If g'(x) = x(x – 5)(x + 1)4, then g has a local maximum at: Select one: (a) X=-1 only (b) if does not have a local maximum (c) x=0 only (d) X=0 and x=5 (e) x=5 only

Answers

Answer 1

To determine where g has a local maximum, we need to find the critical points of g'(x) and analyze the sign changes around those points.

Here's a step-by-step explanation:
1. Identify the critical points of g'(x) by setting it equal to 0:
g'(x) = x(x - 5)(x + 1)^4 = 0
The critical points are x = -1, x = 0, and x = 5.

2. Determine the sign of g'(x) around the critical points:
For x < -1, g'(x) > 0 (since there are three negative factors)
For -1 < x < 0, g'(x) > 0 (since there are two negative factors)
For 0 < x < 5, g'(x) < 0 (since there is one negative factor)
For x > 5, g'(x) > 0 (since all factors are positive)

3. Analyze the sign changes and apply the First Derivative Test:
- At x = -1, there is no sign change, so it is not a local maximum.
- At x = 0, g'(x) changes from positive to negative, indicating a local maximum.
- At x = 5, there is no sign change, so it is not a local maximum.

So, g has a local maximum at x = 0 only. The correct answer is (c).

To learn more about “critical points” refer to the https://brainly.com/question/7805334

#SPJ11


Related Questions

exercise 1.3.8. find an implicit solution for ,dydx=x2 1y2 1, for .

Answers

To find the implicit solution for dy/dx = x^2/(1-y^2), we can start by separating the variables and integrating both sides.

dy/(1-y^2) = x^2 dx

To integrate the left-hand side, we can use partial fractions:

dy/(1-y^2) = (1/2) * (1/(1+y) + 1/(1-y)) dy

Integrating both sides, we get:

(1/2) * ln|1+y| - (1/2) * ln|1-y| = (1/3) * x^3 + C

Where C is the constant of integration.

We can simplify this expression by combining the natural logs:

ln|1+y| - ln|1-y| = (2/3) * x^3 + C'

Where C' is a new constant of integration.

Finally, we can use the logarithmic identity ln(a) - ln(b) = ln(a/b) to get the implicit solution:

ln|(1+y)/(1-y)| = (2/3) * x^3 + C''

Where C'' is a final constant of integration.

Therefore, the implicit solution for dy/dx = x^2/(1-y^2) is ln|(1+y)/(1-y)| = (2/3) * x^3 + C''.

Given the differential equation:

dy/dx = x^2 / (1 - y^2)

To find an implicit solution, we can use separation of variables. Rearrange the equation to separate the variables x and y:

(1 - y^2) dy = x^2 dx

Now, integrate both sides with respect to their respective variables:

∫(1 - y^2) dy = ∫x^2 dx

The result of the integrations is:

y - (1/3)y^3 = (1/3)x^3 + C

This is the implicit solution to the given differential equation, where C is the integration constant.

Visit here to learn more about  differential equation : https://brainly.com/question/16663279
#SPJ11

find the inverse function of f. f(x) = 49 x2 , x > 0

Answers

Answer:

f^(-1)(x) = sqrt(x/49)

Step-by-step explanation:

To find the inverse function of f(x) = 49x^2, we need to solve for x in terms of f(x) and then interchange x and f(x).

f(x) = 49x^2

f(x)/49 = x^2

sqrt(f(x)/49) = x (since x > 0)

So, the inverse function of f(x) is:

f^(-1)(x) = sqrt(x/49)

Note that the domain of f^(-1) is x ≥ 0, since x must be positive for the inverse function to be defined. Also, note that f(f^(-1)(x)) = f(sqrt(x/49)) = 49(sqrt(x/49))^2 = 49(x/49) = x, and f^(-1)(f(x)) = sqrt(f(x)/49) = sqrt(49x^2/49) = x. Therefore, f^(-1) is the inverse function of f.

what should i do if they ask to give the answer of 2⅔×34​

Answers

Answer: 272/3 OR 90.67

Step-by-step explanation:

First, turn the mixed fraction into an improper fraction. Using the times-addition method, you take the whole number (2) and multiply it by the denomitor (3). You get 6, and then add the numerator (2) to 6, getting 8, so th improper fraction of the first term is 8/3.

Then, you multiply 8/3 by 34. To do this, you do 8 times 34 divided by 3. 34 times 8 is 272, and then you divide it by 3. You don't get a whole number, so the answer could be written as 272/3 or 90.67

calculate the mad for each forecast. a) which of these two forecasts (a or b) is more accurate? b) what is the mad value of the forecast a c) what is the mad value of the forecast b?

Answers

To determine which of the two forecasts (a or b) is more accurate, you must compare their MAD values. The forecast with the lower MAD value is considered more accurate. The MAD value of forecasts a and b can be calculated by finding the absolute value of the difference between each forecasted value and its corresponding actual value, then taking the average of those differences.

Explanation:

To calculate the MAD (Mean Absolute Deviation) for each forecast, you need to find the absolute value of the difference between the forecasted values and the actual values, then take the average of those differences. To calculate the MAD (Mean Absolute Deviation) for each forecast, you'll need to follow these steps:

Step 1: Find the absolute differences between the actual data points and the forecasted values.
Step 2: Sum up these absolute differences.
Step 3: Divide the total sum by the number of data points.


a) To determine which of the two forecasts (a or b) is more accurate, you must compare their MAD values. The forecast with the lower MAD value is considered more accurate, as it signifies smaller deviations from the actual data points.

b) The MAD value of forecast a can be calculated by finding the absolute value of the difference between each forecasted value and its corresponding actual value, then taking the average of those differences.

c) Similarly, the MAD value of forecast b can be calculated by finding the absolute value of the difference between each forecasted value and its corresponding actual value, then taking the average of those differences.

Know more about MAD value click here:

https://brainly.com/question/31347544

#SPJ11

Solve the given boundary-value problem y" + y = x^2 + 1, y (0) = 4, y(1) = 0 y(x) =

Answers

The solution to the boundary-value problem is[tex]y(x) = (9/2)cos(x) - (9/2)cos(1)sin(x) + (1/2)x^2 - 1/2.[/tex]

How to solve the boundary-value problem?

To solve the boundary-value problem, we can follow these steps:

Step 1: Find the general solution of the homogeneous differential equation y'' + y = 0.

The characteristic equation is r^2 + 1 = 0, which has complex roots r = ±i. Therefore, the general solution of the homogeneous equation is y_h(x) = c_1 cos(x) + c_2 sin(x), where c_1 and c_2 are constants.

Step 2: Find a particular solution of the non-homogeneous differential equation y'' + y = x^2 + 1.

We can use the method of undetermined coefficients to find a particular solution. Since the right-hand side of the equation is a polynomial of degree 2, we can assume a particular solution of the form y_p(x) = ax^2 + bx + c. Substituting this into the equation, we get:

[tex]y_p''(x) + y_p(x) = 2a + ax^2 + bx + c + ax^2 + bx + c = 2ax^2 + 2bx + 2c + 2a[/tex]

Equating this to the right-hand side of the equation, we get:

2a = 1, 2b = 0, 2c + 2a = 1

Solving for a, b, and c, we get a = 1/2, b = 0, and c = -1/2.

Therefore, a particular solution is y_p(x) = (1/2)x^2 - 1/2.

Step 3: Find the general solution of the non-homogeneous differential equation.

The general solution of the non-homogeneous differential equation is y(x) = y_h(x) + y_p(x), where y_h(x) is the general solution of the homogeneous equation and y_p(x) is a particular solution of the non-homogeneous equation.

Substituting the values of c_1, c_2, and y_p(x) into the general solution, we get:

y(x) = c_1 cos(x) + c_2 sin(x) + (1/2)x^2 - 1/2

Step 4: Apply the boundary conditions to determine the values of the constants.

Using the first boundary condition, y(0) = 4, we get:

c_1 - 1/2 = 4

Therefore, c_1 = 9/2.

Using the second boundary condition, y(1) = 0, we get:

9/2 cos(1) + c_2 sin(1) + 1/2 - 1/2 = 0

Therefore, c_2 = -9/2 cos(1).

Step 5: Write the final solution.

Substituting the values of c_1 and c_2 into the general solution, we get:

[tex]y(x) = (9/2)cos(x) - (9/2)cos(1)sin(x) + (1/2)x^2 - 1/2[/tex]

Therefore, the solution to the boundary-value problem is[tex]y(x) = (9/2)cos(x) - (9/2)cos(1)sin(x) + (1/2)x^2 - 1/2.[/tex]

Learn more about boundary-value

brainly.com/question/26155120

#SPJ11

Pls help me w an explanation thank u very much

Answers

The solution to the equation [tex]\sqrt{3r^2} = 3[/tex] is given as follows:

[tex]r = \pm \sqrt{3}[/tex]

How to solve the equation?

The equation in the context of this problem is defined as follows:

[tex]\sqrt{3r^2} = 3[/tex]

To solve the equation, we must isolate the variable r. The variable r is inside the square root, hence to isolate, we must obtain the square of each side, as follows:

3r² = 9.

Now we solve it as a quadratic equation as follows:

r² = 3.

[tex]r = \pm \sqrt{3}[/tex]

More can be learned about solutions of equations at https://brainly.com/question/1214333

#SPJ1

Can someone help please?

Answers

Answer:

see below

Step-by-step explanation:

1) adjacent angles are 2 angles right next to each other and are labeled with 3 letters, not 2.  

Examples in the picture would include <ABE, <ABD

Vertical angles are angles opposite of each other, so 2 examples are ABE and DBC

2) adjacent angles: PQT and QTR

vertical angles: PQR and SQR

3) a) adjacent

b) neither

c) vertical

d) vertical

e) adjacent

f) neither

hope this helps!

find the directional derivative of f(x, y) = xy at p(5, 5) in the direction from p to q(8, 1).

Answers

The directional derivative of f(x, y) = xy at point p(5, 5) in the direction from p to q(8, 1) is -1.

To find the directional derivative of f(x, y) = xy at point p(5, 5) in the direction from p to q(8, 1), we need to first find the unit vector in the direction from p to q.

This can be done by subtracting the coordinates of p from those of q to get the vector v = <3, -4> and then dividing it by its magnitude, which is sqrt(3^2 + (-4)^2) = 5. So, the unit vector in the direction from p to q is u = v/|v| = <3/5, -4/5>.

Next, we need to compute the gradient of f at point p, which is given by the partial derivatives of f with respect to x and y evaluated at p: grad(f)(5, 5) =  evaluated at (5, 5) = <5, 5>.

Finally, we can compute the directional derivative of f at point p in the direction of u as follows:

D_u f(5, 5) = grad(f)(5, 5) · u = <5, 5> · <3/5, -4/5> = (5)(3/5) + (5)(-4/5) = -1.

Therefore, the directional derivative of f(x, y) = xy at point p(5, 5) in the direction from p to q(8, 1) is -1.

Visit here to learn more about derivative  : https://brainly.com/question/25324584
#SPJ11

use polar coordinates to find the volume of the given solid. enclosed by the hyperboloid −x2 − y2 z2 = 6 and the plane z = 3

Answers

The volume of the solid enclosed by the hyperboloid [tex]\frac{9}{2\pi }[/tex]

how to use polar coordinates ?

The hyperboloid's equation must be expressed in terms of r,θ, z in order to use polar coordinates.

[tex]$-x^2 - y^2 + z^2 = 6$[/tex]

Since[tex]$x = r\cos\theta$ and $y = r\sin\theta$[/tex], we can substitute and get:

[tex]$-r^2\cos^2\theta - r^2\sin^2\theta + z^2 = 6$[/tex]

Simplifying, we get:

[tex]$r^2 = \frac{6}{1-z^2}$[/tex]

Now, we need to find the limits of integration for r,θ and z. We know that the plane z = 3 intersects the hyperboloid when:

[tex]$-x^2 - y^2 + 3^2 = 6$[/tex]

Simplifying, we get:

$x^2 + y^2 = 3$

This is the equation of a circle centered at the origin with radius [tex]$\sqrt{3}$[/tex]. Since we're using polar coordinates, we can express this as:

[tex]$r = \sqrt{3}$[/tex]

For [tex]$\theta$[/tex], we can use the full range[tex]$0\leq \theta \leq 2\pi$[/tex]. For z, we have[tex]$0\leq z \leq 3$.[/tex]

Now, we can set up the triple integral to find the volume:

[tex]$V = \iiint dV = \int_{0}^{2\pi}\int_{0}^{\sqrt{3}}\int_{0}^{3} r,dz,dr,d\theta$[/tex]

Solving the integral, we get:

[tex]$V = \int_{0}^{2\pi}\int_{0}^{\sqrt{3}} 3r,dr,d\theta = 3\pi\int_{0}^{\sqrt{3}} r,dr = \frac{9}{2}\pi$[/tex]

Therefore, the volume of the solid enclosed by the hyperboloid [tex]$-x^2 - y^2 + z^2 = 6$[/tex]and the plane [tex]$z = 3$[/tex] is   [tex]\\\frac{9}{2\pi }[/tex]

know more about  hyperboloid visit :

https://brainly.com/question/31416442

#SPJ1

i need help asap 30 for this please

Answers

Answer:It is the one where the subway is the biggest

Step-by-step explanation:

because in the graph  it shows the subway is the biggest number

The answer for the question is
The one that has 40% on the subway

Explanation:
A whole always is 100% or equal to 1
If the add all of the numbers together to make a whole you should get 100

40+27+10+15+8= 100 or one whole

Hope it helped and have a nice day!

Karen and holly took their families out to the movie theater. Karen bought three boxes of candy and two small bags of popcorn and paid $18.35. Holly bought four boxes of candy and three small bags of popcorn and paid $26.05. Whats the cost for a box of candy

Answers

Answer:

Let's assume that the cost of a box of candy is "x" dollars.

According to the problem, Karen bought 3 boxes of candy and 2 small bags of popcorn, and paid $18.35. So we can write the equation:

3x + 2y = 18.35

Similarly, Holly bought 4 boxes of candy and 3 small bags of popcorn, and paid $26.05. So we can write the equation:

4x + 3y = 26.05

We want to find the cost of a box of candy, so we can solve for "x" using these two equations. One way to do this is to use elimination. If we multiply the first equation by 3 and the second equation by -2, we can eliminate the "y" term:

9x + 6y = 55.05

-8x - 6y = -52.10

Adding these two equations gives:

x = 2.95

So the cost of a box of candy is $2.95.

Answer:

$2.95

Step-by-step explanation:

Let x be the cost of a box of candy while y be the cost of a small bag of popcorn.

Out of the given data, two equations is formulated.

Equation 1

Equation 2

Multiply 3 to both sides of Eq.1 to derive Eq.1'

Multiply 2 to both sides of Eq.2 to derive Eq.2'

Elimination using Eq.1' and Eq.2' to derive x

A box of candy costs $2.95

find f(pi) if the integral of f(x) is xsin2x

Answers

To find f(pi), we need to use the fundamental theorem of calculus which states that if the integral of f(x) is F(x), then the derivative of F(x) with respect to x is f(x).



Given that the integral of f(x) is xsin2x, we can use this theorem to find f(x).Taking the derivative of xsin2x with respect to x gives: f(x) = d/dx (xsin2x), f(x) = sin2x + 2xcos2x, Now, to find f(pi), we simply substitute pi for x in the expression we just found: f(pi) = sin2(pi) + 2(pi)cos2(pi) , f(pi) = 0 + 2(pi)(-1) , f(pi) = -2pi .Therefore, f(pi) = -2pi. To find f(π) when the integral of f(x) is x*sin(2x),

we need to differentiate the given integral with respect to x. So, let's find the derivative of x*sin(2x) using the product rule: f(x) = d/dx(x*sin(2x)), f(x) = x * d/dx(sin(2x)) + sin(2x) * d/dx(x), f(x) = x * (cos(2x) * 2) + sin(2x) * 1, f(x) = 2x * cos(2x) + sin(2x), Now, to find f(π), we simply substitute x with π: f(π) = 2π * cos(2π) + sin(2π), Since cos(2π) = 1 and sin(2π) = 0, f(π) = 2π * 1 + 0 = 2π.

To know more about theorem click here

brainly.com/question/30242664

#SPJ11

Here are some inputs and outputs of the same function machine.
Input
5————> 2
20———> 8
-10———>-4
__. -1
n. __

Find the missing inputs and outputs

Answers

Answer:

a. -2.5--->-1

b. n---> 2n/5

let f : (0,1) → r be a bounded continuous function. show that the function g(x) := x(1−x)f(x) is uniformly continuous.

Answers

We have shown that |g(x) - g(y)| < 12ε whenever |x - y| < δ. Since ε was arbitrary, this shows that g(x) is uniformly continuous on (0, 1).

What is uniform continuity?

A stronger version of continuity known as uniform continuity ensures that functions defined on metric spaces, such as the real numbers, only vary by a small amount when their inputs change by a small amount. Contrary to uniform continuity, continuity merely demands that the function act "locally" around each point. To clarify, this means that for any given point x, there exists a tiny neighbourhood around x such that the function behaves properly inside that neighbourhood.

For the function g(x) to be continuous we need to have any ε > 0, and  δ > 0 such that if |x - y| < δ, then |g(x) - g(y)| < ε for all x, y in (0, 1).

Now, g(x) is bounded as the parent function f(x) is bounded.

Suppose, (0, 1) such that  |x - y| < δ.

Thus, without generality we have:

|g(x) - g(y)| = |x(1-x)f(x) - y(1-y)f(y)|

= |x(1-x)(f(x) - f(y)) + y(f(y) - f(x)) + xy(f(x) - f(y))|

≤ x(1-x)|f(x) - f(y)| + y|f(y) - f(x)| + xy|f(x) - f(y)|

< x(1-x)4ε + y4ε + xy4ε (by the choice of δ)

= 4ε(x(1-x) + y + xy)

< 4ε(x + y + xy)

≤ 4ε(1 + 1 + 1) = 12ε

Hence, we have shown that |g(x) - g(y)| < 12ε whenever |x - y| < δ. Since ε was arbitrary, this shows that g(x) is uniformly continuous on (0, 1).

Learn more about uniform distribution here:

https://brainly.com/question/28852504

#SPJ1

Suppose that contamination particle size (in micrometers) can be modeled as f(x)=2x^(-3) for 1 a) Confirm that f(x) is a probability density function
b) Give cummulative distribution function
c) Determine the mean
d) What is the probability that the size of a random particle will be less then 5 micrometers?
e) An optical device is being marketed to detect contamination particles. It is capable of detecting particles exceeding 7 micrometers in size. What proportion of the particles will be detected?

Answers

The device is:

P(X > 7) = 1 - P(X ≤ 7) = 1 - F(7) = 1 - (-(1/7^2) + 1) = 0.0204

a) To confirm that f(x) is a probability density function, we need to check that it satisfies two properties: non-negativity and total area under the curve equal to 1.

Non-negativity: f(x) is non-negative for all x in its domain (1, infinity).

Total area under the curve:

∫1∞ f(x) dx = ∫1∞ 2x^(-3) dx

= [-x^(-2)] from 1 to ∞

= [-(1/∞) - (-1/1)]

= 1

Since f(x) satisfies both properties, it is a probability density function.

b) The cumulative distribution function (CDF) is given by:

F(x) = P(X ≤ x) = ∫1x f(t) dt

For x ≤ 1, F(x) = 0, since the smallest possible value of X is 1.

For x > 1, we have:

F(x) = ∫1x f(t) dt = ∫1x 2t^(-3) dt

= [-t^(-2)] from 1 to x

= -(1/x^2) + 1

So the CDF for this distribution is:

F(x) = {0 for x ≤ 1

-(1/x^2) + 1 for x > 1}

c) To find the mean, we use the formula:

E(X) = ∫1∞ x f(x) dx

= ∫1∞ x(2x^(-3)) dx

= 2 ∫1∞ x^(-2) dx

= 2 [-x^(-1)] from 1 to ∞

= 2(1-0)

= 2

So the mean of the distribution is 2.

d) The probability that the size of a random particle will be less than 5 micrometers is:

P(X < 5) = F(5) = -(1/5^2) + 1 = 0.96

e) The proportion of particles that will be detected by the device is:

P(X > 7) = 1 - P(X ≤ 7) = 1 - F(7) = 1 - (-(1/7^2) + 1) = 0.0204

To learn more about distribution visit:

https://brainly.com/question/29062095

#SPJ11

find the volume of the following solids. the base of a solid is the region between the curve y=20 sin x

Answers

To find the volume of the solid, whose base is the region between the curve y=20 sin x.

We know that the base of the solid is the region between the curve y=20 sin x. We also know that the solid is bounded by the x-axis and the plane z=0.

Therefore, the height of the solid is the distance between the curve and the plane z=0. This distance is simply given by the function y=20 sin x.

To find the volume of the solid, we need to integrate the area of each cross-sectional slice of the solid as we move along the x-axis. The area of each slice is simply the area of the base times the height.

The area of the base is given by the integral of y=20 sin x over the region of interest. This integral is:

∫ y=20 sin x dx from x=0 to x=π

= -cos(x) * 20 from x=0 to x=π

= 40

Therefore, the area of the base is 40 square units.

The height of the solid is given by y=20 sin x. Therefore, the volume of each slice is:

dV = (area of base) * (height)

= 40 * (20 sin x) dx

Integrating this expression from x=0 to x=π, we get:

V = ∫ dV from x=0 to x=π

= ∫ 40 * (20 sin x) dx from x=0 to x=π

= 800 [cos(x)] from x=0 to x=π

= 1600

Therefore, the volume of the solid is 1600 cubic units.

Learn more about volume at: https://brainly.com/question/1972490

#SPJ11

To find the volume of the solid, whose base is the region between the curve y=20 sin x.

We know that the base of the solid is the region between the curve y=20 sin x. We also know that the solid is bounded by the x-axis and the plane z=0.

Therefore, the height of the solid is the distance between the curve and the plane z=0. This distance is simply given by the function y=20 sin x.

To find the volume of the solid, we need to integrate the area of each cross-sectional slice of the solid as we move along the x-axis. The area of each slice is simply the area of the base times the height.

The area of the base is given by the integral of y=20 sin x over the region of interest. This integral is:

∫ y=20 sin x dx from x=0 to x=π

= -cos(x) * 20 from x=0 to x=π

= 40

Therefore, the area of the base is 40 square units.

The height of the solid is given by y=20 sin x. Therefore, the volume of each slice is:

dV = (area of base) * (height)

= 40 * (20 sin x) dx

Integrating this expression from x=0 to x=π, we get:

V = ∫ dV from x=0 to x=π

= ∫ 40 * (20 sin x) dx from x=0 to x=π

= 800 [cos(x)] from x=0 to x=π

= 1600

Therefore, the volume of the solid is 1600 cubic units.

Learn more about volume at: https://brainly.com/question/1972490

#SPJ11

The graph shows the payments on a car
loan.
1,200
1,100
1,000
900
800
700
(3) peso sunoury
O A
OB
600
500
400
300
200
100
O
1
2345678
Time (Months)
9 10 11 12
Which equation shows the
relationship between x, the number
of months, and y, the amount still
owed on the loan?
A. y = 400 x + 1200
B. y = 400x1200
C. y = -400x+1200
D. y 400 - 1200

Answers

The equation that shows the relationship between x, the number of months, and y, the amount still owed on the loan, is y = -400x + 1200. The correct option is C.

The graph shows that the initial amount borrowed is 1200 and the loan payments reduce the amount owed by 400 pesos per month.

The amount still owed on the loan decreases linearly over time, so we can use the point-slope form of the equation for a line to express the relationship between x (the number of months) and y (the amount still owed on the loan):

y - y₁ = m(x - x₁)

where y₁ is the y-coordinate of a point on the line (in this case, the initial amount borrowed, which is 1200), m is the slope of the line (the rate at which the amount owed decreases, which is -400), and x₁ is the x-coordinate of the same point on the line (in this case, the first month, which is 1).

Substituting the values we have, we get:

y - 1200 = -400(x - 1)

Simplifying:

y = -400x + 1600

Therefore, the equation that shows the relationship between x, the number of months, and y, the amount still owed on the loan, is y = -400x + 1200. The correct option is C.

To know more about linear equations follow

https://brainly.com/question/30593813

#SPJ1

Question 45 and 44 please

Answers

44. The cumulative frequency graph from the histogram is option A

45. E. none of above

What is cumulative frequency graph

A cumulative frequency graph, also known as an ogive, is a type of graph used in statistics to represent the cumulative frequency distribution of a dataset.

The graph displays the running total of the frequency of each value in the dataset on the y-axis, while the x-axis shows the values in the dataset.

How to evaluate the expression

Given that x = 1/2, y = 2/3 and z = 3/4

To evaluate x + y + z we use addition of fraction as follows

1/2 + 2/3 + 3/4

we convert to have same base of 12

6/6 * 1/2 + 4/4 * 2/3 + 3/3 * 3/4

6/12 + 8/12 + 9/12

adding results to

23/12 OR 1 11/12

Learn more about ogive at

https://brainly.com/question/29101419

#SPJ1

Please help me!!! (Please add an explanation)

The length of a rectangle is 21yd^2, and the length of the rectangle is 1yd less than twice the width. Find the dimensions of the rectangle

Find the length and width.

Answers

Let's start by using algebra to solve for the width and length of the rectangle.

Let x be the width of the rectangle. Then, we know that the length is 1 yard less than twice the width. We can write this as:

length = 2x - 1

We also know that the length of the rectangle is 21 square yards. We can write this as:

length x width = 21

Substituting the expression for length from the first equation into the second equation, we get:

(2x - 1) x x = 21

Simplifying the equation:

2x^2 - x - 21 = 0

Now we can use the quadratic formula to solve for x:

x = (-b ± sqrt(b^2 - 4ac)) / 2a

In this case, a = 2, b = -1, and c = -21. Substituting these values into the quadratic formula, we get:

x = (-(-1) ± sqrt((-1)^2 - 4(2)(-21))) / 2(2)

Simplifying:

x = (1 ± sqrt(169)) / 4

x = (1 ± 13) / 4

x = 3 or x = -7/2

Since the width of a rectangle cannot be negative, we can ignore the negative solution. Therefore, the width of the rectangle is 3 yards.

Using the expression for length from the first equation, we can find the length of the rectangle:

length = 2x - 1

length = 2(3) - 1

length = 5

Therefore, the dimensions of the rectangle are 3 yards by 5 yards.

A blue die and a red die are thrown. B is the event that the blue comes up an odd number. E is the event that both dice come up odd.
Enter the sizes of the sets |E ∩ B| and |B|

Answers

The size of the set |E ∩ B| is 2, and the size of the set |B| is 3.

There are six possible outcomes when two dice are thrown:
{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,1), (4,2), (4,3), (5,1), (5,2), (5,3), (6,1), (6,2), (6,3)}.

Out of these 18 outcomes, the following three satisfy the event E (both dice are odd): (1,3), (3,1), and (3,3).
The following outcomes satisfy event B (the blue die is odd): (1,1), (1,3), (2,1), (2,3), (3,1), and (3,3).

Therefore, the size of the set |E ∩ B| is 2 (the two outcomes that satisfy both events are (1,3) and (3,1)), and the size of the set |B| is 3 (three outcomes satisfy the event B).

To learn more about Sets, visit:

https://brainly.com/question/25005086

#SPJ11

answer the below questions with full steps

Answers

The approximate reciprocal of 0.72 is 1.3889.

The ✓1.7 depicted as a fraction is (√170)/10.

How to explain the value

It should be noted that to calculate the reciprocal of 0.72, we simply divide 1 by 0.72:

1/0.72 = 1.388888888888889

Thus, the approximate reciprocal of 0.72 is 1.3889.

Also, to determine the fractional equivalent for √1.7, we may again rationalize the denominator through multiplying both numerator and denominator with the expression contained beneath the radical:

√1.7=√(17/10)=(√17)/(√10)

Multiplying every entity within the adjoined numerator and denominator with (√10) offers:

(√17)/(√10)*(√10)/(√10)= (√170)/10

Therefore, √1.7 depicted as a fraction is:

√1.7=(√170)/10

Learn more about reciprocal on

https://brainly.com/question/31072795

#SPJ1

how do you solve this

Answers

I think You need to add it all together after you will divide it
Still I'm not sure about my answer

Answer:

The answer is 11 to the nearest tenth

Write the equation for a parabola with a focus at (2,2) and a directrix at x=8.

Answers

Answer:

x=-((y-2)^2)/12  +5

Step-by-step explanation:

If X has an exponential distribution with parameter , derive a general expression for the (100p)th percentile of the distribution. Then specialize to obtain the median.

Answers

The general expression for the (100p)th percentile of the distribution is :

x_p = -ln(1 - p)/λ

The median of an exponential distribution with parameter λ is :

ln(2)/λ.

An exponential distribution is a continuous probability distribution that describes the time between events in a Poisson process, where events occur continuously and independently at a constant average rate.

The probability density function (PDF) of an exponential distribution with parameter λ is given by:

f(x) = λe^(-λx)

where x ≥ 0 and λ > 0.

To derive the (100p)th percentile of the distribution, we need to find the value x_p such that P(X ≤ x_p) = p, where p is a given percentile (e.g. p = 0.5 for the median). In other words, x_p is the value of X that separates the bottom p% of the distribution from the top (100-p)%.

To find x_p, we can use the cumulative distribution function (CDF) of the exponential distribution, which is given by:

F(x) = P(X ≤ x) = 1 - e^(-λx)

Using this formula, we can solve for x_p as follows:

1 - e^(-λx_p) = p
e^(-λx_p) = 1 - p
-λx_p = ln(1 - p)
x_p = -ln(1 - p)/λ

This is the general expression for the (100p)th percentile of the exponential distribution. To obtain the median, we set p = 0.5 and simplify:

x_median = -ln(1 - 0.5)/λ = ln(2)/λ

Therefore, the median of an exponential distribution with parameter λ is ln(2)/λ.

To learn more about exponential distribution visit : https://brainly.com/question/13339415

#SPJ11

et X be a random variable with mean E(X) = 3 and variance Var(X) = 2. Let Y be another random variable with mean E(Y) = 0 and variance Var(Y) = 4. It is known that X and Y are independent. (a) What is the covariance of X and Y? (b) Find the standard deviation of the random variable U = 3x - 4y + 10. (c) Find the expected value of the random variable V = 6XY +3Y?

Answers

(a) The covariance of X and Y is 0, since X and Y are independent.

(b) The standard deviation of U is sqrt(2(3^2) + 4(-4^2)) = 2*sqrt(13).

(c) The expected value of V is 0, since E(V) = 6E(X)E(Y) + 3E(Y) = 0.

(a) Since X and Y are independent, the covariance between them is 0. The formula for covariance is Cov(X,Y) = E(XY) - E(X)E(Y). Since E(XY) = E(X)E(Y) when X and Y are independent, the covariance is 0.

(b) The formula for the standard deviation of U is SD(U) = sqrt(Var(3X) + Var(-4Y)). Since Var(aX) = a^2Var(X) for any constant a, we can calculate Var(3X) = 3^2Var(X) = 9(2) = 18 and Var(-4Y) = (-4)^2Var(Y) = 16(4) = 64. Thus, SD(U) = sqrt(18 + 64) = 2*sqrt(13).

(c) The expected value of V is E(V) = E(6XY + 3Y). Since X and Y are independent, we can calculate this as E(6XY) + E(3Y) = 6E(X)E(Y) + 3E(Y). Since E(X) = 3 and E(Y) = 0, we get E(V) = 6(3)(0) + 3(0) = 0. Therefore, the expected value of V is 0.

For more questions like Standard deviation click the link below:

https://brainly.com/question/14747159

#SPJ11

123 . d is the region between the circles of radius 4 and radius 5 centered at the origin that lies in the second quadrant.

Answers

The area of region d is 4.5π.

To find the area of region d between the circles of radius 4 and radius 5 centered at the origin in the second quadrant, we can use the following steps:

Find the area of the larger circle (radius 5) and subtract the area of the smaller circle (radius 4) to find the area of the annulus (ring-shaped region) between them:

Area of larger circle = π[tex](5)^2[/tex] = 25π

Area of smaller circle = π[tex](4)^2[/tex] = 16π

Area of annulus = (25π) - (16π) = 9π

Divide the annulus into two equal parts since we are only interested in the portion of the region in the second quadrant. This gives us:

Area of region d = 1/2 (9π) = 4.5π

Therefore, the area of region d is 4.5π.

To learn more about portion visit:

https://brainly.com/question/31265707

#SPJ11

A random sample of the price of gasoline from 40 gas stations in a region gives the statistics below. Complete parts a) through c). y = $3.49, s = $0.29
a. Find a 95​% confidence interval for the mean price of regular gasoline in that region.
b. Find the 90% confidence interval for the mean
c. If we had the same statistics from 80 stations, what would the 95% confidence interval be?

Answers

The 95% confidence interval for the mean price of regular gasoline in that region is $3.396 to $3.584.The 90% confidence interval for the mean price of regular gasoline in that region is $3.413 to $3.567 3and 95% confidence interval for the mean price of regular gasoline in that region with a sample size of 80 would be $3.427 to $3.55

a) The 95% confidence interval for the mean price of regular gasoline in that region can be calculated as:

[tex]x ± z(\frac{s}{\sqrt{n} } )[/tex]

where X is the sample mean, s is the sample standard deviation, n is the sample size, and z is the critical value for the desired confidence level. For a 95% confidence level, z is 1.96.

Plugging in the given values, we get:

[tex]3.149 ± 1.96(\frac{0.29}{\sqrt{40} } )[/tex]

= 3.49 ± 0.094

So the 95% confidence interval for the mean price of regular gasoline in that region is $3.396 to $3.584.

b) Similarly, the 90% confidence interval for the mean can be calculated by using z = 1.645 (the critical value for a 90% confidence level):

3.49 ± 1.645(0.29/√40)

= 3.49 ± 0.077

So the 90% confidence interval for the mean price of regular gasoline in that region is $3.413 to $3.567.

c) If we had the same statistics from 80 stations, the standard error would decrease because the sample size is larger. The new standard error would be:

s/√80 = 0.29/√80 ≈ 0.032

Using the same formula as in part (a), but with the new standard error and z = 1.96, we get:

3.49 ± 1.96(0.032)

= 3.49 ± 0.063

So the 95% confidence interval for the mean price of regular gasoline in that region with a sample size of 80 would be $3.427 to $3.553.

To know more about "Standard deviation"  refer here:

https://brainly.com/question/23907081#

#SPJ11

does anyone now how to do this??

Answers

Answer: 4, 2

Step-by-step explanation:

This is a sine/cosine wave.

we can see one full revolution from 0 to 4; this means that the period is 4.

the amplitude refers to how "high" or "low" the graph goes from its center.

we can see it hits a maximum of 2, (and a minimum of -2). Since the amplitude is the absolute value of this high/low value, it will always be positive. so the amplitude is 2

In conclusion:

Period = 4

Amplitude = 2

This is similar to Section 3.7 Problem 20: Fot the function f(x) = 3/X^2 +1) determine the absolute maximum and minimum values on the interval [1, 4]. Keep 1 decimal place (rounded) (unless the exact answer is an 3 For the function f(x)= x2+1 integer).
Answer: Absolute maximum =_____ at x= _____
Absolute minimum = ______at X=_____

Answers

The absolute maximum value of f(x) on the interval [1, 4] is 1.5, which occurs at x = 1, and the absolute minimum value is 0.176, which occurs at x = 4.

To find the absolute maximum and minimum values of the function f(x) = 3/(x^2 + 1) on the interval [1, 4], we need to first find the critical points and then evaluate the function at the endpoints of the interval.

Critical points occur where the derivative of the function is equal to 0 or is undefined.

First, find the derivative of f(x):
f'(x) = -6x / (x^2 + 1)^2

To find the absolute maximum and minimum values of the function f(x) = 3/(x^2 + 1) on the interval [1, 4], we need to first find the critical points and the endpoints of the interval.
f'(x) = -6x/(x^2 + 1)^2 = 0

Next, we evaluate the function at the endpoints of the interval:
f(1) = 3/(1^2 + 1) = 1.5
f(4) = 3/(4^2 + 1) = 0.176
Set f'(x) to 0 and solve for x:
-6x / (x^2 + 1)^2 = 0

Since the denominator can never be 0, the only way this equation can be true is if the numerator is 0:
-6x = 0
x = 0

However, x = 0 is not in the interval [1, 4], so there are no critical points in the interval.

Now, evaluate the function at the endpoints of the interval:
f(1) = 3/(1^2 + 1) = 3/2 = 1.5
f(4) = 3/(4^2 + 1) = 3/17 ≈ 0.2

Since there are no critical points in the interval, the absolute maximum and minimum values occur at the endpoints. Thus, the absolute maximum value is 1.5 at x = 1, and the absolute minimum value is approximately 0.2 at x = 4.

Answer: Absolute maximum = 1.5 at x = 1
Absolute minimum ≈ 0.2 at x = 4

Learn more about Interval:

brainly.com/question/14264237

#SPJ11

what expression can be used to find the surface area of the triangular prisim 4ft / 5ft length, 3ft/ 2ft base

Answers

Answer:

no answer

Step-by-step explanation:

Other Questions
be eigenvectors of the matrix A which correspond to theeigenvalues 1= -4, 2= 2, and3=3, respectively, and let v =.Express v as a linear combination of v1,v2, and v3, and find Av.v = __________________ v1 + _______v2 +____________v3Av= Determine if the sequence below is arithmetic or geometric and determine the common difference / ratio in simplest form. 17,\, 13,\, 9,\, ... 17,13,9,. People who work on commission usually get paid the same amount every month. A. True B. False work satisfaction and life satisfaction do not influence each other, true or false? A coin is tossed 3 times. Use a tree diagram to find the number of possible outcomes that could produce exactly 2 heads. If increased cloudiness solely increases planetary albedo, this will have the following effect on climate:a. coolingb. warmingc. neither cooling nor warmingd. depends on the type of clouds to find the number in a square multiply the numbers in the two circles connected to itFill in the Missing numbers Please help me ASAP write a 400 word essay, all steps are listed. Calculate the height of the pole True/False: from ancient times through the early 1800's, the intimate apparel emphasis was on items that either enhanced or concealed breasts. Recommend strategies that the youth could put in place to ensure their cyber safety when using social media. In your answer, also indicate how this strategy could lead to greater cyber safety. carbon 14 has a half-life of 5715 years. how much carbon 14 is left after 6,451 years, given that the initial mass is q0 = 492 grams? (write the answer with 2 exact decimals). 1. Calculate the mass of chemicals needed to make the solutions for the osmosis experiment.a. 40 ml 5% by weight sucrose solutionb. 40 ml 10% by weight sucrose solutionc. 40 ml 20% by weight sucrose solutiond. 40 ml 30% by weight sucrose solutione. 40 ml 30% by weight dextrose solutionf. 40 ml 5% by weight starch solution for each of the following assertions, state whether it is a legitimate statistical hypothesis and why. h: > 125 20 pts!! Match these words or phrases.1. councilUnited Providence of New Granada2. viceroyaltyNapoleon3. Colombia's Independence DayJuly 20, 18104. a principal city-statejunta5. European GeneralCartagenaPLEASE GIVE CORRECT ANSWERS find the missing length of CD in kite ABCD help me please please i need your help a) What would mystery(3) be?b) How many local variables are used in this function? (hint: how much stack space is used?)c) Translate this function into an equivalent recursive python function.d) This function has a specific name. What is that name? A client is using a primary prevention strategy to prevent infectious disease. Which of the following actions is the client most likely taking?a. A client receives a tetanus booster every 10 years.b. A client receives a tetanus booster after stepping on a nail.c. A client receives tetanus immunoglobulin after stepping on a nail.d. A client with tetanus is given antibiotics and is placed on seizure precautions. a 7.000 turn coil carries has a radius of 9.800 cm and a magnetic moment of 6.500 x 10-2 am2. what is the current through the coil?