In a popular online role playing game, players can create detailed designs for their character's "costumes," or appearance. Fwam sets up a website where players can buy and sell these costumes online. Information about the number of people who visited the website and the number of costumes purchased in a single day is listed below.
168 visitors purchased no costume.
252 visitors purchased exactly one costume.
47 visitors purchased more than one costume.

Based on these results, express the probability that the next person will purchase no costume as a percent to the nearest whole number.

Answers

Answer 1

The probability that the next person will purchase no costume is 36% to the nearest whole number.

We have,

To express the probability that the next person will purchase no costume as a percent to the nearest whole number, we need to use the total number of visitors to the website as the denominator and the number of visitors who purchased no costume as the numerator.

The total number of visitors to the website is:

168 + 252 + 47 = 467

The number of visitors who purchased no costume is 168.

So the probability that the next person will purchase no costume is:

168/467 = 0.3609

To express this as a percent, we multiply by 100:

0.3609 × 100

= 36.09

Rounding this to the nearest whole number, we get:

36%

Therefore,

The probability that the next person will purchase no costume is 36% to the nearest whole number.

Learn more about probability here:

https://brainly.com/question/14099682

#SPJ1


Related Questions

Find the area of the shape below.

Answers

Answer:

78.274 (Steps shown below)

Step-by-step explanation:

Rectangle Area

6 x 12 =50

Circle (put the 2 half circles together)

Circle area = π * r² = π * 9 [inch²] ≈ 28.274 [in²]

π ≈ 3.14159265 ≈ 3.14

d = r * 2 = 3 [inch] * 2 = 6 [inch]

Area of Circle= 28.274

consider the function f(x)=cot(x) 10 over the interval [−π,π3]. does the extreme value theorem guarantee the existence of an absolute maximum and minimum for f(x) on this interval?

Answers

The Extreme Value Theorem does not guarantee the existence of an absolute maximum and minimum for f(x) on this interval.

The extreme value theorem states that if a function is continuous over a closed interval, then it must have at least one absolute maximum and one absolute minimum on that interval. In the case of f(x) = cot(x) 10 over the interval [−π,π3], this function is continuous over the interval since it is the composition of two continuous functions (cot(x) and 10). Therefore, the extreme value theorem guarantees that there must be at least one absolute maximum and one absolute minimum for f(x) on this interval.
The Extreme Value Theorem states that if a function is continuous on a closed interval, then it has an absolute maximum and minimum on that interval. The function f(x) = cot(x) is not continuous over the interval [-π, π/3] due to the presence of vertical asymptotes, where the function is undefined. Therefore, the Extreme Value Theorem does not guarantee the existence of an absolute maximum and minimum for f(x) on this interval.

To learn more about Extreme Value Theorem, click here:

brainly.com/question/30760554

#SPJ11

Consider a capital budgeting example with five projects from which to select. Let xi = 1 if project i is selected, 0 if not, for i = 1,...,5. Write the appropriate constraint(s) for each condition. Conditions are independent.
a.
Choose no fewer than three projects.
b.
If project 3 is chosen, project 4 must be chosen.
c.
If project 1 is chosen, project 5 must not be chosen.
d.
Projects cost 100, 200, 150, 75, and 300 respectively. The budget is 450.
e.
No more than two of projects 1, 2, and 3 can be chosen.

Answers

Note that if x1 = x2 = x3 = 0, then the constraint is satisfied regardless of the values of x4 and x5.

a. The constraint for choosing no fewer than three projects can be written as:

x1 + x2 + x3 + x4 + x5 ≥ 3

b. The constraint for selecting project 4, if project 3 is chosen, can be written as:

x3 ≤ x4

Note that if x3 = 0, then the constraint is satisfied regardless of the value of x4.

c. The constraint for not selecting Project 5 if Project 1 is chosen can be written as:

x1 + x5 ≤ 1

Note that if x1 = 0, then the constraint is satisfied regardless of the value of x5.

d. The constraint for staying within the budget can be written as:

100x1 + 200x2 + 150x3 + 75x4 + 300x5 ≤ 450

e. The constraint for selecting no more than two of projects 1, 2, and 3 can be written as:

x1 + x2 + x3 ≤ 2

To know more about constraints refer to

https://brainly.com/question/30409671

#SPJ11

In an examination, Tarang got 25% marks and failed by 64 marks. If he had got 40% marks he would have secured 32 marks more than the pass marks. Find the percentage of marks required to pass..

Answers

Answer:

224

Step-by-step explanation:

Total marks = x

x * 25% + 64 = x * 40% - 32

x * 15% = 96

x = 640

Maximum Marks = 640..

Marks Scored = 25% of 640

                        = 160
Marks Required to pass = 160 + 64

                                        = 224

Consider the following. X = sin(t), y = csct), 0
Eliminate the parameter to find a Cartesian equation of the curve.

Answers

The Cartesian equation of the curve is  Y = 1/X.

To the parameter and find a Cartesian equation of the curve using the given terms. Consider the following:

X = sin(t), Y = csc(t), and 0 ≤ t ≤ 2π

Step 1: Rewrite Y in terms of sin(t)
Since Y = csc(t), we know that csc(t) = 1/sin(t). Therefore, Y = 1/sin(t).

Step 2: Eliminate the parameter t
We already have X = sin(t), so we can substitute this into the equation for Y:
Y = 1/X

Step 3: Write the Cartesian equation of the curve
Now that we have eliminated the parameter t, the Cartesian equation of the curve is simply:

Y = 1/X

Therefore, the Cartesian equation of the curve is Y = 1/X.

Know more about Cartesian equation here:

https://brainly.com/question/14869452

#SPJ11

The gas tank in Orlando’s car holds 16 gallons. What is the capacity of the gas tank in liters? Round to the nearest tenth.

Answers

Answer:

To convert gallons to liters, we need to multiply the number of gallons by 3.78541, which is the conversion factor.

Capacity in liters = 16 gallons * 3.78541 liters/gallon

Capacity in liters = 60.56 liters (rounded to the nearest tenth)

Therefore, the capacity of the gas tank in liters is approximately 60.6 liters.

Answer:

60.6

Step-by-step explanation:

First, we find how many liters there are in a gallon. We find there are 3.78541178 liters in a gallon. 16*3.78541178 =60.5665885 Rounding to the nearest tenth, we get 60.6 as our answer.

consider the set y1,y2,...,yk that are k linearly independant soluitions on (-[infinity],[infinity]) of a linear homogenous n^th order differential equation.The objective is to determine whether the set of solution is linearly dependent or not.

Answers

To determine whether the set of solutions y1, y2, ..., yk is linearly dependent or not, we need to calculate the Wronskian W(y1, y2, ..., yk) and check whether it is zero for some x in (-[infinity], [infinity]). If it is never zero, then the set of solutions is linearly independent. If it is zero for some x, then the set of solutions is linearly dependent.

To determine whether the set of solutions y1, y2, ..., yk is linearly dependent or not, we can use the Wronskian determinant. The Wronskian of a set of k functions is defined as:

W(y1, y2, ..., yk) = det [y1, y2, ..., yk; y1', y2', ..., yk'; ..., ..., ..., ...; y1^(k-1), y2^(k-1), ..., yk^(k-1)]

where y1', y2', ..., yk' are the first derivatives of y1, y2, ..., yk, respectively, and y1^(k-1), y2^(k-1), ..., yk^(k-1) are their (k-1)th derivatives.

If the Wronskian is nonzero for all x in (-[infinity], [infinity]), then the set of solutions is linearly independent. If the Wronskian is zero for some x in (-[infinity], [infinity]), then the set of solutions is linearly dependent.

Therefore, to determine whether the set of solutions y1, y2, ..., yk is linearly dependent or not, we need to calculate the Wronskian W(y1, y2, ..., yk) and check whether it is zero for some x in (-[infinity], [infinity]). If it is never zero, then the set of solutions is linearly independent. If it is zero for some x, then the set of solutions is linearly dependent.

to learn more about linearly dependent click here:

https://brainly.com/question/30556318

#SPJ11

If Bitcoin's share price crashed, from $60,000 to $19,500...what was the percent of decrease?

Answers

Answer:

67.5%

Step-by-step explanation:

To calculate the percentage decrease in the share price of Bitcoin, we can use the following formula:

Percentage decrease = ((original value - new value) / original value) x 100%

Here, the original value is the share price before the crash, which is $60,000, and the new value is the share price after the crash, which is $19,500.

Substituting these values into the formula, we get:

Percentage decrease = ((60,000 - 19,500) / 60,000) x 100%

= 40,500 / 60,000 x 100%

= 67.5%

Therefore, the percentage decrease in the share price of Bitcoin is 67.5%.

Find the linear approximation of a rational function and use it to estimate function values Question Find the linear approximation of f(x) = at x = 3 and use the approximation to estimate 29 Submit an exact answer in fractional form. Provide your answer below: L(2.9) = 1

Answers

To find the linear approximation of f(x) at x = 3, we need to calculate the derivative f'(x) and then use the formula for the linear approximation: L(x) = f(a) + f'(a)(x-a).

Step 1: Calculate the derivative f'(x) of the given function f(x).
As the function is not provided, I'll assume it's a general rational function, f(x) = P(x)/Q(x), where P(x) and Q(x) are polynomials. To find the derivative, use the quotient rule: f'(x) = (P'(x)Q(x) - P(x)Q'(x))/Q(x)^2.

Step 2: Evaluate f(3) and f'(3).
Once you find f'(x), plug in x=3 to get f(3) and f'(3).

Step 3: Use the linear approximation formula.
L(x) = f(3) + f'(3)(x-3).

Now, estimate L(2.9):
L(2.9) = f(3) + f'(3)(2.9-3) = f(3) - 0.1f'(3).

To provide an exact answer in fractional form, compute the numerical values of f(3) and f'(3) and substitute them in the equation above.

To know more about linear approximation click on below link:

https://brainly.com/question/1621850#

#SPJ11

Can anyone Help with this?

Answers

The simplified form of the surd is 1 - 1/3√5

How do you rationalize a surd?

Here are the general steps to follow when rationalizing a surd:

Identify the surd in the denominator of the fraction.

Multiply the numerator and denominator of the fraction by the conjugate of the denominator. The conjugate is obtained by changing the sign of the surd term in the denominator.

Simplify the resulting expression by expanding the brackets and collecting like terms.

If there is still a surd in the denominator, repeat the process until no surds remain in the denominator.

Given that;

√2 - √10/√2 + √10

Then;

√2 - √10/ √2 + √10  * √2 - √10/√2 - √10

2 -√20 - √20  + 10/2 -√20 + √20 + 10

2 - 2√20 + 10/2 + 10

12 - 2√20/12

1 - 1/3√5

Learn more about surd:https://brainly.com/question/30069850

#SPJ1

Please awnser and illl give u crown!

Answers

Sarah's profit-maximizing amount of output is  200 Sandwiches per day.

What is the profit-maximizing point ?

At the intersection of marginal cost (MC) and the demand curve, a firm will be producing the level of output where it maximizes its profit. This point is also known as the profit-maximizing point or the point of allocative efficiency.

For the given diagram or graph, Sarah's profit-maximizing amount of output will occur at the intersection of the marginal cost curve and the demand curve.

This point = $8 and 200 Sandwiches per day.

Learn more about profit-maximizing point  here: https://brainly.com/question/28253283

#SPJ1

K is a field with 4 elements containing Z2 as subfield. Then in addition to 0, 1 from Z2, the field K has two extra elements; call these α and β.(a) Show that α + 1 = β.(b) Show that\small \alpha ^2= β

Answers

a. We have shown that α + 1 = β.

b. We have shown that α² = β.

What are elements?

A substance that cannot be broken down into another substance is referred to as an element. Because each element is made up of its own type of atom, each element is distinct and distinct from the others.

Since K is a field with 4 elements, the nonzero elements of K form a cyclic group of order 3 under multiplication. Let us call this group G. Since G is cyclic, it has a unique generator, say g. Then we can write G = {1, g, g²}.

Now, since α and β are both in K but not in Z2, they must be elements of G. Moreover, since K contains Z2 as a sub-field, α and β must be roots of the polynomial x² + x + 1 over Z2. Therefore, we have the following possibilities for α and β:

α = g

β = g²

or

α = g²

β = g

a. Let us first consider the case where α = g and β = g². Then we have:

α + 1 = g + 1

= g² + g + 1 (since g³ = 1)

= β + α + 1 (since β = g² and α = g)

= β

Therefore, we have shown that α + 1 = β.

b. Next, we will show that α² = β. Using the same assumption that α = g and β = g², we have:

α² = g²

= β

Therefore, we have shown that α² = β.

Learn more about polynomials on:

https://brainly.com/question/4142886

#SPJ11

Sketch the straight-line Bode plot of the gain only for the following voltage transfer functions: T(S) = 20s/ S2 + 58s + 400

Answers

To sketch the straight-line Bode plot of the gain only for the voltage transfer function T(S) = 20s/ S2 + 58s + 400, we first need to break it down into its constituent parts. The numerator is simply a constant gain of 20, while the denominator can be factored into two second-order terms:

T(S) = 20s/ (S+20)(S+20)

Using the standard Bode plot rules for second-order systems, we can plot each term separately and then combine them to get the overall plot. For each term, we need to find the resonant frequency, damping ratio, and gain at low and high frequencies.

For the first term (S+20), the resonant frequency is 20, the damping ratio is 1/2, and the low-frequency gain is 0 dB. At high frequencies, the gain rolls off at a rate of -20 dB/decade.

For the second term (S+20), the resonant frequency is also 20, the damping ratio is 1/2, and the low-frequency gain is 0 dB. However, at high frequencies, the gain rolls off at a rate of -40 dB/decade due to the double pole.

To combine these two plots, we simply add the gains at each frequency and use the steeper roll-off rate for the second term. The result is a straight-line Bode plot with a gain of 20 dB at low frequencies, a resonant peak at 20 rad/s, and a steep roll-off at high frequencies.

The plot will cross the 0 dB line at two points, one before and one after the resonant peak, due to the double pole in the transfer function.

To know more about bode plot refer here:

https://brainly.com/question/31494988?#

#SPJ11

When the algebraic signs on the net cash flows change more than once, the cash flow sequence is called ____________. Open choices for matching

Answers

The answer is non-conventional cash flow .

Cash flow refers to the movement of money in and out of a business or individual's financial accounts over a specific period of time. It represents the inflow and outflow of actual cash, as opposed to accounting profit or loss, which may include non-cash items such as depreciation or accruals .

When the algebraic signs on the net cash flows change more than once, the cash flow sequence is called non-conventional cash flow .

Learn more about : Cash flow - https://brainly.com/question/31499701

#SPJ11

a bank loans Minh $3,000 for a period of 5 years. The simple interest rate of the loan is 9%. what is the total amount of interest that Minh will need to pay the bank at the end of 5 years?

Answers

The total amount of interest that Minh will need to pay the bank at the end of 5 years is $1,350 whose principal amount is $3,000

The formula for simple interest is:

I = P × r ×  t

Where:

I is the amount of interest

P is the principal amount borrowed

r is the interest rate per year

t is the time period in years

In this case, P = $3,000, r = 9% = 0.09 (as a decimal), and t = 5 years. Substituting these values into the formula, we get:

I = 3000 × 0.09 × 5

I = $1,350

Therefore, the total amount of interest that Minh will need to pay the bank at the end of 5 years is $1,350.

To learn more on Percentage click:

https://brainly.com/question/24159063

#SPJ1

The total amount of interest that Minh will need to pay the bank at the end of 5 years is $1,350 whose principal amount is $3,000

The formula for simple interest is:

I = P × r ×  t

Where:

I is the amount of interest

P is the principal amount borrowed

r is the interest rate per year

t is the time period in years

In this case, P = $3,000, r = 9% = 0.09 (as a decimal), and t = 5 years. Substituting these values into the formula, we get:

I = 3000 × 0.09 × 5

I = $1,350

Therefore, the total amount of interest that Minh will need to pay the bank at the end of 5 years is $1,350.

To learn more on Percentage click:

https://brainly.com/question/24159063

#SPJ1

PLEASE HELP
Use technology or a z-distribution table to find the indicated area.
The weights of tomatoes in a bin are normally distributed with a mean of 95 grams
and a standard deviation of 3.6 grams.
Approximately
25% of the tomatoes weigh less than which amount?
93 g
96g
92g
90 g

Answers

Approximately 25% of the tomatoes weigh less than, given the standard deviation and mean, A. 93 g.

How to find the approximate amount ?

25 % of tomatoes is the value that we are looking for. On the z - distribution table, the closest to this amount is 0.2486, and this has a z - score of - 0. 674.

With this z - score, we can use the z - score formula to find the amount that the 25 % of tomatoes weigh:

z = (x - μ) / σ

-0. 674 = (x - 95 ) / 3.6

x - 95 = -0. 674 x 3. 6

x = 95 - 2. 4264

x = 92. 5736

x = 93 grams

Find out more on the z - distribution table at https://brainly.com/question/24213960

#SPJ1

Write out the form of the partial fraction decomposition of the function appearing in the integral: 5 72 Determine the numerical values of the coefficients, A and B, where A B and -5x-72 2 5x - 66 denominator denominator B=

Answers

The numerical values of the coefficients A and B are:

A = -1/6
B = 1/6

To perform partial fraction decomposition, we need to break down the fraction into simpler terms.

The form of the partial fraction decomposition of the given function is:

5/(5x - 72) = A/(5x - 66) + B/(5x - 72)

Here, A and B are the coefficients we need to find. We can find them by cross-multiplying and equating the numerators of both sides of the equation:

5 = A(5x - 72) + B(5x - 66)

Now, we can substitute some values of x to get two equations in terms of A and B:

For x = 14:

5 = A(5(14) - 72) + B(5(14) - 66)

Simplifying and solving for A and B, we get:

A = 1/6
B = -1/6

For x = 12:

5 = A(5(12) - 72) + B(5(12) - 66)

Simplifying and solving for A and B again, we get:

A = -1/6
B = 1/6



Generally, for a function f(x) with a rational expression in the integral, we can use partial fraction decomposition to rewrite the expression as a sum of simpler fractions. This makes it easier to find the integral.

The coefficients A and B are constants in the simpler fractions, and their values can be determined by solving a system of linear equations.

Visit here to learn more about Coefficients:

brainly.com/question/27969435

#SPJ11

Let g and h be the functions defined by g(x) = sin ( +2)) +3 and h(z) = - - - 2+3. ff is a function that satisfies (2) S (2) Sh() for 2 <= 0, what is lim (3) D) The limit cannot be determined from the information given

Answers

The answer is (D) The limit cannot be determined from the information given.

To start, we need to simplify the given equation:

f(2) = g(2) + h(2)

Substituting 2 into g(x), we get:

g(2) = sin(2π/3 + 2) + 3

Using the unit circle, we can see that sin(2π/3 + 2) = sin(2π/3 - 1) = √3/2 * cos(1) - 1/2 * sin(1)

So, g(2) = √3/2 * cos(1) - 1/2 * sin(1) + 3

Now, substituting 2 into h(z), we get:

h(2) = -2/(2+3)

Simplifying, we get h(2) = -2/5

Therefore, f(2) = g(2) + h(2) = √3/2 * cos(1) - 1/2 * sin(1) + 3 - 2/5

Now, to find the limit as x approaches 3, we need to evaluate:

lim (x→3) f(x)

However, since we only have information for f(2), we cannot determine the limit as x approaches 3.

Therefore, the answer is (D) The limit cannot be determined from the information given.

Learn more about trigonometric functions here: brainly.com/question/6904750

#SPJ11

let s=∑n=1[infinity]an be an infinite series such that sn=4−4n2. (a) what are the values of ∑n=110an and ∑n=416an? ∑n=110an=

Answers

The expression for the nth term an, for the infinite series s=∑n=1[infinity]an is ∑n=4¹⁶an = 468

We know that the sum of the first n terms of the series is given by sn. Therefore, we can find an expression for the nth term an by taking the difference between successive values of sn:

sn - sn-1 = an

(4-4n²) - (4-4(n-1)²) = an

Simplifying this expression, we get:

an = 8n - 4

Now we can use this expression to find the values of ∑n=1¹⁰an and ∑n=4¹⁶an:

∑n=1¹⁰an = a1 + a2 + ... + a10

= (81 - 4) + (82 - 4) + ... + (8*10 - 4)

= 76

Therefore, ∑n=1¹⁰an = 76.

Similarly,

∑n=4¹⁶an = a4 + a5 + ... + a16

= (84 - 4) + (85 - 4) + ... + (8*16 - 4)

= 468

Therefore, ∑n=4¹⁶an = 468.

Know more about expression here:

https://brainly.com/question/14083225

#SPJ11

A marketing firm is considering making up to three new hires. Given its specific needs, the firm feels that there is a 60% chance of hiring at least two candidates. There is only a 5% chance that it will not make any hires and a 10% chance that it will make all three hires. A. What is the probability that the firm will make at least one hire? b. Find the expected value and the standard deviation of the number of hires

Answers

For a marketing firm which is considering making up to three new hires.

a) The probability that the firm will make at least one hire is equals to the 0.90.

b) The expected value and the standard deviation of the number of hires are 1.57 and 0.78 respectively.

We have a marketing firm is considering making up to three new hires. Let's consider the a random variable X that represents the hiring of candidates. So, possible values of X = 0, 1, 2,3.. Now, The chances of probability of hiring at least two candidates, P( X ≥ 2) = 60% = 0.60

The chances of probability that hiring of none of them = P( X = 0) = 10% = 0.10

The chances of probability that hiring of all of them = P( X = 3) = 5% = 0.05

We have to determine probability that the firm will make at least one hire, P(X ≥ 1).

By probability law, sum of any possible probability values = 1

=> P( X≥ 1 ) = 1 - P( X = 0)

= 1 - 0.10 = 0.90

b) The expected value, E(X), or we say mean μ of a discrete random variable X, is equals to the sum of resultant of multiply each value of the random variable by its probability. The formula is, E ( X ) = μ = ∑ x P ( x )

So, Probability that hiring of exactly two candidates, P( X= 2). As we know, P( X ≥ 2) = 0.60

=> P ( 3) + P (2) = 0.60

=> P(2) = 0.60 - 0.05 = 0.55

Probability that hiring of exactly one candidates, P( X= 1). From, P( X≥ 1 ) = 0.90

=> P( 1) + P ( 3) + P (2) = 0.90

=> P(1) = 0.30

Hence, excepted value, E(X) = ∑ x P ( x )

= 0 × 0.10 + 1× 0.30 + 2× 0.55 + 3× 0.05

= 1.57

Now, standard deviations, σ =√E(X²) - (E(X))²

E(X²) = ∑ x² P ( x )

= 0² ×0.10 + 1² ×0.30 + 2²× 0.55 + 3²× 0.05

= 3.07

so, the standard deviation of the number of hires = √3.07² - 1.57² = 0.78

Hence, required value is 0.78.

For more information about probability, visit:

https://brainly.com/question/25870256

#SPJ4

Carson has $50 in the bank to put towards a new e-bike. If every three
months afterwards he saves $20 additional dollars to put towards the
bike, how much will he have saved up for it after three years?

Answers

In the first three months, Carson saves $20 in addition to his initial $50, for a total of $70. In the second three months, he saves another $20, for a total of $90. He saves an additional $20 every three months for a total of 12 quarters, or 3 years. Therefore, he saves a total of $20 * 12 = $240 over the course of three years. Adding this to the initial $50 he had, he will have saved a total of $290 for the e-bike.

The length of the shorter leg?
The length of the longer leg?

Answers

The lengths of the legs of the right triangle are given as follows:

2.39 feet and 4.39 feet.

What is the Pythagorean Theorem?

The Pythagorean Theorem states that in a right-angled triangle, the square of the length of the hypotenuse (the longest side) is equal to the sum of the squares of the lengths of the other two sides.

The theorem is expressed as follows:

c² = a² + b².

In which:

c is the length of the hypotenuse.

a and b are the lengths of the other two sides (the legs) of the right-angled triangle.

The parameters for this problem are given as follows:

Legs of x and x + 2.Hypotenuse of 5.

Hence the value of x is obtained as follows:

x² + (x + 2)² = 5²

x² + x² + 4x + 4 = 25

2x² + 4x - 21 = 0.

Using a calculator, the positive solution for x is given as follows:

2.39.

Hence the legs are:

2.39 feet and 4.39 feet.

More can be learned about the Pythagorean Theorem at brainly.com/question/30203256

#SPJ1

The expression 15a + 12c is the cost (in dollars) for a adults and c students to enter a museum. Find the total cost for 6 adults and 38 students.

Answers

Answer:

$546

Step-by-step explanation:

It is given that the variables:

a = adults

c = students.

There are 6 adults, and 38 students. Plug in 6 for a, and 38 for c in the given expression:

[tex]15a + 12c\\15(6) + 12(38)[/tex]

Simplify. Remember to follow PEMDAS. PEMDAS is the order of operations, and stands for:

Parenthesis

Exponents (& Roots)

Multiplications

Divisions

Additions

Subtractions

~

First, multiply 15 & 6, and 12 & 38 together:

[tex](15 * 6) + (12 * 38)\\(90) + (456)[/tex]

Next, simplify by adding:

[tex]90 + 456 = 546[/tex]

$546 is your total cost.

~

Learn more about solving order of operations, here:

https://brainly.com/question/15840745

5. What is the volume of the rectangular prism shown below?”hight 4 1/4 ft””width 1 1/2 ft” “length 2 ft”

A. 7 3/4cubic feet
B. 8 1/8 cubic feet
C. 12 3/4 cubic feet
D. 13 1/2 cubic feet

Answers

The volume of the rectangular prism shown is 12 3/4 cubic feet. The correct option is (C).

Showing how to calculate Volume of a rectangular prism

The volume of a rectangular prism is given by:

V = length x width x height

Given

height (h) = 4 1/4 ft = 17/4

width (w) 1 1/2 ft = 3/2

length (l)  = 2 ft.

Substitute the values:

Volume = length x width x height

= 2 ft x 3/2 ft x 17/4 ft

= 51/4 cubic feet

= 12 3/4 cubic feet

Therefore, the volume of the rectangular prism is 12 3/4 cubic feet.

Learn more about rectangular prism here:

https://brainly.com/question/23963432

#SPJ1

Three of the vertices of a rectangle are located at (5, 2), (8, 2), (5, -5). Find the coordinates of the 4th vertex and then find the area of the rectangle. 4th Vertex (
Question Blank 1 of 2
2,-5
)

Area
Question Blank 2 of 2
type your answer. Units2

Answers

Thus, the 4th coordinate of the rectangle with the given coordinates is found as : D(8, -5). Area of the rectangle ABCD = 21 sq. units.

Explain about the distance formula:

The Pythagorean theorem serves as the foundation for the distance formula. A line connecting two sites of interest is the hypotenuse of a right triangle, and this particular line connects the two points of interest.

The neighbouring side is obtained by joining the x-coordinates of a two points in a horizontal line, whereas the opposing side is obtained by joining the y-coordinates.

d=√((x2 - x1)²+(y2 - y1)²)

Given data:

vertices of a rectangle ABCD -

A(5, 2), B(8, 2), C(5, -5)

Let the 4 the vertex be D(x,y).

Plot the coordinates on the graph.

Now, we know that - opposite sides of the rectangle are equal.

Thus,

AB = CD

From graph,D(x,y).

x - (5 + 3) = 8

y - (2 - 7) = -5

Thus, the 4th coordinate of the rectangle with the given coordinates is found as : D(8, -5).

Area of the rectangle ABCD = length x breadth

length = 2 + 5 = 7 units

width = 8 - 5 = 3 units

Area of the rectangle ABCD = 7 x 3

Area of the rectangle ABCD = 21 sq. units.

know more about the distance formula:

https://brainly.com/question/13256731

#SPJ1

ANSWER THIS QUESTION QUICKLY PLS!
Bananas, strawberries, peaches, grapes, melon, and kiwi are available to use to make a fruit salad.
How many different fruit salads can you make using up to three different fruits?

Answers

The number of different fruit salads that can be made using up to three  different fruits is 41

What are Combinations?

The number of ways of selecting r objects from n unlike objects is given by combinations

ⁿCₓ = n! / ( ( n - x )! x! )

where

n = total number of objects

x = number of choosing objects from the set

Given data ,

For each possible number of fruits (1, 2, or 3), we can count the number of ways to choose that many fruits from the available options and then sum up the results

To make a fruit salad with one fruit, we can choose any of the six available fruits. There are 6 ways to do this

To make a fruit salad with two fruits, we can choose any two fruits from the six available options. This can be done using the combination formula

C(6,2) = 6! / (2! x (6-2)!) = 15

So, there are 15 ways to make a fruit salad with two fruits

And , To make a fruit salad with three fruits, we can choose any three fruits from the six available options. This can be done using the combination formula:

C(6,3) = 6! / (3! x (6-3)!) = 20

So , the total number of ways A = 6 + 15 + 20

A = 41 ways

Hence , the different fruit salads is A = 41

To learn more about combinations click :

https://brainly.com/question/28065038

#SPJ2

Use the method of undetermined cool mined coeffi- cients to find a particular solution to the given higher-order equation.

a. y" - y" + y = sint 34.
b. 2y" + 3y" + y' - 4y = e*
c. y" + y" - 2y = te
d. y(4) – 3y" – 8y = sint

Answers

A particular solution is y_p(t) = -1/2sin(t) + 1/2cos(t), and the general solution is: y(t) = y_h(t) + y_p(t) = c1e^(t/2)cos(√3t/2) + c2e^(t/2)sin(√3t/2) - 1/2sin(t) + 1/2cos(t).

a. For the equation y'' - y' + y = sin(t), the characteristic equation is r^2 - r + 1 = 0, which has complex roots r = (1 ± i√3)/2. Therefore, the homogeneous solution is y_h(t) = c1e^(t/2)cos(√3t/2) + c2e^(t/2)sin(√3t/2).

To find a particular solution, we assume it has the form y_p(t) = Asin(t) + Bcos(t), where A and B are unknown constants. Taking the derivatives, we get y_p'(t) = Acos(t) - Bsin(t) and y_p''(t) = -Asin(t) - Bcos(t). Substituting these into the original equation, we get:

(-Asin(t) - Bcos(t)) - (Acos(t) - Bsin(t)) + Asin(t) + Bcos(t) = sin(t)

Simplifying, we get:

2B = 1

Therefore, B = 1/2. Substituting this into the equation above, we get:

-Acos(t) + 1/2sin(t) + Acos(t) - 1/2sin(t) = sin(t)

Simplifying, we get:

A = -1/2

Therefore, a particular solution is y_p(t) = -1/2sin(t) + 1/2cos(t), and the general solution is:

y(t) = y_h(t) + y_p(t) = c1e^(t/2)cos(√3t/2) + c2e^(t/2)sin(√3t/2) - 1/2sin(t) + 1/2cos(t).

To know more about particular solution refer here:

https://brainly.com/question/20372952#

#SPJ11

Need help with logic puzzle ASAP

Answers

The above is a logic puzzle. Logic puzzles challenge the mind and enhance critical thinking.

The findings based on the clues given

According to the clues given, Jane was seen checking out an action book after leaving either a Biology or History class. It was also determined that Jayson is enrolled in Biology and the student who checked out a fantasy book, Jose, has an English class immediately following Jenny's.

Furthermore, we were able to deduce that the individual who left a History class was the same person who checked out a mystery novel while the student studying French must have been present during 1st period.

Jaden, who is currently enrolled in Algebra class, is observed browsing through a Manga novel. It can be noted that while studying for academic subjects like Math, the temptation to deviate towards leisure reading material can often pose as a distraction.

Learn more Logic Puzzles:
https://brainly.com/question/31149956
#SPJ1

Mark all points (x,y) such that ;
A) y = x + 3,
B) y = - x + 3,
C) y = |x| + 3
Please help ASAP!!
Thanks <3 <3

Answers

A) y = x + 3 represents a straight line with a slope of 1 passing through the point (0,3).

B) y = -x + 3 represents a straight line with a slope of -1 passing through the point (0,3).

C) y = |x| + 3 represents two lines; one with a slope of 1 passing through the point (-3,0) and another with a slope of -1 passing through the point (3,0).

How to explain the slope

The points (x,y) that satisfy all three equations must lie on the lines with slope 1 and -1 passing through the point (0,3).

These lines intersect at the point (1,4) and the set of points that satisfy all three equations is the single point (1,4).

Learn more about slope on

https://brainly.com/question/3493733

#SPJ1

find the requested higher-order derivative for the given function. d 2^y/dx^2 of y = 3 sin(x)+ x^2 cos(x)

Answers

The second derivative of y = 3sin(x) + [tex]x^{2 cosx}[/tex] is [tex]d^{2y}[/tex]/dx^2 = -3sin(x) - x²cos(x) + 2cos(x) - 2xsin(x).

How to find the second derivative of y = 3 sin(x) + x² cos(x)?

To find the second derivative of y = 3 sin(x) + x² cos(x), we need to take the derivative of the first derivative of y with respect to x.

First, let's find the first derivative of y:

dy/dx = 3cos(x) - [tex]x^{2sin(x)}[/tex] + 2xcos(x)

Now, let's take the derivative of this expression with respect to x to find the second derivative:

[tex]d^{2y}[/tex]/dx² = -3sin(x) - x²cos(x) + 2cos(x) - 2xsin(x)

Therefore, the second derivative of y = 3sin(x) + [tex]x^{2 cosx}[/tex] is [tex]d^{2y}[/tex]/dx^2 = -3sin(x) - x²cos(x) + 2cos(x) - 2xsin(x).

Learn more about second derivative

brainly.com/question/29090070

#SPJ11

Other Questions
What approximate temperature is required to begin fusion in a star?A. 93 billion kelvinsB. Fusion occurs randomly and is not based on temperature.C. 14 million kelvinsD. 9 billion kelvins Dr. McMillan told Parker that his symptoms were caused by an unneeded activation of his body's fight-or-flight response called a/an The enthalpy of vaporization of ethanol is 38.56 kJ/mol at its boiling point (78C). Calculate the value of AS sur When 1.00 mole of ethanol is vaporized at 78C and 1.00 atm.-1.1 10 J/K mol4.92 102 J/K mol1.1 102 J/K mol-4.92 102 J/K mol As we explore and observe the features here in blacktail canyon, we need to identify the various rock types for each of the rock units.as we explore and observe the features here in blacktail canyon, we need to identify the various rock types for each of the rock units.Upper rock type ____a. Ignecusb. Metamorphicc. Sedimentary find the area under the standard normal curve to the right of z=1.72z=1.72. round your answer to four decimal places, if necessary. After a 25% discount, an article is sold for $400. What is the price before the discount? True/False: tips pay a coupon that consists of the sum of the stated coupon rate the cpi rate of inflation for the year under consideration Evaluate the line integral, where C is the given curve.C xe^y dx, C is the arc of the curve x=e^y from (1, 0) to (e9, 9) Which statement accurately describes the spread of Islam to India? A tourist wants to visit 7 cities in Israel. Driving distances, in kilometers, between the cities are shown below7 . Find a route for the person to follow, returning to the starting city: a. Using Nearest Neighbor starting in Jerusalem b. Using Repeated Nearest Neighbor Factor 12q^2+34q-28. Be sure to show all your work, including your list of factors. Please helpppp I will give brainliest Suppose you borrowed $25,000 at a rate of 8% and must repay it in 4 equal installments at the end of each of the next 4 years. How large would your payments be? Suppose a truck rental costs $20 plus $0.30 for each miledriven. If your total cost of a rental was $39. 80, how many milesdid you drive? Determine whether the following are polar: a. OCS b. XeF4 c. IF4 + ( + ) d. IF4- ( -) What were the limits of the ""religious motive"" in the Arab conquests of the Mediterranean? How were Christians and Jews treated under Islam? Show that the following grammar is ambiguous: S AB | aaaB, A a | Aa, B b If a and b are positive real numbers and b is not equal to 1, how does the graph of f(x) = ab^x change when b is changed? explain dynamic binding and how it is used with interfaces? no code is required for this question Consider the parametric curve given by the equationsx(t) = t^2 -8 t - 34y(t) = t^2 -8 t - 32How many units of distance are covered by the point P(t) =(x(t),y(t)) between t=0, and t=14 ? A tank contains 300 gallons of water in which 15 pounds of salt is dissolved. Starting att=0, brine that contains21pounds of salt per gallon is poured into the tank at the rate of 2 gallons/min and well mixed mixture is drained from the tank at the rate of 3 gallons/min. Find the amount of the salt in the tank at timet. (8pts)