The increase in body temperature would be 3.5 °C
Mass of jogger - 65 kg
Heat generated - 8.0*10⁵ J
Increase in body temperature can be calculated by the following formula - Q = m*c*∆t, where Q is heat, m is mass of body, c is specific heat capacity and ∆t is change in temperature.
Specific heat capacity of human body = 3500 J/kg °C.
Keeping the values in equation-
∆t = Q/m*c
∆t = 8*10⁵/(65*3500)
∆t = 3.5 °C
Therefore, the increase in body temperature would be 3.5 °C.
To know more about heat capacity here:
https://brainly.com/question/15267055#
#SPJ11
The melting point of a substance is between 300-500°C if it melts in a hot water bath it melts in a test tube heated with the Bunsen burner before the glass glows o it melts in a test tube heated with the Bunsen burner after the glass glows prologued heating with the Bunsen burner does not cause it to melt QUESTION 9 The melting point of ionic compounds is __ whereas solid molecular compounds melt ___ 300°C. low; above high; below low; below high; above QUESTION 10 Molecular compounds are to be soluble in water compared to ionic compounds . less likely Click Save and submit to save and submit. Click Save All Answers to save all answers.
QUESTION 9: The melting point of ionic compounds is high, whereas solid molecular compounds melt below 300°C. So, the correct option is "high; below."
QUESTION 10: Molecular compounds are less likely to be soluble in water compared to ionic compounds.
The melting point of ionic compounds is high, whereas solid molecular compounds melt below 300°C.
Because dispersion forces and the other van der Waals forces increase with the number of atoms, large molecules are generally less volatile, and have higher melting points than smaller ones.
Molecular compounds are less likely to be soluble in water compared to ionic compounds.
In water, the electrostatic forces of attraction between oppositely charged ions are overcome, allowing the ions to dissociate and dissolve whereas molecular compounds can not do so.
Know more about melting point - brainly.com/question/40140
#SPJ11
calculate the ph of a 1.0 m nano2 solution and a 1.0m hno2 solution
The pH of a 1.0 M NaNO2 solution is approximately 10.7.
To calculate the pH of a solution, we need to know the concentration of hydrogen ions (H+) in the solution. For the first solution, NaNO2 dissociates in water to form Na+ and NO2- ions, but it does not directly produce H+ ions. However, NO2- can react with water to form HNO2 and OH- ions, and HNO2 can then dissociate to produce H+ and NO2- ions. The net reaction is:
NO2- + H2O ↔ HNO2 + OH-
HNO2 ↔ H+ + NO2-
The equilibrium constant for the first reaction is the base dissociation constant (Kb) for NO2-, and the equilibrium constant for the second reaction is the acid dissociation constant (Ka) for HNO2. The values of these constants can be looked up in a table or calculated from thermodynamic data.
For NaNO2, we can assume that NO2- is the only significant basic species in solution, so we can use Kb to calculate the concentration of OH- ions, and then use the ion product of water (Kw = 1.0 x 10^-14) to calculate the concentration of H+ ions:
Kb = [HNO2][OH-] / [NO2-]
Assuming that [NO2-] = [OH-], we can simplify this equation to:
Kb = [HNO2][OH-] / [OH-]^2
Kb = [HNO2] / [OH-]
[OH-] = Kb * [NO2-] = 4.5 x 10^-4 M (assuming a Kb value of 4.5 x 10^-4 for NO2-)
[H+] = Kw / [OH-] = 2.2 x 10^-11 M
pH = -log[H+] = 10.7
Therefore, the pH of a 1.0 M NaNO2 solution is approximately 10.7.
Visit to know more about pH:-
brainly.com/question/172153
#SPJ11
A silver rod and a standard hydrogen electrode (SHE) are dipped into a saturated aqueous solution of silver oxalate, Ag,CO. at 25°C. The measured potential difference between the rod and SHE IS 0.589V. with the rod being positive. In this problem you will use this voltage to determine K for Ag C 0. Write the overall net reaction that would occur in this cell under standard state conditions and determine cell. Determine the number of electrons transferred in the net reaction. Determine Ag] in the half-cell containing the saturated solution of Ag2C 04, and then determine Ksp
The overall net reaction that occurs in this cell can be written as:
Ag2C2O4(s) + 2e- -> 2Ag(s) + 2C2O4^2-(aq)
The number of electrons transferred in the net reaction is 2.
Ag] in the half-cell containing the saturated solution of Ag2C 04 is [Ag+] = sqrt(Ksp) and Ksp = [Ag+]^2 = e^(1.66x10^-3)^2 = 1.09 x 10^-5
The cell potential, Ecell, can be calculated using the Nernst equation:
Ecell = E°cell - (RT/nF)lnQ
where E°cell is the standard cell potential, R is the gas electrons, T is the temperature in Kelvin, n is the number of electrons transferred in the net reaction, F is electrons constant, and Q is the reaction quotient.
Under standard state conditions, Q = K, and Ecell = E°cell. Therefore, we can use the measured potential difference between the rod and SHE to determine Ecell:
Ecell = 0.589 V
The standard potential of the SHE is defined to be 0 V, so the standard cell potential, E°cell, is:
E°cell = Ecell + E°SHE = 0.589 V + 0 V = 0.589 V
The number of electrons transferred in the net reaction is 2.
The concentration of Ag+ in the half-cell containing the saturated solution of Ag2C2O4 can be determined from the Nernst equation:
Ecell = E°cell - (RT/nF)lnQ
0.589 V = 0.46 V - (RT/2F)ln[Ag+]^2/[C2O4^2-]
ln[Ag+]^2/[C2O4^2-] = (0.589 V - 0.46 V) x (2F/RT)
ln[Ag+]^2/[C2O4^2-] = 1.66 x 10^-3
[Ag+]^2/[C2O4^2-] = e^1.66x10^-3
[Ag+] = sqrt(Ksp)
where Ksp is the solubility product constant for Ag2C2O4. Therefore, we can calculate Ksp as:
Ksp = [Ag+]^2 = e^(1.66x10^-3)^2 = 1.09 x 10^-5
For more such questions on electrons
https://brainly.com/question/860094
#SPJ11
Calculate the pressure of 1.00 mol of nitrogen gas at 7.50 L and O C using the van der Waals equation. 0.95 atm O 1.97 atm 2.97 atm 3.25 atm O 0.67 atm
The pressure of 1.00 mol of nitrogen gas at 7.50 L and 0°C using the van der Waals equation is 2.97 atm.
To calculate the pressure of 1.00 mol of nitrogen gas at 7.50 L and 0°C using the van der Waals equation, we'll first need the van der Waals constants for nitrogen (a and b) and convert the temperature to Kelvin.
For nitrogen:
a = 1.39 L²atm/mol²
b = 0.0391 L/mol
T = 0°C = 273.15 K
The van der Waals equation is:
[P + a(n/V)²](V - nb) = nRT
where:
P = pressure
n = moles of gas (1.00 mol)
V = volume (7.50 L)
R = gas constant (0.0821 L atm / K mol)
T = temperature (273.15 K)
Plug in the values:
[P + (1.39)(1/7.50)²](7.50 - (0.0391)(1)) = (1)(0.0821)(273.15)
Solve for P:
[P + 0.0248](7.4609) = 22.416
Divide both sides by 7.4609:
P + 0.0248 = 3.0027
Subtract 0.0248 from both sides:
P = 2.9779 atm
The closest answer from the given options is 2.97 atm.
Learn more about van der Waals equation here: https://brainly.com/question/29280050
#SPJ11
The pressure of 1.00 mol of nitrogen gas at 7.50 L and 0°C using the van der Waals equation is 2.97 atm.
To calculate the pressure of 1.00 mol of nitrogen gas at 7.50 L and 0°C using the van der Waals equation, we'll first need the van der Waals constants for nitrogen (a and b) and convert the temperature to Kelvin.
For nitrogen:
a = 1.39 L²atm/mol²
b = 0.0391 L/mol
T = 0°C = 273.15 K
The van der Waals equation is:
[P + a(n/V)²](V - nb) = nRT
where:
P = pressure
n = moles of gas (1.00 mol)
V = volume (7.50 L)
R = gas constant (0.0821 L atm / K mol)
T = temperature (273.15 K)
Plug in the values:
[P + (1.39)(1/7.50)²](7.50 - (0.0391)(1)) = (1)(0.0821)(273.15)
Solve for P:
[P + 0.0248](7.4609) = 22.416
Divide both sides by 7.4609:
P + 0.0248 = 3.0027
Subtract 0.0248 from both sides:
P = 2.9779 atm
The closest answer from the given options is 2.97 atm.
Learn more about van der Waals equation here: https://brainly.com/question/29280050
#SPJ11
calculate the percent ionization of hydrazoic acid (hn3) in a 0.100 m solution. (ka values are given in appendix d of your book or online)
The percent ionization of hydrazoic acid (HN3) in a 0.100 M solution is 4.36%.
To calculate the percent ionization of hydrazoic acid (HN3) in a 0.100 M solution, we first need to determine the Ka value for the acid. According to Appendix D in most general chemistry textbooks, the Ka value for HN3 is 1.9 x 10^-5.
Next, we can set up the equilibrium equation for the ionization of HN3:
HN3 + H2O ⇌ H3O+ + N3-
We can assume that the initial concentration of HN3 is equal to 0.100 M, and since the acid is monoprotic, the initial concentration of H3O+ and N3- ions is 0. Therefore, at equilibrium, we can assume that x moles of HN3 have ionized to form x moles of H3O+ and N3- ions.
Using the Ka expression for HN3, we can write:
Ka = [H3O+][N3-] / [HN3]
1.9 x 10^-5 = x^2 / (0.100 - x)
Solving for x, we get x = 0.00436 M. This represents the concentration of H3O+ and N3- ions at equilibrium.
To calculate the percent ionization, we can use the formula:
% ionization = (moles of H3O+ formed / initial moles of HN3) x 100
Since we assumed that x moles of HN3 ionized to form x moles of H3O+ and N3- ions, we can say that moles of H3O+ formed = x. The initial moles of HN3 is equal to the initial concentration times the volume of the solution (assuming a volume of 1 L):
initial moles of HN3 = 0.100 M x 1 L = 0.100 moles
Therefore, % ionization = (0.00436 moles / 0.100 moles) x 100 = 4.36%.
Find out more about hydrazoic acid (HN3)
brainly.com/question/31384917
#SPJ11
select all the test reagents used in the qualitative analysis group i scheme- nitric acid- hot water- silver ammonia complex- silver ions- lead(II) iodide
- lead(II) chloride
- ammonia- hydrochloric acid
- ammonium nitrate
- silver chloride
- potassium iodide
- silver iodide
- lead(II) ions
The test reagents involved in the Group I scheme are nitric acid, silver ions (from silver nitrate), hydrochloric acid, ammonia, and potassium iodide.
The test reagents used in the qualitative analysis Group I scheme, the following reagents are involved:
1. Nitric acid (HNO₃): It is used to acidify the solution and ensure the presence of a common anion for precipitation.
2. Silver ions (Ag⁺): These ions are introduced by adding a silver nitrate solution (AgNO₃) to the test solution.
3. Hydrochloric acid (HCl): It is used as a source of chloride ions (Cl⁻) for the precipitation of Group I cations as their respective chlorides.
4. Ammonia (NH₃): It is used to dissolve silver chloride and form the silver ammonia complex ([Ag(NH₃)₂]⁺).
5. Potassium iodide (KI): It is used to confirm the presence of lead(II) ions by forming the yellow precipitate of lead(II) iodide (PbI₂).
learn more about nitric acid Refer: https://brainly.com/question/26015251
#SPJ11
Number of O atoms in 6.25x10^-3 mol Al(NO3)3 - Express the amount in atoms to three significant digits.
The number of O atoms in 6.25 x 10⁻³ mol Al(NO₃)₃ is 3.38 x 10²² oxygen atoms.
To find the number of O atoms in 6.25 x 10⁻³ mol Al(NO₃)₃, you need to consider the following steps:
1. Determine the number of O atoms in one formula unit of Al(NO₃)₃. There are three NO₃ groups, each containing 3 O atoms, so there are 3 x 3 = 9 O atoms in one formula unit.
2. Use Avogadro's number (6.022 x 10²³ atoms/mol) to convert moles of Al(NO₃)₃ to atoms.
Now, you can calculate the total number of O atoms:
(6.25 x 10⁻³ mol Al(NO₃)₃) x (9 O atoms/formula unit) x (6.022 x 10²³ atoms/mol)
This gives you approximately 3.38 x 10²² O atoms.
So, there are 3.38 x 10²² oxygen atoms in 6.25 x 10⁻³ mol Al(NO₃)₃, expressed to three significant digits.
Learn more about oxygen atoms: https://brainly.com/question/29695801
#SPJ11
Radium-226 undergoes alpha decay. What will be the products of this nuclear reaction? Explain.
When Radium-226 undergoes alpha decay an alpha particle (that is a double positively charged helium ion) and radon-222 are produced as products.
Why are radon-222 and a double positively charged helium produced?When Radium-226 undergoes an alpha decay, it emits an alpha particle which comprises two protons and two neutrons that is equivalent to a helium nucleus. Owing to this nuclear reaction is the formation of a new atom with a mass number that is four units less than that of the original atom here, radium-226, and an atomic number that is two units less than that of the original radium-226.
The balanced chemical reaction for the radioactive decay of radium-226 is:
²²⁶₈₈Ra → ²²²₈₆Rn + ⁴₂He²⁺ + 2e⁻
Masses of the reactants and products are always conserved in any given chemical reaction and so the production of radon-222 must be accompanied by the production of helium ion to balance the masses on both sides.
Learn more about radioactive decay here:
https://brainly.com/question/1770619
#SPJ1
Classify each of the following molecules as polar or nonpolar. Drag the items into the appropriate bins. 1. CH_3OH 2. CH_2Cl_2 3. CO_2 4. H_2CO
Molecular polarity is determined by the distribution of electrons in the molecule, which determines the polarity of bonds and the shape of the molecule. To classify each of the given molecules as polar or nonpolar, we need to look at the molecular geometry and polarity of each atom in the molecule.
CH3OH (methanol) is polar because it has a partial negative charge on the oxygen atom and partial positive charges on the hydrogen atoms.
CH2Cl2 (dichloromethane) is also polar because it has a dipole moment due to the electronegativity difference between carbon, hydrogen, and chlorine atoms.
CO2 (carbon dioxide) is nonpolar because it has a linear molecular geometry and the same electronegativity between carbon and oxygen atoms, which leads to the cancellation of dipole moments.
H2CO (formaldehyde) is polar due to the unequal sharing of electrons between carbon and oxygen atoms, causing partial charges on each atom.
To know more about Molecular polarity refer here:
https://brainly.com/question/29869649#
#SPJ11
Consider two charges QA and QB separated by a distance d along a straight line as shown below. For each of the following cases, where will the electric field be equal to zero? Is it: to the left of QA , between QA and QB, or to the right of QB ?
(a) QA = +2q and QB = +3q
(b) QA = -2q and QB = +3q
(c) QA = -2q and QB = -3q
For case (a), QA = +2q and QB = +3q the electric field will be equal to zero at a point between QA and QB.
This is because the electric fields produced by the two charges are in opposite directions and will cancel out at a point between them. To the left of QA or to the right of QB, the electric field will not be zero.
For case (b), the electric field will also be equal to zero at a point between QA and QB. This is because the direction of the electric field produced by QA is opposite to that produced by QB, and they will cancel out at a point between them. Again, to the left of QA or to the right of QB, the electric field will not be zero.
For case (c), the electric field will be zero at a point to the left of QA and to the right of QB. This is because the charges have the same sign and produce electric fields that are in the same direction. At a certain point, the two electric fields will cancel out, resulting in a zero net electric field.
To learn more about electric field https://brainly.com/question/19878202
#SPJ11
Calculate the molar solubility of AgCl in 1.0 M NH3. Ksp for AgCl is 1.8×10−10; Kf for Ag(NH3)2+ ion is 1.7×107
The molar solubility of AgCl in 1.0 M NH3 is 1.3×10^-4 M.
How to calculate the molar solubility?To calculate the molar solubility of AgCl in 1.0 M NH3, we can use the concept of complex ion formation and the formation constant (Kf) for Ag(NH3)2+ ion.
1. Write the dissolution reaction of AgCl:
AgCl (s) ⇌ Ag+ (aq) + Cl- (aq)
2. Write the complexation reaction between Ag+ and NH3:
Ag+ (aq) + 2NH3 (aq) ⇌ Ag(NH3)2+ (aq)
3. Use the given Ksp for AgCl and Kf for Ag(NH3)2+ ion:
Ksp = 1.8 × 10^(-10)
Kf = 1.7 × 10^7
4. Calculate the equilibrium constant for the combined reaction:
Ksp = [Ag+][Cl-] = x^2
Kf = [Ag(NH3)2+]/[Ag+][NH3]^2 = 1.7×10^7
5. Let x be the molar solubility of AgCl:
AgCl (s) ⇌ Ag+ (aq) + Cl- (aq) [x][x]
Ag+ (aq) + 2NH3 (aq) ⇌ Ag(NH3)2+ (aq) [x][1.0-2x]^2
6. Apply the equilibrium constant expression:
[Ag(NH3)2+] = Kf[Ag+][NH3]^2 = 1.7×10^7 x^3
7. Substitute the concentrations and solve for x:
Ksp = x^2 = [Ag+][Cl-] = [Ag(NH3)2+][Cl-] = [Cl-][Ag+][NH3]^2
x^2 = (1.7×10^7 x^3)(1.0 M)
x = √(1.7×10^-7) = 1.3×10^-4 M
To know more about Molar Solubility:
https://brainly.com/question/15080354
#SPJ11
A cylinder has a base radius of 8 meters and a height of 19 meters. What is its volume
in cubic meters, to the nearest tenths place?
Answer: 3,821.2 cubic meters (rounded to the nearest tenths place)
Explanation:
The formula for the volume of a cylinder is given by πr^2h, where r is the radius of the base and h is the height of the cylinder.
Substituting the given values into the formula, we get:
Volume = 3.14 x 8^2 x 19
Volume = 3.14 x 64 x 19
Volume = 3,821.12
Rounding this to the nearest tenths place, we get:
Volume = 3,821.2 cubic meters
Therefore, the volume of the cylinder to the nearest tenths place is 3,821.2 cubic meters.
Answer:
Explanation:
The volume of a cylinder is given by the formula V = πr²h, where r is the radius of the base and h is the height. By substituting the given values, we have:
V = π × 8² × 19
V ≈ 3,041.6 m³
The volume of the cylinder is therefore approximately 3,041.6 m³, rounded to the nearest tenth.
(2)
if the sample of chips used to make the filtrate weighed 94.0 g how much NaCl is present in one serving (115g) of chips
To determine the amount of NaCl present in one serving (115g) of chips, you first need to calculate the proportion of NaCl in the 94.0g sample used to make the filtrate.
Let's assume "x" represents the amount of NaCl in the 94.0g sample. Next, set up a proportion with the known values:
x (amount of NaCl) / 94.0g (sample weight) = y (amount of NaCl in one serving) / 115g (serving size)
Once you have the proportion, you can solve for "y" to find the amount of NaCl in one serving of chips. However, without knowing the amount of NaCl (x) in the 94.0g sample, it's not possible to calculate the exact amount of NaCl in a 115g serving.
Learn more about NaCl here:
https://brainly.com/question/18248731
#SPJ11
Please help me! I am offering brainliest AND 50 points!
Answer:
a sonar device send out sounds and measures the time it takes to hear the echo
Explanation:
Answer:a sonar device send out sounds and measures the time it takes to hear the echo
Explanation:
Arrange the following isoelectronic series in order of increasing atomic radius: Se2−, Sr2+, As3−, Rb+, Br−.
The isoelectronic series of Se²⁻, Sr²⁺, As³⁻, Rb⁺, and Br⁻ can be arranged in order of increasing atomic radius, starting with Se2− and ending with Br−.
Isoelectronic series is a term which refers to a group of atoms or ions which have the same electron configuration. These atoms and ions have the same number of electrons, but different numbers of protons. As such, they possess the same electron configuration, but different atomic radii.
Se²⁻, has the smallest atomic radius, due to its high nuclear charge and low electron count. Sr²⁺ has a slightly larger atomic radius than Se²⁻, owing to its lower nuclear charge and slightly higher electron count. As³⁻ has an even larger atomic radius, as its nuclear charge is lower than Sr²⁺, and its electron count is higher.
Rb⁺ has an even larger atomic radius than As³⁻, due to its lower nuclear charge and higher electron count. Finally, Br⁻ has the largest atomic radius of the series, as it has the highest electron count and the lowest nuclear charge.
Know more about isoelectronic series here
https://brainly.com/question/30808153#
#SPJ11
48) Jada measured the masses of a small amount of baking soda and a small amount
of vinegar. She mixed the baking soda and vinegar together in a large graduated
cylinder. She observed that bubbles formed in the mixture. When the bubbles
stopped forming, she measured the mass of the cylinder's contents. She found that
this mass was less than the combined mass of the baking soda and vinegar before
mixing. She concluded that a gas had formed and escaped into the air. Which of
the following statements best defends Jada's conclusion?
F. Mass is always conserved when substances undergo a chemical change.
G. Energy is always conserved when substances undergo a chemical change.
H. Solids are always destroyed when substances undergo a physical change.
I. Gases are always produced when substances undergo a chemical change.
The statement that best defends Jada's conclusion is:
I. Gases are always produced when the substances undergo the chemical change.
When substances undergo a chemical change, their atoms are rearranged into new compounds with different properties. In some cases, the chemical reaction can produce a gas as one of the products. This gas may escape into the surrounding environment and cannot be accounted for in the measurement of the final mass of the mixture.
Statements F and G are both related to the conservation laws of mass and energy, respectively, and while important in chemistry, they do not directly address the observation of gas production in this experiment.
Statement H is incorrect because solids can undergo physical changes, such as melting or evaporating, without being destroyed.
Therefore, statement I is the most appropriate explanation for the observation made by Jada, and it best defends her conclusion that a gas was produced and escaped into the air during the chemical reaction between baking soda and vinegar.
Learn more about Baking soda at
brainly.com/question/29771586
#SPJ1
DHA (4,7,10,13,16,19-docosahexaenoic acid) is a common fatty acid present in tuna fish oil. (a) Draw a skeletal structure for DHA. (b) Give the omega-n designation for DHA. CH,CH_CHECHCH2CH=CHCH2CH=CHCH,CH=CHCH,CH=CHCH,CH=CHCH,CH,COOH DHA draw structure...
(a) The skeletal structure for DHA: CH₃-(CH₂)₄-CH=CH-(CH₂)₂-CH=CH-(CH₂)₄-CH=CH-(CH₂)₂-CH=CH-(CH₂)₃-(CH₂)COOH
(b) The omega-n designation for DHA is omega-3, as the first double bond is located at the third carbon from the omega end (the methyl end) of the fatty acid chain.
Let us discuss this in detail.
(a) To draw a skeletal structure for DHA (4,7,10,13,16,19-docosahexaenoic acid), follow these steps:
1. Begin with a 22-carbon chain (since it is docosahexaenoic acid).
2. Add a carboxyl group (COOH) at one end of the carbon chain.
3. Add double bonds at the 4th, 7th, 10th, 13th, 16th, and 19th carbons, counting from the carboxyl end.
4. Fill in the remaining single bonds with hydrogen atoms.
(b) The omega-n designation for DHA is "omega-3." This is because the first double bond is located three carbons away from the end of the carbon chain opposite the carboxyl group.
In summary, DHA is a common fatty acid present in tuna fish oil with the skeletal structure as described in step (a), and its omega-n designation is omega-3.
Learn more about DHA at https://brainly.com/question/14985632
#SPJ11
calculate the acid dissociation constant ka of hydrocyanic acid (hcn) at 25.0c is 4.9x10^-10
The acid dissociation constant (Ka) is a measure of the strength of an acid. For hydrocyanic acid (HCN) at 25°C, the Ka is 4.9 x 10^-10. This means that at equilibrium, only a small fraction.
of HCN molecules dissociate into H+ ions and CN- ions. The Ka value can be calculated using the equation Ka = [H+][CN-]/[HCN], where [H+], [CN-], and [HCN] are the molar concentrations of the respective species at equilibrium. The pKa, which is the negative logarithm of The acid dissociation constant (Ka) is a measure of the strength of an acid. For hydrocyanic acid the Ka value, is a commonly used measure of acid strength. For HCN, the pKa is 9.31, indicating that it is a weak acid. the acid dissociation constant ka of hydrocyanic acid (hcn) at 25.0c is 4.9x10^-10.
Learn more about acid here:
https://brainly.com/question/14072179
#SPJ11
Determine the oxidation number for the indicated element in each of the following substances: (a) S in SO2, (b) C in COCl (c) Mn in KMnO, (d) Br in HBrO
The oxidation numbers for the indicated elements are: (a) S in SO₂ is +4, (b) C in COCl₂ is +4, (c) Mn in KMnO₄ is +7, (d) Br in HBrO is +1.
(a) In SO₂, oxygen has an oxidation number of -2. There are 2 oxygen atoms, so the total oxidation number for oxygen is -4. To balance this, S must have an oxidation number of +4.
(b) In COCl₂, oxygen has an oxidation number of -2, and chlorine has -1. Since there are 2 chlorine atoms, the total oxidation number for chlorine is -2. To balance this, C must have an oxidation number of +4.
(c) In KMnO₄, potassium has an oxidation number of +1, and oxygen has -2. Since there are 4 oxygen atoms, the total oxidation number for oxygen is -8. To balance this, Mn must have an oxidation number of +7.
(d) In HBrO, hydrogen has an oxidation number of +1, and oxygen has -2. To balance the oxidation numbers, Br must have an oxidation number of +1.
To know more about oxidation numbers click on below link:
https://brainly.com/question/29100691#
#SPJ11
a chemical reaction is run in which 286 joules of heat are generated and the internal energy changes by -767 joules. calculate w for the system. w = joules
The work (w) for the system is: -1053 joules.
To calculate the work (w) for the system. To do so, we will use the first law of thermodynamics equation:
ΔU = q + w
In this equation, ΔU represents the change in internal energy (-767 joules), q represents the heat generated (286 joules), and w represents the work done on or by the system. We need to solve for w.
Step 1: Plug the values of ΔU and q into the equation:
-767 J = 286 J + w
Step 2: Subtract 286 J from both sides of the equation:
-767 J - 286 J = w
Step 3: Calculate w:
w = -1053 J
To know more about "First law of thermodynamics" refer here:
https://brainly.com/question/28972874#
#SPJ11
1.00 kg block is attached to a spring with spring constant 13 n/m . while the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 50 cm/s . What is the block's speed at the point where x=0.45A?
The block's speed at the point where x=0.45A is approximately 0.39 m/s.
To find the block's speed, follow these steps:
1. Convert the initial speed to m/s: 50 cm/s = 0.5 m/s.
2. Calculate the initial potential energy (PE) of the spring: PE = 0.5 * k * A², where k=13 N/m and A is the amplitude.
3. Determine the amplitude (A) by setting the initial kinetic energy (KE) equal to the initial potential energy: KE = 0.5 * m * v² = 0.5 * k * A², where m=1.00 kg and v=0.5 m/s.
4. Solve for A: A = sqrt((m * v²) / k) = sqrt((1.00 * 0.5²) / 13).
5. Calculate the block's displacement at 0.45A: x = 0.45 * A.
6. Find the potential energy at x=0.45A: PE = 0.5 * k * (0.45A)².
7. Calculate the kinetic energy at x=0.45A: KE = initial PE - PE at 0.45A.
8. Solve for the block's speed at x=0.45A: v = sqrt((2 * KE) / m).
To know more about potential energy click on below link:
https://brainly.com/question/24284560#
#SPJ11
when a small amount of sodium hydroxide is added to this buffer, which buffer component neutralizes the added base?
The buffer component that neutralizes the added base when a small amount of sodium hydroxide is added to a buffer is the weak acid component of the buffer.
Buffers are solutions that resist changes in pH when small amounts of acids or bases are added to them. Buffers are typically composed of a weak acid and its conjugate base or a weak base and its conjugate acid. When a small amount of sodium hydroxide (a strong base) is added to a buffer, it reacts with the weak acid component of the buffer, producing its conjugate base. The conjugate base then neutralizes the added base by accepting protons, thus preventing a significant change in the pH of the solution. Therefore, the weak acid component of the buffer is responsible for neutralizing the added base.
In summary, the weak acid component of a buffer is responsible for neutralizing the added base when a small amount of sodium hydroxide is added to the buffer.
Learn more about buffer here:
https://brainly.com/question/22821585
#SPJ11
consider the molecules scl2, f2, cs2, cf4, and brcl. (a) which has bonds that are the most polar? cf4 (b) which of the molecules have dipole moments? brcl, scl2
Sure, I'd be happy to help!
To answer your question, we need to understand what dipole moments are and how they relate to the polarity of bonds in molecules.
bonds negative charges within a molecule. It is caused by the unequal sharing of electrons between atoms in a bond. When one atom has a higher electronegativity than the other, it attracts the shared electrons more strongly, creating a partial negative charge (δ-) on that atom and a partial positive charge (δ+) on the other atom.
The polarity of a bond is determined by the difference in electronegativity between the two atoms involved. The greater the difference, the more polar the bond.
Now let's apply these concepts to the molecules you listed.
CF4 has bonds that are the most polar because fluorine is highly electronegative compared to carbon, creating a large difference in electronegativity and thus a highly polar bond.
BRCl and SCl2 both have dipole moments because they have polar bonds due to differences in electronegativity between the atoms involved.
F2 and CS2 do not have dipole moments because the bonds in these molecules are nonpolar, meaning that the electrons are shared equally between the atoms involved and there is no separation of charge.
I hope that helps! Let me know if you have any further questions.
Hi! Considering the given molecules SCl2, F2, CS2, CF4, and BrCl:
(a) The most polar bonds are found in BrCl. This is because the electronegativity difference between Br and Cl is greater than the other molecules, creating a stronger dipole.
(b) The molecules with dipole moments are BrCl and SCl2. Both of these molecules have an asymmetric distribution of charge due to the difference in electronegativity between their constituent atoms.
Learn more about bonds in molecules here;
https://brainly.com/question/29224615
#SPJ11
All hydrogen atoms have one proton. If mass number equals the number of protons plus the number of neutrons, how many neutrons does Tritium have?
Answer:
2
Explanation:
Number of neutrons = Mass number - Number of protons
= 3 - 1
= 2
what aldehyde or ketone is needed to prepare each alcohol by metal hydride reduction
To prepare primary alcohols, an aldehyde is needed metal hydride reduction, while for secondary alcohols, a ketone is required.
To prepare an alcohol by metal hydride reduction, you would need an aldehyde or ketone as the starting compound. Metal hydride reagents, such as sodium borohydride (NaBH₄) or lithium aluminum hydride (LiAlH₄), are commonly used for this reduction process.
For a given alcohol, to determine the required aldehyde or ketone, you would need to consider the structural changes during the reduction. In the reduction process, the carbonyl group (C=O) in the aldehyde or ketone is reduced to an alcohol group (OH).
For primary alcohols, you will need an aldehyde. For secondary alcohols, a ketone is required. The carbon chain of the alcohol should match the carbon chain of the aldehyde or ketone.
In summary, to prepare an alcohol by metal hydride reduction, choose an aldehyde for primary alcohols and a ketone for secondary alcohols with matching carbon chains. The metal hydride reagent, like NaBH₄ or LiAlH₄, will reduce the carbonyl group to form the desired alcohol.
Know more about Aldehyde or Ketone here:
https://brainly.com/question/15859478
#SPJ11
Label each statement as true or false. Correct any false statement to make it true.
A. Increasing temperature increases reaction rate
B. If a reaction is fast, it has a large rate constant.
C. A fast reaction has a large negative ΔG° value.
D. When Ea is large, the rate constarnt k is also large.
E. Fast reactions have equilibrium constants >1
F. Increasing the concentration of a reactant always increases the rate of a reaction.
A. True
B. False - A reaction can be fast with a small rate constant and slow with a large rate constant.
C. False - A fast reaction can have a negative ΔG° value, but the two are not directly correlated.
D. False - When Ea is large, the rate constant k is typically small.
E. False - Equilibrium constants do not determine the rate of a reaction.
F. False - Increasing the concentration of a reactant can increase the rate of a reaction, but there are other factors that
A. Increasing temperature increases reaction rate - True
B. If a reaction is fast, it has a large rate constant. - True
C. A fast reaction has a large negative ΔG° value. - False
Correction: A spontaneous reaction (not necessarily fast) has a negative ΔG° value.
D. When Ea is large, the rate constant k is also large. - False
Correction: When Ea is small, the rate constant k is large.
E. Fast reactions have equilibrium constants >1 - False
Correction: Equilibrium constants >1 indicate that products are favored, but it does not necessarily mean the reaction is fast.
F. Increasing the concentration of a reactant always increases the rate of a reaction. - True
Learn more about reaction here:
https://brainly.com/question/28984750
#SPJ11
arrange the following groups of atoms in order of increasing size. (use the appropriate <, =, or > symbol to separate substances in the list.) Rb, Na, Be
________
The size of an atom is determined by its atomic radius, which is the distance between the nucleus and the outermost shell of electrons. Na is in between because it has fewer electrons than Rb but more than Be.
The general trend is that atomic radius increases as you move down and to the left of the periodic table.
Na < Rb < Be
Among these three atoms, Be has the smallest atomic radius since it has the highest nuclear charge and the fewest electrons. Rb has the largest atomic radius among these three because it has the lowest nuclear charge and the most electrons. Na is in between because it has fewer electrons than Rb but more than Be.
Learn more about atomic radius
https://brainly.com/question/29440273
#SPJ4
describe how you transferred the strontium iodate monohydrate from the raction beaker to teh funnel
Make sure the reaction beaker is cool to the touch before handling it. Gently scrape the strontium iodate monohydrate from the beaker and transfer it into the funnel. Rinse the beaker with a small amount of distilled water and pour the rinse into the funnel. Finally, use a small amount of distilled water to wash any remaining solid into the funnel.
1. First, ensure that you have a suitable filter paper placed in the funnel. The filter paper should be correctly folded and fit snugly within the funnel.
2. Place the funnel securely over a clean container (such as a flask) to collect the filtrate.
3. Using a stirring rod or a spatula, gently break apart any clumps of strontium iodate monohydrate that may have formed in the reaction beaker.
4. Carefully and slowly pour the mixture from the reaction beaker into the funnel, allowing the liquid to pass through the filter paper while the strontium iodate monohydrate is retained. It may be helpful to pour the mixture along the side of the beaker to prevent splashing.
5. To ensure all of the strontium iodate monohydrate is transferred, you may need to rinse the reaction beaker with a small amount of distilled water or an appropriate solvent, and then pour the rinse solution into the funnel. Be cautious not to overfill the funnel and to use an appropriate amount of solvent to avoid dissolving the product.
6. Allow the filtration process to continue until all the liquid has passed through the filter paper and the strontium iodate monohydrate remains on the filter paper within the funnel.
By following these steps, you will have successfully transferred the strontium iodate monohydrate from the reaction beaker to the funnel.
More on strontium iodate: https://brainly.com/question/14564429
#SPJ11
in a living cell, large molecules are assembled from simple ones is this process consistent with the second law of thermodynamics?
Yes, the process of assembling large molecules from simple ones in a living cell is consistent with the second law of thermodynamics.
While the second law of thermodynamics states that entropy, or disorder, tends to increase in a closed system, living cells are not closed systems. They constantly exchange energy and matter with their environment, allowing them to create order and complexity within themselves. In fact, living organisms are able to maintain their internal order and complexity precisely because they are able to continually take in energy and matter from their surroundings and use it to drive the assembly of large molecules and other complex structures. Therefore, the process of assembling large molecules from simple ones in a living cell is consistent with the principles of thermodynamics, as long as the cell is able to maintain a consistent flow of energy and matter to support these processes.
Yes, in a living cell, the process of assembling large molecules from simple ones is consistent with the second law of thermodynamics. The second law states that the entropy, or disorder, of an isolated system will always increase over time. Living cells maintain a low level of entropy by utilizing energy (such as from food or sunlight) to drive the formation of complex molecules, thus maintaining order within the cell. This energy input compensates for the increase in entropy and ensures the cell's processes are in accordance with the second law of thermodynamics.
Learn more about exchange energy here;
https://brainly.com/question/26907736
#SPJ11
Ethyl acetate has a normal boiling point of 77°C, and a vapor pressure of 73 torr at 20.°С. What is the AHvap of ethyl acetate in kJ/mol? O +35 kJ/mol +0.53 kJ/mol -0.53 kJ/mol +26 kJ/mol -26 kJ/mol -35 kJ/mol
To calculate the AHvap of ethyl acetate, we can use the Clausius-Clapeyron equation:
ln(P2/P1) = -ΔHvap/R * (1/T2 - 1/T1)
where P1 is the vapor pressure at temperature T1, P2 is the vapor pressure at temperature T2, R is the gas constant (8.314 J/mol*K), and ΔHvap is the enthalpy of vaporization.
We are given that the normal boiling point of ethyl acetate is 77°C, which is equivalent to 350.15 K. We are also given that the vapor pressure of ethyl acetate at 20°C (293.15 K) is 73 torr.
Using these values, we can calculate the AHvap of ethyl acetate:
ln(73/760) = -ΔHvap/8.314 * (1/350.15 - 1/293.15)
-2.728 = -ΔHvap/8.314 * (-0.000544)
ΔHvap = -(-2.728) * 8.314 / (-0.000544) = 42,192 J/mol
Converting this to kJ/mol, we get:
AHvap = 42.192 kJ/mol
Therefore, the answer is: +42.192 kJ/mol.
To determine the ΔHvap (enthalpy of vaporization) of ethyl acetate, we can use the Clausius-Clapeyron equation:
ln(P₁/P₂) = -(ΔHvap/R) * (1/T₂ - 1/T₁)
Given that the normal boiling point of ethyl acetate is 77°C and the vapor pressure at 20°C is 73 torr, we have:
P₁ = 73 torr
P₂ = 760 torr (1 atm, as it's the boiling point)
T₁ = 20°C + 273.15 = 293.15 K
T₂ = 77°C + 273.15 = 350.15 K
R = 8.314 J/(mol K) (universal gas constant)
Plugging the values into the equation and solving for ΔHvap, we get:
ln(73/760) = -(ΔHvap/8.314) * (1/350.15 - 1/293.15)
Now, solve for ΔHvap:
ΔHvap ≈ 35 kJ/mol
Thus, the enthalpy of vaporization of ethyl acetate is approximately +35 kJ/mol.\
Visit here to learn more about ethyl acetate brainly.com/question/15157001
#SPJ11