If sin θ = 45 4 5 and 2 π 2 < θ < 32 3 π 2 , what is the value of tan θ?

Answers

Answer 1

If sin θ = 45 4 5 and 2 π 2 < θ < 32 3 π 2 , the value of tan(θ) is 1125/sqrt(23).

How to find the value oftan(θ)

First, we need to find the value of cos(θ) since we know sin(θ).

sin²(θ) + cos²(θ) = 1

cos²(θ) = 1 - sin²(θ)

cos(θ) = sqrt(1 - sin²(θ))

cos(θ) = sqrt(1 - (45/4)^2/5^2)

cos(θ) = sqrt(1 - (2025/1600))

cos(θ) = sqrt(575/1600)

cos(θ) = sqrt(23)/20

Now, we can find the value of tan(θ).

tan(θ) = sin(θ)/cos(θ)

tan(θ) = (45/4)/sqrt(23)/20

tan(θ) = (45/4) * (20/sqrt(23))

tan(θ) = (225/2) * (1/sqrt(23))

tan(θ) = (225/2) * (sqrt(23)/23)

tan(θ) = 1125/sqrt(23)

Therefore, the value of tan(θ) is 1125/sqrt(23).

Learn more about tan at https://brainly.com/question/16157693

#SPJ1


Related Questions

Pls help!! I need to find the surface area of the triangular prism below.

Answers

Just like a cube width time hight time length divided by 2

Let X be an exponential random variable with parameter X. a) The probability that X 5 is b) The probabilty that X > 5 given that X > 2 is c) Given that X 2, and for a small0, the probability that 4 K X K 4 26 is approximately

Answers

The answers for questions a,b, and c involving an exponential random variable, probability, and conditional probability are P(X > 5) = e^(-a * 5), P(X > 5 | X > 2) = (e^(-a * 5)) / (e^(-a * 2)), and P(4 <= X <= 4 + 2δ | X > 2) = f(4) * 2δ / P(X > 2)

Let X be an exponential random variable with parameter a.

a) The probability that X > 5 is given by the survival function of the exponential distribution,

which is P(X > 5) = e^(-a * 5).

b) The probability that X > 5 given that X > 2 is calculated using conditional probability.

The formula for conditional probability is P(X > 5 | X > 2) = P(X > 5 and X > 2) / P(X > 2).

Since X > 5 implies X > 2, the numerator is P(X > 5), which is e^(-a * 5). The denominator is P(X > 2), which is e^(-a * 2). Thus, P(X > 5 | X > 2) = (e^(-a * 5)) / (e^(-a * 2)).

c) Given that X > 2, and for a small δ > 0, the probability that 4 <= X <= 4 + 2δ is approximately

P(4 <= X <= 4 + 2δ | X > 2) = [P(4 <= X <= 4 + 2δ) - P(X < 2)] / P(X > 2).

We can approximate this by considering the probability density function (pdf) of the exponential distribution, which is f(x) = a * e^(-a * x).

The probability is approximately f(4) * 2δ / P(X > 2).

Learn about random variable: https://brainly.com/question/17012084

#SPJ11

Write an equation that shows the relationship 44% of y
is 40.

Answers

Answer:

it can be written as 0.44y=40

44% can be written as 0.44

Step-by-step explanation:

to solve for y divide both sides by 0.44

to get y is equal to 100

A candle shop sells a variety of different
candles. If they are offering a sale for 20% off,
how will this affect the mean, median, and
mode cost per type of candle?

Answers

The Mean will decrease by 20% and the mode or median may or may not have any impact.

Each style of the candle will cost 20% less if the candle store is having a 20% off deal.

The mean, median, and mode cost per kind of candle will be impacted in the following ways assuming that each candle has a distinct price:

Mean: There will be a 20% decrease in the mean cost of each type of candle. This is so that a lower mean cost per kind of candle may be achieved. The mean is the sum of all prices divided by the total number of candles, thus if each price is decreased by 20%, the sum of prices will also be decreased by 20%.

Median: The sale may or may not have an impact on the median price for each type of candle. This is true because the median, which represents the middle value in a group of data, will not change if the order of the prices is not affected by the sale price.

The median, however, could change to a different number if the sale price results in a change in the ranking of the values.

Mode: The sale may or may not have an impact on the average price for each type of candle. This is true because the mode—the value that appears the most frequently in a set of data—remains same if the sale price does not alter the frequency of the prices.

The mode, however, can change to a different value if the selling price results in a change in the frequency of the prices.

Learn more about Mean here:

https://brainly.com/question/521501

#SPJ1

what is the area of the region of points satisfying the inequalities $x \le 0$, $y \le 0$, and $y \ge |x 4| - 5?$

Answers

The area of the region of points satisfying the inequalities x ≤ 0, y ≤ 0, and y ≥ |x+4| - 5 is 4.5 square units.

if you graph the v shape on a graph, V , wiith vertex at (-4, -5) you can then make two triangles using the axis as a border.

The left triangle will have area 25/2

The right triangle witch will be smaller as it is below a rectangle will have area 8 and the rectangle will have area 4

Thus the total area is 49/2

To visualize the region of points satisfying the given inequalities, we can start by graphing the line y = |x+4| - 5.

That |x+4| is equal to x+4 when x is greater than or equal to -4, and -x-4 when x is less than -4.

Therefore, the equation of the line can be expressed as:

y = { x+9, for x ≤ -4 , -x-1, for x > -4

If you square both sides, then you get x+5 = 4[tex]x^2[/tex]

Which becomes polynomial 4[tex]x^2[/tex] -x -5

Factor to (4x-5)(x+1)

x = -1 and x = [tex]\frac{5}{4}[/tex]

For similar question on area of the region:

https://brainly.com/question/9485980

#SPJ11

Find the critical numbers of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.)
g(x) =
3^ 64 − x2
cubed root of 64-x^2

Answers

To find the critical numbers of the function g(x), we need to first find its derivative and then set the derivative equal to zero to solve for x.

The function is given as: g(x) = (64 - x^2)^(1/3)

To find the derivative, we will use the chain rule, which states that the derivative of a composite function is the derivative of the outer function times the derivative of the inner function.

So: g'(x) = (1/3)(64 - x^2)^(-2/3) * (-2x)

Now, we need to set g'(x) = 0 to find the critical numbers:

0 = (1/3)(64 - x^2)^(-2/3) * (-2x)

To solve for x, we can observe that if either of the factors is equal to 0, then the equation will hold.

So, let's examine each factor: (1/3)(64 - x^2)^(-2/3) = 0:

This factor can never be zero, because a nonzero number raised to any power is never zero. -2x = 0: This factor is zero when x = 0.

So, the only critical number for the function g(x) is x = 0. The final answer is: 0

Know more about chain rule,

https://brainly.com/question/30895266

#SPJ11

To find the critical numbers of the function g(x), we need to first find its derivative and then set the derivative equal to zero to solve for x.

The function is given as: g(x) = (64 - x^2)^(1/3)

To find the derivative, we will use the chain rule, which states that the derivative of a composite function is the derivative of the outer function times the derivative of the inner function.

So: g'(x) = (1/3)(64 - x^2)^(-2/3) * (-2x)

Now, we need to set g'(x) = 0 to find the critical numbers:

0 = (1/3)(64 - x^2)^(-2/3) * (-2x)

To solve for x, we can observe that if either of the factors is equal to 0, then the equation will hold.

So, let's examine each factor: (1/3)(64 - x^2)^(-2/3) = 0:

This factor can never be zero, because a nonzero number raised to any power is never zero. -2x = 0: This factor is zero when x = 0.

So, the only critical number for the function g(x) is x = 0. The final answer is: 0

Know more about chain rule,

https://brainly.com/question/30895266

#SPJ11

Derive the expectation of Y = ax^2 + bX + c. Show all steps of your work. Use the fact thatE[g(x)] = ∑ g (X) p (X=x)

Answers

The expectation of Y is given by:

E[Y] = aVar(X) + (aE[X]^2 + bE[X] + c)

To derive the expectation of Y, we have:

E[Y] = E[ax^2 + bX + c]

Using the linearity of expectation, we can write:

E[Y] = E[ax^2] + E[bX] + E[c]

We know that E[c] = c, since the expected value of a constant is the constant itself. Also, E[bX] = bE[X], since b is a constant and can be taken outside the expectation operator. Therefore, we have:

E[Y] = aE[x^2] + bE[X] + c

To find E[x^2], we can use the fact that:

E[g(x)] = ∑ g(x) p(x)

Therefore, we have:

E[x^2] = ∑ x^2 p(x)

Since we don't know the specific distribution of X, we cannot calculate this directly. However, we can use a different formula for the variance of X, which is:

Var(X) = E[X^2] - E[X]^2

Rearranging this, we get:

E[X^2] = Var(X) + E[X]^2

Therefore, we can substitute this into our expression for E[Y], giving:

E[Y] = a(Var(X) + E[X]^2) + bE[X] + c

Simplifying this expression, we get:

E[Y] = aVar(X) + (aE[X]^2 + bE[X] + c)

Therefore, the expectation of Y is given by:

E[Y] = aVar(X) + (aE[X]^2 + bE[X] + c)

To learn more about expression visit:

https://brainly.com/question/14083225

#SPJ11

Each month, 600 hours of time are available on each machine, and that customers are willing to buy up to the quantities of
each product at the prices that are shown below:
Demands. prices
month 1. month2. month1. month2
product 1. 120. 200. $60. $15
product 2. 150. 130. $70. $35
The company's goal is to maximize the revenue obtained from selling units during the next two months.
how many constraints does this problem have (not counting the non-negativity constraints)?
a.4
b.6
c.10
d.8

Answers

The problem has d)8 constraints (not counting the non-negativity constraints).

The problem is about determining the optimal production quantities for two products, in two months, in order to maximize revenue. The available time on each machine is 600 hours per month. The demands and prices for each product in each month are given in the problem.

To maximize revenue, we need to determine the quantity of each product to produce in each month, based on the demand and price constraints. We can write the objective function as:

Maximize: 60x₁₁ + 15x₁₂ + 70x₂₁ + 35x₂₂

where x₁₁ and x₁₂ are the quantities of product 1 produced in month 1 and month 2 respectively, and x₂₁ and x₂₂ are the quantities of product 2 produced in month 1 and month 2 respectively.

To ensure that we meet the demand for each product in each month, we have the following constraints:

x₁₁ + x₁₂ ≤ 120 (demand for product 1 in month 1 and 2)

x₂₁ + x₂₂ ≤ 150 (demand for product 2 in month 1 and 2)

x₁₁ ≤ 600 (available time on machine in month 1 for product 1)

x₁₂ ≤ 600 (available time on machine in month 2 for product 1)

x₂₁ ≤ 600 (available time on machine in month 1 for product 2)

x₂₂ ≤ 600 (available time on machine in month 2 for product 2)

To ensure that we do not produce negative quantities, we have the non-negativity constraints:

x₁₁ ≥ 0, x₁₂ ≥ 0, x₂₁ ≥ 0, x₂₂ ≥ 0

Therefore, the problem has a total of d)8 constraints (not counting the non-negativity constraints).

For more questions like Demand click the link below:

https://brainly.com/question/29703449

#SPJ11

1. The table below shows the marking scheme for a Mathematics quiz containing 40 questions. Zahid joined the Mathematics quiz. The table shows the marking scheme of a Mathematics quiz consisting of 40 questions Zahid participated in the Mathematics quiz Marking scheme of Mathematics quiz Marking scheme of Mathematics quiz Every question is answered correctly cacn question answerea correcnу Every question is answered incorrectly Each question answered wrongly Given 5 marks Given 5 marks Deduct 3 marks Deduct 3 marks If Zahid's marks have been deducted by 18 marks, calculate the total marks obtained by Zohid in the quiz If Zahid's marks have been deducted by 18 marks, calculate the total marks obtained by Zohid in the quiz​

Answers

Answer: Zahid obtained 170 marks.

Step-by-step explanation:

Let's start with the basic rules of the question.

We know that for each question answered correctly, 5 marks will be given. And for each incorrect answer, 3 marks will be deducted. Now the problem says that Zahid's marks have been deducted by 18. There are 3 marks deducted for each wrong answer so we'll divide 18 by 3, which gives us 6. Zahid got 6 questions wrong. However, there are 40 questions in the exam, so if we assume that the only ones he answered incorrectly are the 6 questions, then we should subtract 6 from 40. This leaves us with only the correct answers left which is 34. Now again, we know that for each correct answer 5 marks will be given. Assuming that Zahid answered the rest of the questions correctly, we should multiply 34 by 5, which gives us 170.

In numbers your workings might look like this:

18 ÷ 3 = 6

40 - 6 = 34

34 × 5 = 170

I hope this helped you answer your problem. Please let me know if you need any further explanation :)

Find the value of tn-1,alpha needed to construct anupper or lower confidence bound in each of the situationsin excercise 1.Excercise 1 says" Find the value of tn-1,alpha/2 needed toconstruct a two-sided confidence interval of the given level withthe given sample size:a)Level 90% sample size 12.b)Level 95% sample size 7.c)Level 99% sample size 2.d)Level 95% sample size 29.

Answers

a) tn-1,alpha/2 = -1.796 (for the lower bound) and tn-1,1-alpha/2 = 1.796 (for the upper bound).

b) tn-1,alpha/2 = -2.447 (for the lower bound) and tn-1,1-alpha/2 = 2.447 (for the upper bound).

c) tn-1,alpha/2 = -12.706 (for the lower bound) and tn-1,1-alpha/2 = 12.706 (for the upper bound).

d) tn-1,alpha/2 = -2.048 (for the lower bound) and tn-1,1-alpha/2 = 2.048 (for the upper bound).

To find the value of tn-1,alpha/2, we need to use a t-distribution table or a statistical software that can calculate critical values.

a) For a 90% confidence interval with sample size n=12, we have n-1 = 11 degrees of freedom. Using a t-distribution table or a statistical software, we find that the critical value for alpha/2 = 0.05 is 1.796. Therefore, tn-1,alpha/2 = t11,0.05/2 = -1.796 (for the lower bound) and t11,1-0.05/2 = 1.796 (for the upper bound).

b) For a 95% confidence interval with sample size n=7, we have n-1 = 6 degrees of freedom. Using a t-distribution table or a statistical software, we find that the critical value for alpha/2 = 0.025 is 2.447. Therefore, tn-1,alpha/2 = t6,0.025/2 = -2.447 (for the lower bound) and t6,1-0.025/2 = 2.447 (for the upper bound).

c) For a 99% confidence interval with sample size n=2, we have n-1 = 1 degree of freedom. Using a t-distribution table or a statistical software, we find that the critical value for alpha/2 = 0.005 is 12.706. Therefore, tn-1,alpha/2 = t1,0.005/2 = -12.706 (for the lower bound) and t1,1-0.005/2 = 12.706 (for the upper bound).

d) For a 95% confidence interval with sample size n=29, we have n-1 = 28 degrees of freedom. Using a t-distribution table or a statistical software, we find that the critical value for alpha/2 = 0.025 is 2.048. Therefore, tn-1,alpha/2 = t28,0.025/2 = -2.048 (for the lower bound) and t28,1-0.025/2 = 2.048 (for the upper bound).

Learn more about confidence interval here

brainly.com/question/29680703

#SPJ4

The given question is incomplete, the complete question is:

Find the value of tn-1,alpha needed to construct anupper or lower confidence bound in each of the situationsin excercise 1.

Excercise 1 says" Find the value of tn-1,alpha/2 needed toconstruct a two-sided confidence interval of the given level withthe given sample size:

a)Level 90% sample size 12.

b)Level 95% sample size 7.

c)Level 99% sample size 2.

d)Level 95% sample size 29.

A triangular prism has a height of 6 units. The base of the prism is shown in the image. What is the volume of the prism? Round your answer to the
nearest tenth
25
The volume of the prism is
cubic units

Answers

The volume of the prism is determined as  103.0 unit³.

What is the volume of the triangular prism?

The volume of the triangular prism is calculated by applying the following formula as shown below;

V = ¹/₂bhl

where;

b is the base of the prismh is the height of the priml is the length of the prism

The base of the prism is calculated as follows;

tan 25 = 4/b

b = 4/tan (25)

b = 8.58 units

The volume of the prism is calculated as follows;

V = ¹/₂ x 8.58 x 6 x 4

V = 103.0 unit³

,

Thus, the volume of the prism is a function of its base, height and length.

Learn more about volume of prism here: https://brainly.com/question/28795033

#SPJ1

Consider the differential equation given by dy/dx = xy/3 Complete the table of values On the axes provided, sketch a slope field for the given differential equation at the 9 points on the table. Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 4

Answers

The particular solution is: ln|y| = (x^2)/6 + ln|4|, Or, alternatively: y = 4*exp((x^2)/6)

To answer your question, let's first discuss the key terms involved:

1. Differential equation: dy/dx = xy/3
2. Table of values
3. Slope field
4. Particular solution with initial condition f(0) = 4

Now let's address your question step by step:

1. We are given the first-order differential equation dy/dx = xy/3.

2. To complete the table of values, you will need to select a set of points (x,y) and calculate the corresponding slopes using the given equation. For example, if you choose the point (1,1), the slope at that point will be dy/dx = (1*1)/3 = 1/3.

3. A slope field is a graphical representation of the slopes at various points on the coordinate plane. To sketch a slope field, draw short line segments at each point in the table with the corresponding slope calculated in step 2.

4. To find the particular solution with the initial condition f(0) = 4, we need to solve the given differential equation. Separate the variables by dividing both sides by y and multiplying both sides by dx:

(dy/y) = (x/3)dx

Now, integrate both sides with respect to their respective variables:

∫(1/y)dy = ∫(x/3)dx + C

ln|y| = (x^2)/6 + C

To find the constant C, use the initial condition f(0) = 4:

ln|4| = (0^2)/6 + C => C = ln|4|

Thus, the particular solution is:

ln|y| = (x^2)/6 + ln|4|

Or, alternatively:

y = 4*exp((x^2)/6)

To learn more about equation visit;

brainly.com/question/29538993

#SPJ11

Calculate the first eight terms of the sequence of partial sums correct to four decimal places. sigma_n=1^infinity 5/n^3 Does it appear that the series is convergent or divergent? a. convergent b. divergent

Answers

The given series [tex]\sigma_n=1^\infty 5/n^3[/tex] is convergent.

How to know the series convergent or divergent?

The series given is:

Σₙ= [tex]1^\infty[/tex] 5/n³

The nth partial sum of this series is given by:

[tex]S_n = \sigma_k=1^n 5/k^3[/tex]

To calculate the first eight terms of the sequence of partial sums, we substitute n = 1, 2, 3, ..., 8 in the expression for Sₙ:

[tex]S_1[/tex] = 5/1³ = 5.0000[tex]S_2[/tex] = 5/1³ + 5/2³ = 5.6250[tex]S_3[/tex] = 5/1³ + 5/2³+ 5/3³ = 5.9583[tex]S_4[/tex] = 5/1³ + 5/2³ + 5/3³ + 5/4³ = 6.1765[tex]S_5[/tex] = 5/1³ + 5/2³ + 5/3³ + 5/4³ + 5/5³ = 6.3360[tex]S_6[/tex] = 5/1³ + 5/2³ + 5/3³ + 5/4³ + 5/5³ + 5/6³ = 6.4607[tex]S_7[/tex] = 5/1³ + 5/2³ + 5/3³ + 5/4³+ 5/5³ + 5/6³ + 5/7³= 6.5626[tex]S_8[/tex] = 5/1³ + 5/2³ + 5/3³ + 5/4³ + 5/5³ + 5/6³ + 5/7³ + 5/8³ = 6.6489

Rounding each partial sum to four decimal places, we get:

[tex]S_1[/tex]= 5.0000[tex]S_2[/tex] = 5.6250[tex]S_3[/tex] = 5.9583[tex]S_4[/tex]= 6.1765[tex]S_5[/tex] = 6.3360[tex]S_6[/tex] = 6.4607[tex]S_7[/tex] = 6.5626[tex]S_8[/tex]= 6.6489

Based on these partial sums, it appears that the series is convergent. As we compute more and more terms of the sequence of partial sums, we observe that the sums increase, but at a decreasing rate, which suggests convergence.

To show that the series is convergent, we need to show that the sequence of partial sums approaches a finite limit as n approaches infinity.

We can use the Integral Test to show that the series converges. According to the Integral Test, if the series [tex]\sigma_n=1^\infty a_n[/tex]  is a series of non-negative terms and the integral from 1 to infinity of a continuous, positive, decreasing function f(x) is finite, then the series converges.

In this case, we can use f(x) = 5/x³ as the function and integrate from 1 to infinity:

Integral from 1 to infinity of 5/x³ dx = [5/(-2x²)] from 1 to infinity

= [tex]-5/2 \lim (x- > \infty)[1/x^2 - 1/1][/tex]

= 5/2

Since the integral of f(x) is finite, the series [tex]\sigma_n=1^\infty 5/n^3[/tex] converges by the Integral Test.

Therefore, the given series is convergent, as observed from the partial sums, and the sum of the series can be found by taking the limit of the sequence of partial sums as n approaches infinity.

Learn more about convergent

brainly.com/question/15415793

#SPJ11

the numeric difference between a sample statistic and a population parameter is called: a probablity score a deviation a mean difference sampling error

Answers

The numeric difference between a sample statistic and a population parameter is called: sampling error. A sample statistic is an estimate based on a portion of the population, while the population parameter is the true value for the entire population. The difference between these two values, known as the sampling error, occurs due to the variation in samples taken from the population.

Know more about https://brainly.com/question/14362979

#SPJ11      

     

A student is studying the migration patterns of several birds. She collects the data in the table. Size of Bird (g) 3.0 Distance Traveled (km) 276 4.5 1,909 10.0 2,356 25.0 1 What conclusion can the student make?

Answers

The conclusion is that the distances bird travel is independent of their size. The Option A is correct.

What conclusion can be drawn from the data collected?

The table shows the size of each bird in grams and the distance each bird traveled in kilometers. Based on the data, the conclusion that the student can make is that the distances bird travel is independent of their size.

The data shows that the smallest bird weighing only 3.0 grams traveled a much greater distance of 276 kilometers compared to the largest bird weighing 25.0 grams which only traveled a distance of 1 kilometer.  Therefore, it is concluded that the size of a bird does not necessarily determine how far it will travel during migration.

Read more about distances

brainly.com/question/26550516

#SPJ1

what are the values of these sums, where s = {1, 3, 5, 7}? a) ∑_(j∈s) jb) ∑_(j∈s) j^2c. ∑_(j∈s) (1/j)d) ∑_(j∈s) 1

Answers

a) The sum ∑_(j∈s) j is equal to 1+3+5+7, which equals 16.
b) The sum ∑_(j∈s) j^2 is equal to 1^2+3^2+5^2+7^2, which equals 84.
c) The sum ∑_(j∈s) (1/j) is equal to 1/1+1/3+1/5+1/7, which cannot be simplified further.
d) The sum ∑_(j∈s) 1 is simply the number of elements in s, which is 4.

Given the set s = {1, 3, 5, 7}, here are the values for each sum:
a) ∑_(j∈s) j: This is the sum of all elements in the set. 1 + 3 + 5 + 7 = 16.
b) ∑_(j∈s) j^2: This is the sum of the squares of all elements in the set. 1^2 + 3^2 + 5^2 + 7^2 = 1 + 9 + 25 + 49 = 84.
c) ∑_(j∈s) (1/j): This is the sum of the reciprocals of all elements in the set. 1/1 + 1/3 + 1/5 + 1/7 ≈ 0.271 (rounded to three decimal places).
d) ∑_(j∈s) 1: This sum is asking for the sum of the number 1 repeated the same number of times as there are elements in the set. Since there are 4 elements in s, the sum is 1 + 1 + 1 + 1 = 4.

To learn more about sum, click here:

brainly.com/question/537797

#SPJ11

Give a 4 × 4 elementary matrix E which will carry out the row operation R2-3R, → R2

Answers

To create a 4x4 elementary matrix E that performs the row operation R2 - 3R1 → R2, you can follow this structure:
E = [1, 0, 0, 0]

     [-3, 1, 0, 0]
     [0, 0, 1, 0]
     [0, 0, 0, 1]

The 4 × 4 elementary matrix E that will carry out the row operation R2-3R, → R2 is:
1 0 0 0
-3 1 0 0
0 0 1 0
0 0 0 1

In this matrix, the entry in the second row and the first column is -3 because we are subtracting 3 times the first row from the second row. The other entries on the diagonal are 1 because we are not scaling those rows. The other entries in the second row are 0 because we are not adding or subtracting anything from those rows. The other entries in the matrix are also 0 because we are not modifying those rows. This matrix will perform the desired row operation when multiplied on the left of the original matrix.

Learn more about  elementary matrix:

brainly.com/question/31039102

#SPJ11

Solve the system of linear equations using row reductions or show that it is inconsistent• 3x2 + x4 - 7 • x1 * x2 + 2x3 - 4 = 12 • 3x1 + x3 + 2x4 = 12 • x1 + x2 + 5x3 = 26

Answers

x1 = 2; x2 = 3; x3 = -1; x4 = -4

We can write the system of direct equations in stoked matrix form as

(0 3 0 1|-7)

(1 0 2 0|-4)

(3 0 1 2| 12)

(1 1 5 0| 26)

To break the system using row reductions, we perform a series of abecedarian row operations to transfigure the matrix into row stratum form and also into reduced row stratum form. We aim to gain a matrix of the form

(1 * * *| *)

(0 1 * *| *)

(0 0 1 *| *)

(0 0 0 0| 1)

where the non-zero entries in the last column indicate an inconsistency.

Performing the row operations, we get

( 1 0 0 0| 2)

(0 1 0 0| 3)

(0 0 1 0|-1)

(0 0 0 1|-4)

thus, the result of the system of direct equations is

x1 = 2

x2 = 3

x3 = -1

x4 = -4

Since we've attained a unique result, the system of direct equations is harmonious.

learn more about linear equations:

https://brainly.com/question/28732353

learn more about stoked matrix:

https://brainly.com/question/14132471

Learn more about row deduction:

https://brainly.com/question/31060812

The possible answers are

A.x=0
B.x=5
C.x=2
D.x=3

Please Help​

Answers

Answer:

D: x=3

Step-by-step explanation:

evaluate the iterated integral. 2 0 2x x y 3xyz dz dy dx 0

Answers

Value of the iterated integral is 64.

How to evaluate the iterated integral.?

To make it clearer, I'll rewrite the integral using proper notation:

∫(from 0 to 2) ∫(from 0 to 2x) ∫(from 0 to y) 3xyz dz dy dx

To evaluate the iterated integral, follow these steps:

1. Evaluate the innermost integral with respect to z:

∫(from 0 to 2) ∫(from 0 to 2x) [(3xyz²)/2] (from 0 to y) dy dx

2. Plug in the limits of integration for z:

∫(from 0 to 2) ∫(from 0 to 2x) [(3xy³)/2 - 0] dy dx

3. Evaluate the next integral with respect to y:

∫(from 0 to 2) [(3x²y⁴)/8] (from 0 to 2x) dx

4. Plug in the limits of integration for y:

∫(from 0 to 2) [(3x²(2x)⁴)/8 - 0] dx

5. Simplify the expression:

∫(from 0 to 2) [(3x¹⁰)/8] dx

6. Evaluate the outermost integral with respect to x:

[(3x¹¹)/88] (from 0 to 2)

7. Plug in the limits of integration for x:

[(3(2)¹¹)/88 - (3(0)¹¹)/88]

8. Simplify the expression:

(3 * 2048) / 88 = 6144 / 88 = 64

So the value of the iterated integral is 64.

Learn more about iterated integral.

brainly.com/question/29632155

#SPJ11

Consider the expression and select all values of x

Answers

The expression [tex](x^{2} - 16)(x +2)[/tex] which meets the equation [tex](x^{2} - 16)(x +2) = 0[/tex] for x = 4, x = -4, and x = -2.

What is an expression?

In mathematics, an expression is a phrase that has at least two numbers or variables and at least one math operation. Addition, subtraction, multiplication, or division are all examples of math operations. An expression's structure is as follows: (Number/variable, Math Operator, Number/variable) is an expression.

When either the factor ([tex]x^{2}[/tex] - 16) or the factor (x + 2) is equal to zero, or both are equal to zero, the equation[tex](x^{2} - 16)(x + 2) = 0[/tex] is satisfied.

As a result, we must answer the following two equations:

[tex]x^{2}[/tex] - 16 = 0  and x + 2 = 0

To begin, we solve the equation x2 - 16 = 0:

[tex]x^{2}[/tex] - 16 = 0

(x - 4)(x + 4) = 0

x -4 = 0 or x + 4 = 0

x = 4 and x = -4

The equation x + 2 = 0 is then solved:

x + 2 = 0

x = -2

As a result, the x values that meet the equation ([tex]x^{2}[/tex] - 16)(x + 2) = 0 are:

x = 4, x = -4, and x = -2.

Learn more about equations here:

https://brainly.com/question/29538993

#SPJ1

son 9.2
Find the surface area of the prism.
11.
10.
3 in.
6 in.
8 yd
2 in.
-3.5 cm
10 cm
5 ft
5 ft
Find the surface area of the cylinder. Round your answer to the
nearest whole number.
13.
-2 yd
14.
5 ft
16. A soup can is shown below. Find the surface area of the can.
Round your answer to the nearest whole number.
12.
9 cm
15.
15 cm
12 cm
3 mm
12 mm
3 cm

Answers

In order to calculate the surface area of a prism, it is necessary to sum up the areas of all its sides. One can obtain this number by using the ensuing formula:

Surface Area = 2B + Ph

What does the variables represent?

The value B represents the area of the base of the prism, P refers to the perimeter, and h pertains to its height. To find the amount of space on the outside of a cylinder, one needs to add up the areas of its curved exterior, along with both circular tops.

The following method may be employed for such a computational process:

Surface Area = 2πr² + 2πrh

In this context, r indicates the radius of the circular foundation, whereas h denotes its altitude measurement.

Learn more about area on

https://brainly.com/question/25292087

#SPJ1

determine whether the sequence converges or diverges. if it converges, find the limit. (if the sequence diverges, enter diverges.) a_n = n^4 n^3 − 9nlim n→[infinity] a_n = ____

Answers

In this case, the highest degree term is n^7 in the numerator and n^3 in the denominator. Therefore, as n approaches infinity, the sequence grows without bound and diverges. So the answer is "diverges".

To determine if the sequence converges or diverges and find the limit, we'll analyze the given sequence a_n = n^4 / (n^3 - 9n).
Step 1: Identify the highest power of n in both the numerator and the denominator. In this case, it's n^4 in the numerator and n^3 in the denominator.
Step 2: Divide both the numerator and the denominator by the highest power of n found in the denominator, which is n^3.
a_n = (n^4 / n^3) / ((n^3 - 9n) / n^3)
Step 3: Simplify the expression.
a_n = (n) / (1 - (9/n^2))
Step 4: Take the limit as n approaches infinity.
lim n→∞ a_n = lim n→∞ (n) / (1 - (9/n^2))
As n approaches infinity, the term (9/n^2) approaches 0 since the denominator grows much faster than the numerator.
lim n→∞ a_n = lim n→∞ (n) / (1 - 0)
Step 5: Evaluate the limit.
lim n→∞ a_n = ∞

Since the limit goes to infinity, the sequence diverges. Therefore, the answer is "diverges." To determine whether the sequence converges or diverges, we can look at the highest degree term in the numerator and denominator.

Learn more about numerators here: brainly.com/question/7067665

#SPJ11

debbie's bakery has a plan for a 50 ft by 31 ft parking lot. the four parking spaces are congruent parallelograms, the driving region is a rectangle and the two unpaved areas for flowers are congruent triangles.a) find the area of the surface to be paved by adding the areas of the driving region and the four parking spaces. b) find the toal area of the flower gardens.

Answers

The total area of the flower gardens is x(31 - 2x)/2 sq.ft.

(a) The area of the driving region is the area of a rectangle with length 50 ft and width 31 - 2x ft, where x is the length of one side of a parking space.

Since the parking spaces are congruent parallelograms, they can be divided into two congruent right triangles.

The base of each right triangle is x ft, the height is half of the width of the driving region, which is (31 - 2x)/2 ft.

The area of each parking space is the sum of the areas of the two congruent right triangles.

Therefore,

The total area of the surface to be paved is:

Area = Area of driving region + 4(Area of parking space)

= (50 ft) x (31 - 2x ft) + 4[2(x/2 ft) x ((31 - 2x)/2 ft)]

= 1550 - 100x + 2x(31 - 2x)

= 4[tex]x^2[/tex] - 100x + 1550 sq.ft.

(b) The unpaved areas for flowers are congruent triangles each with base x ft and height (31 - 2x)/2 ft.

Therefore,

The total area of the flower gardens is:

Area = 2(Area of one triangle)

= 2[(x ft) x ((31 - 2x)/2 ft)/2]

= x(31 - 2x)/2 sq.ft.

The factor of 2 in the formula.

For similar question on total area:

https://brainly.com/question/7101071

#SPJ11

pls pls PLS help asap id rlly appreciate it tysm. and no links pls

Answers

Answer:

  (a)  4a³

Step-by-step explanation:

You want the a³ term in the product of the two given polynomials.

Product

The bottom line in the "vertical method" multiplication table shown is the sum of the partial-product expressions in the column above the bottom line:

  B = 12a³ -6a³ -2a³ = (12 -6 -2)a³

  B = 4a³

__

Additional comment

The value of A can be found a couple of ways.

You can find the partial product of the 1st-degree terms in each of the polynomials: (-2a)(-2a) = 4a².

Or you can find the value of A that is required to give the bottom-line result that is shown:

  9a² +A +a² = 14a²

  A = 14a² -10a²

  A = 4a²

Multiplying polynomials is substantially equivalent to multiplying multi-digit numbers. The difference is that there is no carry from one column to the next when you compute the partial products or the final sum.

Find the output for the graph
y = 12x - 8
when the input value is 2.
y = [?]

Answers

The output for the graph when the input value is 2 is 24.

What is graph?

Graph is a data structure consisting of vertices (nodes) connected by edges (lines). Graphs are used to represent data in a wide variety of applications, including social networks, routing, scheduling, and data visualization. It can be used to model relationships between people, objects, and other entities. Graphs can also be used to represent abstract data such as the flow of control in a program or the flow of data in a computer network. Graphs can be directed or undirected, weighted or unweighted, and labeled or unlabeled. Graphs are an important tool in computer science, mathematics, and many other disciplines.

The output for the graph when the input value is 2 is y = 24. This can be calculated using the equation y = 12x - 8, where x is the input value.

To calculate the output, we will substitute the input value of 2 into the equation. This gives us the equation 12(2) - 8 = 24. Simplifying the equation gives us y = 24. Therefore, the output for the graph when the input value is 2 is 24.

To know more about graph click-
http://brainly.com/question/19040584
#SPJ1

Suppose that x and y vary inversely, and x=3 when y=8. Write the function that models the inverse variation.

Answers

So when x = 6 , y = 4.

Given

x=3 when y=8

To Find

The function that models the inverse variation.

Solution

if  x and y vary inversely, we can use the formula:

xy = k

where k is a constant. We can solve for k using the initial condition x = 3 when y = 8:

3(8) = k

k = 24

So the equation that models the inverse variation is:

xy = 24

We can use this equation to find the value of y for a given value of x, or the value of x for a given value of y. For example, if we want to find y when x = 6:

(6)y = 24

y = 4

So when x = 6, y = 4

Learn more about direct and inverse variation here:

brainly.com/question/4386945

.

john plays basketball 3 out of the 7 days of the week. how many possible schedules are there to play basketball on wednesday or friday or both.

Answers

In 5 possible schedules, John can play basketball on Wednesday or Friday or both.

There are two possible scenarios:


1) John plays basketball on Wednesday only or Friday only, but not both.
- If John plays basketball on Wednesday, he has 2 options left to play on Friday (either play or not play), so there are 2 possibilities.
- If John plays basketball on Friday, he has 2 options left to play on Wednesday, so there are 2 possibilities.
Therefore, there are a total of 2+2=4 possibilities for playing basketball on either Wednesday or Friday, but not both.

2) John plays basketball on both Wednesday and Friday.

In this case, there are only 1 possibility.
So, the total number of possible schedules to play basketball on Wednesday or Friday or both is 4+1=5.

Learn more about possibility curve : https://brainly.com/question/26460726

#SPJ11

In 5 possible schedules, John can play basketball on Wednesday or Friday or both.

There are two possible scenarios:


1) John plays basketball on Wednesday only or Friday only, but not both.
- If John plays basketball on Wednesday, he has 2 options left to play on Friday (either play or not play), so there are 2 possibilities.
- If John plays basketball on Friday, he has 2 options left to play on Wednesday, so there are 2 possibilities.
Therefore, there are a total of 2+2=4 possibilities for playing basketball on either Wednesday or Friday, but not both.

2) John plays basketball on both Wednesday and Friday.

In this case, there are only 1 possibility.
So, the total number of possible schedules to play basketball on Wednesday or Friday or both is 4+1=5.

Learn more about possibility curve : https://brainly.com/question/26460726

#SPJ11

The area of a circle is 9л cm². What is the circumference, in centimeters?
Express your answer in terms of pi.

Answers

Answer: 6π cm

Step-by-step explanation:

The formula for the area of a circle is:

A = πr²

where A is the area and r is the radius.

Given that the area of the circle is 9π cm², we can solve for the radius as follows:

9π = πr²

Dividing both sides by π, we get:

r² = 9

Taking the square root of both sides, we get:

r = 3

Therefore, the radius of the circle is 3 cm.

The formula for the circumference of a circle is:

C = 2πr

Substituting the value of r, we get:

C = 2π(3) = 6π

Therefore, the circumference of the circle is 6π cm.

please help!! i’ll mark brainliest

Answers

Answer:

id go 48 The circumference is 16π cm, about 50.27 cm.

Step-by-step explanation:

diameter: 16 cm

circumference: 16π cm ≈ 50.27 cm

Step-by-step explanation:

The diameter is twice the radius:

 d = 2r = 2(8 cm)

 d = 16 cm

The diameter is 16 cm.

__

The circumference is pi times the diameter.

 C = πd

 C = π(16 cm)

 C = 16π cm ≈ 50.27 cm

Other Questions
Contrast el nivel morfosintctico de una conversacin . recall the experiment you did in the first general chemistry lab. how did we measure the heat of a reaction? Dinner PartyYou have invited 8 friends to a diner party, and have requested that they let you know their food preference as vegetarian or non-vegetarian. A vegetarian dish cost 30 dollars and a non-vegetarian dish cost 25 dollars. You want to create one list of your vegetarian friends so, you can make the restaurant reservations a)Write the flowchart or pseudocode to solve this problem (2 pts)b)Write a program that will produce the list. For example, your list could be (2 pts)Mary Jones vegetarianMargaret WilsonvegetarianJorge Harrisvegetarianc) The program must determine the number of vegetarian friends in the list and the total cost of the meal for the 8 friends (1 pt.) Find the area of the circle. Round your answer to the nearest tenth. Use 3.14 or 22area: aboutmm9 mmfor . calculate the mass of the sun what are the differences between modernist, symbolic-interpretive, and postmodern view of a manager's role If the ratio of the rate of diffusion of two gases is 1:3, then what is the ratio of the molecular weight? 17.44 predict the product of the following reaction and propose a mechanism for its formation: na, ch3oh Choose the best description and example of the null hypothesis in a hypothesis test.A statistical hypothesis that there is no difference between a parameter and a specific value, or between two Oparameters. Example: H, -67A statistical hypothesis that there is a difference between a parameter and a specific value, or between two parameters. Example: Hou#90A statistical hypothesis that there is no difference between a parameter and a specific value, or between two parameters. Example: Hou - 90A statistical hypothesis that there is no difference between a parameter and zero, or that the difference between two parameters is zero. Example: How=0 Cruise performance_ following data apply to turbojet aircraft: Cp = 0.02 0057C2 Initial weight 6000 Ib S =184f TSFC c = [.2S/hat sea level Find the range for this jet at 30,000 ft if the pilot is flying for max range and has [000 Ib of fuel available: As a result of the ruling in the Bakke v. Regents of the University of California (1978) Supreme Court case, universities could consider ____ as a factor in admissions decisions.a. sexual orientationb. racec. religious afflilationd. income Which statement correctly explains the difference in structure between these two excerpts? where in the campaign creation process do you specify creative? If other factors are held constant, both the mean and standard deviation for the binomial distribution increase as the sample size increases. True or false? What is neccesary to clean vent hood filter what is the speed of a 10 g bullet that, when fired into a 12 kg stationary wood block, causes the block to slide 4.2 cm across a wood table? assume that k = 0.20. help!write an equation in point slope form Parker runs the net start svsvc command at a Command Prompt to scan volume errors. He finds a corrupted spot on a volume. How can Parker directly go to the corrupted spot identified by the Spot Verifier service? a) By using the /r option with the chkdsk command b) By using the /spotfix option with the chkdsk command c) By using the /c option with the chkdsk command d) By using the /x option with the chkdsk command Let r(t) = ti+t^2j + 2tk The tangential component of acceleration is a. aT = 2/t^2+5 b. aT = 4/t^2+5 c. aT = 4t/4t^2+5 d. aT = 2t/4t^2+5 e. aT=t/4t^2 +5 A piece of manufacturing equipment has annual maintenance and operations costs of $18,000 and requires a $90,000 overhaul every 5 years. The EUAC of the equipment at an MARR of 12% is most nearly: $72.000 $36.000 $43.000 $108,000