction between a fuel and an oxidizing agent that produces energy in the form of heat and light. It is an exothermic reaction, which means that it releases energy, usually in the form of heat, as a product. During combustion, the fuel reacts with oxygen in the air, producing carbon dioxide, water vapor, and other products, depending on the fuel and conditions of the reaction.

To calculate ΔHrxn using average bond energies, we need to break all the bonds in the reactants and form all the bonds in the products and then find the difference:

Reactants: C8H18(l) + 25O2(g)

Bonds broken:

8 C-C bonds (8 x 347 kJ/mol) = 2776 kJ/mol

18 C-H bonds (18 x 413 kJ/mol) = 7434 kJ/mol

25 O=O bonds (25 x 498 kJ/mol) = 12,450 kJ/mol

Products: 8CO2(g) + 9H2O(g)

Bonds formed:

16 C=O bonds (16 x 799 kJ/mol) = 12,784 kJ/mol

18 O-H bonds (18 x 463 kJ/mol) = 8334 kJ/mol

ΔHrxn = (sum of bonds broken) - (sum of bonds formed)

ΔHrxn = [2776 + 7434 + 12450] - [12784 + 8334]

ΔHrxn = -5030 kJ/mol

Learn more about Combustion from the given link

https://brainly.com/question/13251946

#SPJ1

a solution is prepared by dissolving 0.15 g of sodium oxide in water to give 119.5 ml of solution. express the ph to two decimal places.

Answers

To calculate the pH of the solution, we first need to determine the concentration of hydroxide ions ([tex]OH^{-}[/tex]) in the solution, since sodium oxide is a strong base that dissociates completely in water to give [tex]Na^{+}[/tex] and [tex]OH^{-}[/tex] ions.

We can start by calculating the number of moles of sodium oxide dissolved in the solution:

0.15 g [tex]Na_{2} O[/tex] / (61.98 g/mol [tex]Na_{2} O[/tex]) = 0.00242 mol [tex]Na_{2} O[/tex]

Since sodium oxide dissociates completely in water to give two moles of sodium ions and one mole of hydroxide ions per mole of [tex]Na_{2} O[/tex], we know that the number of moles of [tex]OH^{-}[/tex] in the solution is:

0.00242 mol [tex]Na_{2} O[/tex] x (1 mol [tex]OH^{-}[/tex]/1 mol [tex]Na_{2} O[/tex]) = 0.00242 mol [tex]OH^{-}[/tex]

Next, we can calculate the concentration of hydroxide ions in the solution, which is given by:

[[tex]OH^{-}[/tex]] = moles of [tex]OH^{-}[/tex] / volume of solution in liters

[[tex]OH^{-}[/tex]] = 0.00242 mol / (119.5 mL x 1 L/1000 mL) = 0.0203 M

Finally, we can calculate the pH of the solution using the equation:

pH = 14 - log [[tex]OH^{-}[/tex]]

pH = 14 - log (0.0203) = 11.69

Therefore, the pH of the solution prepared by dissolving 0.15 g of sodium oxide in water is 11.69 to two decimal places.

Learn more about sodium oxide

https://brainly.com/question/29172011

#SPJ4

Is the following equation properly balanced?
2HOI+H2O→IO3– +I– +4H+
Prove your answer by balancing the equation by the method of half-reactions

Answers

The given equation is not balanced. The properly balanced equation is:

HIO + H₂O + 2I- → IO₃⁻ + 4H+ + I₂

To balance the equation using the method of half-reactions, we first need to separate the reaction into two half-reactions: the oxidation half-reaction and the reduction half-reaction.

Oxidation half-reaction:

2I- → I₂

Reduction half-reaction:

HIO + H₂O → IO₃- + 4H⁺ + 3e⁻

We can balance the oxidation half-reaction by adding two electrons to the left side:

2I- + 2e⁻ → I₂

Next, we can balance the reduction half-reaction by multiplying the oxidation half-reaction by 3 and adding it to the reduction half-reaction:

3HIO + 3H₂O + 6I- → 3IO³⁻ + 12H+ + 9e⁻ + 3I₂

Now we can cancel out the electrons from both half-reactions:

3HIO + 3H₂O + 6I⁻ → 3IO₃⁻ + 12H+ + 3I₂

Finally, we can simplify the equation by dividing all coefficients by 3:

HIO + H₂O + 2I- → IO₃⁻ + 4H+ + I₂

Learn more about the balanced equation: https://brainly.com/question/7181548

#SPJ11

Other Questions
If an owner of a copy center is interested in knowing which of her employees can make the most copies in one hour, she wants to understand _____. A.(correct)which employee has the absolute advantage in making copiesB.which employee has the comparative advantage in making copiesC.the opportunity cost of employees making copies D.the resource distribution of her copy center bad eggs sal of eggs that are contaminated with samaenlla can cause food poisoning in consumersT/F For the following MONGODB database, business1000, how do I write these queries?list the businesses in decreasing order of the review counts Identify all possible positions that could be deprotonated based on the mechanism that you chose in Problem O A O B O C O D O EO F the total surface area of a closed cylinder is 5000cm3 find the dimensions of the cylinder that maximize its volume and state this maxiumum volume. veryfiy that is is a maximum point RESEARCH 2022 G...11 OPTION 2.docx : Guidelines for discussion 7 THE IMPACT OF DROUGHTS IN SOUTH AFRICA RESEARCH TOPIC: Introduction: Mapping: Find a map of South Africa, that indicate the drought-stricken areas. Annual Rainfall graphs of the past FIVE years. Brief discussion on the annual rainfall graphs ( EIGHT LINES) Pictures of the different types of droughts. pipelines have an operating ratio of: group of answer choices high 90s low 90s mid 80s mid 70s high 50s Amange in ascending order: 9-3,4-6.2-4) 1-7-31,-5-3x2pls help with this pls enter the correct answer Construct a Zn2+/ZnCu2+/Cu cell with a positive cell potential in the voltaic cells interactive to answer the questions.Which way are electrons flowing through the external circuit?a) left to rightb) no movementc) right to left What general statement can you make about the global distribution of smartphone minerals? Starting with a square whose perimeter is 36, I from a rectangle by doubling the length of two of the sides and tripling the length of the other two sides. This rectangle's perimeter is a(n) ________ facilitates the solution to unstructured problems by a set of decision makers working together as a group. X = 4NY = 5NZ = 10 NThree books (X, Y, and Z) rest on a table. The weight of each book is indicated. The force of book Z on book Y is:A. 0B. 5NC. 9ND. 14NE. 19N Milan took 3 1/4 hours to clean the bathroom. He took 1/8 hours to clean the bathroom. How much longer did it take Milan to clean the bathroom? Write your answer as a mixed number in simplest form. Which of the following is an example of epeirogeny?A. RockiesB. HimalayasC. AppalachiansD. Colorado PlateauE. none of the above is an example of epeirogenyAB. all of the above are examples of epeirogeny The spinner shown is used in a game and is equally likely to land on each section. Find each probability.P(less than 5)Fraction= Percent= %Likelihood= impossible, unlikely, equally likely, likely, certainP(shaded)Fraction=Percent= %Likelihood= impossible, unlikely, equally likely, likely, certainP(not shaded)Fraction=Percent= %Likelihood= impossible, unlikely, equally likely, likely, certainPLEASE ANSWER WILL GIVE BRAINIEST This photo shows a behavior of a plant that is maintaining homeostasis when this happens openings in the plants leaves close up. How does this behavior help a plant maintain a homeostasis? 6. Suppose the appropriate interest rate is 5% and I give you the choice between two investments: Investment 1: if you give me $10 today (year zero) I will give you $100 two years from now (year 2) or Investment 2: if you give me $10 today (year zero) I will give you $120 four years from now (year 4). a. What is the present value of investment 1?b. What is the present value of investment 2? A store has 350 sales in the first week and increases the number of sales by 45 each week. What is the total number of sales after 8 weeks? Please guys help me what is this