in each of the problems 7 through 9 find the inverse laplace transform of the given function by using the convolution theoremf(s)=1/(s +1)^2 (s^2+ 4)

Answers

Answer 1

The inverse Laplace transform of f(s) is: f(t) = -2t*u(t)[tex]e^{-t}[/tex] - 4u(t)[tex]e^{-t}[/tex]+ 4u(t)

What is convolution theorem?

The convolution theorem is a fundamental result in mathematics and signal processing that relates the convolution operation in the time domain to multiplication in the frequency domain.

To find the inverse Laplace transform of the given function, we will use the convolution theorem, which states that the inverse Laplace transform of the product of two functions is the convolution of their inverse Laplace transforms.

We can rewrite the given function as:

f(s) = 1/(s+1)² * (s² + 4)

Taking the inverse Laplace transform of both sides, we get:

[tex]L^{-1}[/tex]{f(s)} = [tex]L^{-1}[/tex]{1/(s+1)²} *[tex]L^{-1}[/tex]{s² + 4}

We can use partial fraction decomposition to find the inverse Laplace transform of 1/(s+1)²:[tex]e^{-t}[/tex]

1/(s+1)² = d/ds(-1/(s+1))

Thus, [tex]L^{-1}[/tex]{1/(s+1)²} = -t*[tex]e^{-t}[/tex]

To find the inverse Laplace transform of s²+4, we can use the table of Laplace transforms and the property of linearity of the Laplace transform:

L{[tex]t^{n}[/tex]} = n!/[tex]s^{(n+1)}[/tex]

L{4} = 4/[tex]s^{0}[/tex]

[tex]L^{-1}[/tex]{s² + 4} = L^-1{s²} + [tex]L^{-1}[/tex]{4} = 2*d²/dt²δ(t) + 4δ(t)

Now, we can use the convolution theorem to find the inverse Laplace transform of f(s):

[tex]L^{-1}[/tex]{f(s)} = [tex]L^{-1}[/tex]{1/(s+1)²} * [tex]L^{-1}[/tex]{s² + 4} = (-te^(-t)) * (2d²/dt²δ(t) + 4δ(t))

Simplifying this expression, we get:

[tex]L^{-1}[/tex]{f(s)} = -2[tex]te^{-t}[/tex]δ''(t) - 4[tex]te^{-t}[/tex]δ'(t) + 4[tex]e^{-t}[/tex]δ(t)

Therefore, the inverse Laplace transform of f(s) is:

f(t) = -2t*u(t)[tex]e^{-t}[/tex] - 4u(t)[tex]e^{-t}[/tex]+ 4u(t).

To learn more about convolution theorem  from the given link:

https://brainly.com/question/29673703

#SPJ1


Related Questions

Use a triple integral to find the volume of the given solid. The solid enclosed by the paraboloids y = x^2 + z^2 and y = 8 – X^2 – z^2.

Answers

The volume of the given solid is [tex]}V= \frac{32}{3} (π)[/tex]

To find the volume of the solid enclosed by the two paraboloids, we can set up a triple integral over the region of integration in xyz-space.

The paraboloids intersect where [tex]y = x^2 + z^2 = 8 -x^2 -z^2[/tex].

Solving for [tex]x^2 + z^2[/tex] we get:

[tex]x^2 + z^2 = 4[/tex]

This is the equation of a cylinder with radius 2, centered at the origin. Therefore, the region of integration is the volume enclosed between the two paraboloids within this cylinder.

To set up the triple integral, we need to choose an order of integration and determine the limits of integration for each variable.

Let's choose the order of integration as dz dy dx. Then the limits of integration are:

For z: from [tex]-\sqrt{4-x^{2} } to \sqrt{4-x^{2} }[/tex]

For y: from [tex]x^2 + z^2 to 8 - x^2 - z^2[/tex]

For x: from -2 to 2

Therefore, the triple integral to find the volume is:

integral from -2 to 2 [integral from [tex]x^2 + z^2 to 8 - x^2 - z^2[/tex] [integral from                          [tex]-\sqrt{4-x^{2} } to \sqrt{4-x^{2} }[/tex] dz] dy] dx

Evaluating this triple integral gives the volume of the solid enclosed by the two paraboloids within the cylinder to be:

[tex]V= \frac{32}{3} (π)[/tex]

To know more about "Volume" refer here:

https://brainly.com/question/28338582#

#SPJ11

Consider the geometric sequence 4,8,16,32 if n is an integer which of these functions generate the sequence

Answers

Answer:

f(n) = 4 x 2^(n-1)

Step-by-step explanation:

The general form of a geometric sequence is given by:

an = ar^(n-1)

where a is the first term, r is the common ratio, and n is the term number.

Using the given sequence, we can find the values of a and r:

a = 4

r = 8/4 = 2

Therefore, the function that generates this sequence is:

f(n) = 4 x 2^(n-1)

For example, when n = 1, f(1) = 4 x 2^(1-1) = 4 x 1 = 4, which is the first term of the sequence. When n = 2, f(2) = 4 x 2^(2-1) = 4 x 2 = 8, which is the second term of the sequence, and so on.

Use the number line to answer the following 2 questions. 0 5 6 12 5 H 0 1 2 3 groups 1 1. How many groups of are in 4? 5 18 5 24 5 +|+++++> 4​

Answers

The values of the numerical operations obtained using the number line indicates;

1. 20 groups

2. 3 1/3

What is a number line?

A number line consists of a line marked at (regular) intervals, which can be used for performing numerical operations.

The number line indicates that each small marking is 1/5

1. The number of groups of 1/5 in 4, can be obtained by counting the number of small markings from the start of the number line to 4 as follows;

The number of small markings between 0 and 4 = 20

Therefore, the number of groups of 1/5 that are in 4 are 20 groups

2. The value of 4 ÷ 6/5, can be obtained from the number line as follows;

The number of groups of 6/5 that are in 4, from the number line = 3 groups

The fraction of a group of 6/5 remaining when the three groups are counted before 4 is 2/5, which is (2/5)/(6/5) = 1/3

Adding the remaining fraction to the whole number value, we get the value of 4 ÷ (6/5) as follows;

4 ÷ (6/5) = 3 + 1/3 = 3 1/3

Learn more on number lines here: https://brainly.com/question/29788107

#SPJ1

How does g(x)=2x change over the interval from x=8 to x=9?
Increases by 100%
increases by 2
increases by 2%
decreases by 2%

Answers

The percentage increase of the function from g(x) over the interval x = 8 to x = 9, is 100%. The correct option is therefore;

Increase by 100%

What is a percentage increase?

A percentage increase is the representation of the increase of a quantity over an interval as a percentage.

Whereby the function is expressed as follows;

g(x) = 2ˣ

The value of the function at the values x = 8, and x = 9, are;

g(x) = 2ˣ

g(8) = 2⁸ = 256

g(9) = 2⁹ = 512

The percentage increase is therefore;

Percentage increase = ((g(9) - g(8))/g(8)) × 100

Percentage increase = ((2⁹ - 2⁸)/(2⁸)) × 100

2⁸ × ((2 - 1)/(2⁸)) × 100 = 100%

Therefore, the change of g(x) over the interval from x = 8 to x = 9 is an increase of 100%

Learn more on percentages here: https://brainly.com/question/11642822

#SPJ1

A bottle of oil has a capacity of 4000 ml. It is half full.
How many litres of oil are there in the bottle?

Answers

Answer:

2 litres

Step-by-step explanation:

The capacity of a bottle of oil = 4000 ml

It is said that the bottle is half full so the half of 4000 is 2000.

Now, to convert ml to litre we need to divide 2000 by 1000

= 2000÷1000=2

Therefore, the answer is 2 litres

hope it helps! byeee

suppose 900 players each have their own well-shuffled, standard deck of 52 cards. each player will draw the top card and look at the suit (hearts, diamonds, clubs, or spades).

Answers

The expected outcome would be that approximately 225 players would draw hearts, 225 players would draw diamonds, 225 players would draw clubs, and 225 players would draw spades. This can be answered by the concept of Probability.

In this scenario, 900 players are each given a standard deck of 52 cards that has been well-shuffled. Each player will draw the top card from their deck and identify the suit, which could be hearts, diamonds, clubs, or spades.

To begin, each player is given a deck of 52 cards, which is the standard number of cards in a deck. These decks are well-shuffled, meaning the cards are randomly arranged to prevent any specific order or pattern. Each player will draw the top card from their deck, revealing the suit of that card, which could be hearts, diamonds, clubs, or spades. Since there are four suits in a standard deck, the probability of drawing any particular suit is 1/4 or 25%.

Therefore, in this scenario with 900 players, each drawing one card from their shuffled deck, there will likely be a distribution of suits that is relatively close to 25% for each suit, but with some natural variation due to the randomness of the shuffling process.

Therefore, the expected outcome would be that approximately 225 players would draw hearts, 225 players would draw diamonds, 225 players would draw clubs, and 225 players would draw spades. However, due to the random nature of shuffling, the actual distribution of suits among the players may deviate slightly from this expected outcome.

To learn more about Probability here:

brainly.com/question/30034780#

#SPJ11

Michael was offered a job that paid a salary of $36,500 in its first year. The salary was set to increase by 4% per year every year. If Michael worked at the job for 12 years, what was the total amount of money earned over the 12 years, to the nearest whole number?

Answers

The total amount of money earned over 12 years would be $483,732.

What is amount?

Amount is a word used to describe a numerical value or quantity. It is commonly used in mathematics, finance, and economics in order to identify the size or magnitude of something. Within those contexts, it is often used to refer to the total sum of money, goods, or services that are available or being exchanged.

To calculate this, we can use the formula for compound interest:
A = [tex]P(1 + r/n)^{(nt)[/tex]
Where A is the total amount, P is the principal (initial amount), r is the interest rate (4% per year in this case), n is the number of times the interest is compounded per year (1 for annually) and t is the time (12 years in this case).
Plugging in the values, we get:
A = [tex]\$36,500 (1 + 0.04/1)^{(1\times 12)[/tex]
A = $483,732.
Therefore, the total amount of money earned over 12 years would be $483,732.

To learn more about amount
https://brainly.com/question/29550019
#SPJ1

The total amount of money earned over 12 years would be $483,732.

What is amount?

Amount is a word used to describe a numerical value or quantity. It is commonly used in mathematics, finance, and economics in order to identify the size or magnitude of something. Within those contexts, it is often used to refer to the total sum of money, goods, or services that are available or being exchanged.

To calculate this, we can use the formula for compound interest:
A = [tex]P(1 + r/n)^{(nt)[/tex]
Where A is the total amount, P is the principal (initial amount), r is the interest rate (4% per year in this case), n is the number of times the interest is compounded per year (1 for annually) and t is the time (12 years in this case).
Plugging in the values, we get:
A = [tex]\$36,500 (1 + 0.04/1)^{(1\times 12)[/tex]
A = $483,732.
Therefore, the total amount of money earned over 12 years would be $483,732.

To learn more about amount
https://brainly.com/question/29550019
#SPJ1

Determine whether the given differential equation is exact. If it is exact, solve it. (If it is not exact, enter NOT.) (2xy2 − 5) dx + (2x2y + 7) dy = 0

Answers

A differential equation (2xy² − 5) dx + (2x²y + 7) dy = 0  is an exact differential equation

We know that a differential equation M dx + N dy = 0 is an exact differential equation when [tex]\partial N/\partial x=\partial M/\partial y[/tex]

Consider a differential equation (2xy² − 5) dx + (2x²y + 7) dy = 0

Comparing this equation with M dx + N dy = 0 we get,

M =  (2xy² − 5)

and N = (2x²y + 7)

The partial derivative of M with respect to y is:

[tex]\frac{\partial M}{\partial y} \\\\=\frac{\partial}{\partial y}(2xy^2 -5)[/tex]

= 4xy           ...........(1)

The partial derivative of N with respect to x is:

[tex]\frac{\partial N}{\partial x} \\\\=\frac{\partial}{\partial x}(2x^2y+7)[/tex]

= 4xy          ...........(2)

From (1) and (2),

[tex]\partial N/\partial x=\partial M/\partial y[/tex]

Therefore, the differential equation is an exact differential equation

Learn more about the differential equation here:

https://brainly.com/question/14620493

#SPJ4

Minimize f (x, y, z) = x^2 + y^2 + z^2 subject to 4x^2 + 2y^2 + z^2 = 4. Minimum Value

Answers

The given problem does not have a minimum value as the constraint equation and the values of x, y, z obtained from the partial derivatives of the Lagrange equation are contradictory.

What is equation?

Equation is a mathematical statement that expresses the equality of two expressions on either side of an equal sign. It is used to solve problems or to find unknown values. An equation is usually composed of two or more terms that are separated by an equal sign. Each side of the equation must have the same value in order for the equation to be true.

The given problem is a constrained optimization problem which can be solved using the Lagrange multiplier method. According to the Lagrange multiplier method, the objective function and the constraint equation must be combined into a single equation. Thus, the Lagrange equation for the given problem is given by:

L(x,y,z,λ) = x² + y² + z² + λ(4x² + 2y² + z² - 4)

Now, the partial derivatives of the Lagrange equation with respect to x, y and z is given by:

∂L/∂x = 2x + 8λx

∂L/∂y = 2y + 4λy

∂L/∂z = 2z + 2λz

Setting the partial derivatives of the Lagrange equation equal to zero, we get:

2x + 8λx = 0

2y + 4λy = 0

2z + 2λz = 0

Solving the above equations, we get:

x = 0

y = 0

z = 0

Substituting these values in the constraint equation, we get:

4x² + 2y²+ z² = 4

4(0)² + 2(0)²+ (0)²= 4

0 = 4

Which is a contradiction. Hence, the given problem does not have a minimum value.

In conclusion, the given problem does not have a minimum value as the constraint equation and the values of x, y, z obtained from the partial derivatives of the Lagrange equation are contradictory.

To know more about equation click-
http://brainly.com/question/2972832
#SPJ1

find the open intervals on which the function f(x)=−9x2 8x 10 is increasing or decreasing.

Answers

The function f(x) = -9x^2 + 8x + 10 is increasing on the interval (-∞, 4/9) and decreasing on the interval (4/9, ∞)

To find the open intervals on which the function f(x) = -9x^2 + 8x + 10 is increasing or decreasing, we need to find its first derivative and determine its sign over different intervals.

f(x) = -9x^2 + 8x + 10

f'(x) = -18x + 8

Setting f'(x) = 0, we get:

-18x + 8 = 0

x = 8/18 = 4/9

The critical point of the function is x = 4/9.

Now, we can determine the sign of f'(x) for x < 4/9 and x > 4/9 by testing a value in each interval.

For x < 4/9, let's choose x = 0:

f'(0) = -18(0) + 8 = 8 > 0

This means that f(x) is increasing on the interval (-∞, 4/9).

For x > 4/9, let's choose x = 1:

f'(1) = -18(1) + 8 = -10 < 0

This means that f(x) is decreasing on the interval (4/9, ∞).

Therefore, the function f(x) = -9x^2 + 8x + 10 is increasing on the interval (-∞, 4/9) and decreasing on the interval (4/9, ∞).

To learn more about function visit:

https://brainly.com/question/12431044

#SPJ11

What is A1=-100, and r=1/5

Answers

Okay, let's break this down step-by-step:

A1 = -100 - This means A1 has a value of -100

r = 1/5 - This means r is equal to 0.2 (one divided by 5)

So in summary:

A1 = -100

r = 0.2

Did I interpret those two lines correctly? Let me know if you need any clarification.

Determine the intersection, union, and complement sets from the given information.
44. U=(2, 4, 6, 8)
A = (2, 4)
B = (6,8)
a. A ∩ B =
b. AUB=
c. (AUB)' =

Answers

The intersection, union, and complement sets based on the universal set U = {2, 4, 6, 8}, are;

a. A ∩ B = {∅}

b. A ∪ B = {2, 4, 6, 8}

c. (A ∪ B)' = {∅}

What is a universal set?

The universal set is the set to which the other sets are subsets, and one which contains all the elements.

The Universal set is; U = (2, 4, 6, 8)

The set A = (2, 4)

The set B = (6, 8)

Therefore;

a. The set A ∩ B is the set of elements common to both sets A and B

Therefore no elements common to both sets A and B, therefore;

A ∩ B = {∅}

b. The set A ∪ B is the set that contains elements in set A and elements in set B as well as elements in set AB

The set AB = {2, 4, 6, 8}

c. The set of the complement of the union of the set A and B is the set that contains elements that are not in the union of set A and B

A ∪ B = {2, 4, 6, 8} = U,

U' = {∅}

Therefore (A ∪ B)' = {∅}

Learn more on set theory here: https://brainly.com/question/31304575

#SPJ1

Find the t-value that would be used to construct a 95% confidence interval with a sample size n=24. a. 1.740 b. 2.110 c. 2.069 d. 1.714 4

Answers

The t-value that would be used to construct a 95% confidence interval with a sample size of n=24 is c. 2.069.

To explain why, consider the idea of a t-distribution. We utilize the t-distribution instead of the usual normal distribution when working with small sample sizes (less than 30) and unknown population standard deviations. The t-distribution is more variable than the usual normal distribution, and this difference is compensated for by using a t-value rather than a z-value.

The t-value we select is determined by two factors: the desired level of confidence and the degrees of freedom (df) for our sample. We have 23 degrees of freedom for a 95% confidence interval with n=24 (df=n-1). We can calculate the t-value for a 95% confidence interval with 23 df using a t-table or calculator. This implies we can be 95% certain that the real population means is inside our estimated confidence zone.

It's worth noting that as the sample size grows larger, the t-distribution approaches the regular normal distribution, and the t-value approaches the z-value. So, for large sample sizes (more than 30), the ordinary normal distribution and a z-value can be used instead of the t-distribution and a t-value.

To learn more about t-distribution, visit:

https://brainly.com/question/16994704

#SPJ11

Find the sides and angles of the triangle.

Answers

Answer:

  a ≈ 6.8, B ≈ 50°, C ≈ 82°

Step-by-step explanation:

You want to solve the triangle with A=48°, b=7, c=9.

Law of Cosines

The relation given by the law of cosines is ...

  a² = b² +c² -2bc·cos(A)

  a² = 7² +9² -2·7·9·cos(48°) ≈ 45.6895

  a ≈ √45.6895 ≈ 6.76 ≈ 6.8

Law of Sines

The law of sines can be used to find one of the other angles:

  sin(C)/c = sin(A)/a

  C = arcsin(c/a·sin(A)) ≈ arcsin(9/6.7594·sin(48°)) ≈ 81.68° ≈ 82°

The remaining angle can be found from the sum of angles in a triangle:

  B = 180° -A -C = 50°

The solution is a ≈ 6.8, B ≈ 50°, C ≈ 82°.

Answer:

  a ≈ 6.8, B ≈ 50°, C ≈ 82°

Step-by-step explanation:

You want to solve the triangle with A=48°, b=7, c=9.

Law of Cosines

The relation given by the law of cosines is ...

  a² = b² +c² -2bc·cos(A)

  a² = 7² +9² -2·7·9·cos(48°) ≈ 45.6895

  a ≈ √45.6895 ≈ 6.76 ≈ 6.8

Law of Sines

The law of sines can be used to find one of the other angles:

  sin(C)/c = sin(A)/a

  C = arcsin(c/a·sin(A)) ≈ arcsin(9/6.7594·sin(48°)) ≈ 81.68° ≈ 82°

The remaining angle can be found from the sum of angles in a triangle:

  B = 180° -A -C = 50°

The solution is a ≈ 6.8, B ≈ 50°, C ≈ 82°.

use polynomial fitting to find the formula for the nth term of the sequence (an)n≥0 which starts at 2, 5 ,11, 21, 36

Answers

The formula for the nth term of the sequence (an)n≥0, which starts at 2, 5, 11, 21, 36, is an = n^4 - 3n^3 + 5n^2 - n + 2.

To use polynomial fitting to find the formula for the nth term of the sequence (an)n≥0 which starts at 2, 5, 11, 21, 36, follow these steps:

1. List the terms with their corresponding indices (n values): (0, 2), (1, 5), (2, 11), (3, 21), (4, 36).

2. Since there are 5 terms, assume a 4th-degree polynomial of the form: an^4 + bn^3 + cn^2 + dn + e.

3. Substitute the indices and corresponding terms into the polynomial and form a system of linear equations:

  e = 2
  a + b + c + d + e = 5
  16a + 8b + 4c + 2d + e = 11
  81a + 27b + 9c + 3d + e = 21
  256a + 64b + 16c + 4d + e = 36

4. Solve the system of linear equations:

  a = 1, b = -3, c = 5, d = -1, e = 2

5. Substitute these values back into the polynomial:

  a_n = n^4 - 3n^3 + 5n^2 - n + 2

So, the formula for the nth term of the sequence (an)n≥0, which starts at 2, 5, 11, 21, 36, is: an = n^4 - 3n^3 + 5n^2 - n + 2.

Learn more about sequences:https://brainly.com/question/7882626

#SPJ11

Which triangles are similar?

Answers

The two triangles that are similar are triangles A and B

What are similar triangles?

Similar triangles are triangles that have the same shape, but their sizes may vary. For two triangles to be equal, the corresponding angles must be equal and the ratio of corresponding sides must be equal.

Checking the three triangles, triangle A has the angles of 125° , 25° and the third angle can be calculated as 180-(125+25) = 180-150 = 30°

Triangle B has 125°, 30° and the Third angle can be calculated as 180-(125+30) = 180-155 = 25°

Triangle C has the angle 35°,25° and the third angle can be calculated as 180-(35+25) = 180-60 = 130°

Therefore,it is shown That triangles And B are similar to each other because they have thesame corresponding angles.

learn more about similar triangles from

https://brainly.com/question/14285697

#SPJ1

Approximate the sum of the series correct to four decimal places. (-1)^n-1 n^2/10^n

Answers

The sum of the series is 0.0901.

The formula for the sum of an infinite geometric series is:

S = a/(1-r)

where S is the sum of the series, a is the first term = 1/10, and r is the common ratio = -1/10

So,

S = (1/10)/(1-(-1/10)) = (1/10)/(11/10) = 1/11

To approximate the sum correct to four decimal places, we need to evaluate the series up to a certain number of terms that gives us an error of less than 0.00005. To do this, use the formula for error of an alternating series:

|E| <= |a_n+1|, where a_n+1 is the first neglected term

In this case:

a_n+1 = (-1)^n+1 (n+1)^2/10^(n+1)

To find the number of terms, we can use the inequality:

|a_n+1| < 0.00005

Solving for n gives:

(-1)^n+1 (n+1)^2/10^(n+1) < 0.00005

Taking the logarithm of both sides and simplifying gives:

n > 5.623

So we need to evaluate the series up to n=6 to get an error of less than 0.00005. Evaluating the series up to n=6 gives:

S = 1/10 - 4/100 + 9/1000 - 16/10000 + 25/100000 - 36/1000000 + 49/10000000

S = 0.090123

Therefore, the sum of the series correct to four decimal places is approximately 0.0901.

Know more about series here:

https://brainly.com/question/28163163

#SPJ11

as the sample size becomes larger, the sampling distribution of the sample mean approaches a a. binomial distribution b. normal distribution c. chi-square d. poisson distribution

Answers

b. normal distribution.  As the sample size becomes larger, the sampling distribution of the sample mean approaches a normal distribution.

Explanation:

As the sample size becomes larger, the sampling distribution of the sample mean approaches a normal distribution. This concept is known as the Central Limit Theorem, which states that the distribution of sample means approximates a normal distribution as the sample size increases, regardless of the population's distribution.

The Central Limit Theorem states that as the sample size increases, the sampling distribution of the sample mean approaches a normal distribution, regardless of the shape of the population distribution from which the samples are drawn. This is true for any population distribution, including those that are not normally distributed.

The binomial distribution, chi-square distribution, and Poisson distribution are all probability distributions with specific characteristics and are not necessarily related to the sampling distribution of the sample mean. However, the normal distribution is often observed as an approximation to the sampling distribution of the sample mean when the sample size is large, making option b, "normal distribution," the correct answer.

Know more about the normal distribution click here:

https://brainly.com/question/15103234

#SPJ11

find the given higher-order derivative. f (3)(x) = 5 x4 , f (4)(x)

Answers

Answer:

4th Order Derivative: 120

Step by sep solution:

To find the fourth-order derivative of the function f(x) = 5x^4, we can differentiate the third-order derivative f(3)(x) = d^3/dx^3 (5x^4) with respect to x:

f(3)(x) = d^3/dx^3 (5x^4) = 5 * d^3/dx^3 (x^4)

To find d^3/dx^3 (x^4), we differentiate the function x^4 three times:

d/dx (x^4) = 4x^3

d^2/dx^2 (x^4) = d/dx (4x^3) = 12x^2

d^3/dx^3 (x^4) = d/dx (12x^2) = 24x

Substituting this back into the expression for the third-order derivative, we get:

f(3)(x) = 5 * d^3/dx^3 (x^4) = 5 * 24x = 120x

Now we can differentiate f(3)(x) = 120x to find the fourth-order derivative:

f(4)(x) = d^4/dx^4 (f(x)) = d/dx (f(3)(x)) = d/dx (120x) = 120

Therefore, the fourth-order derivative of the function f(x) = 5x^4 is f(4)(x) = 120

H(1)=9 h(2)=3 h(n) = h(n-2)x h(n-1). H(3) = evaluate sequences in recursive form

Answers

Answer:

Using the given recursive formula, we can find the value of H(3) as follows:

H(3) = H(1) x H(2)

H(3) = 9 x 3

H(3) = 27

Therefore, H(3) = 27.

Step-by-step explanation:

Answer:

The sequence you provided is a recursive sequence where each term is defined using the two previous terms. Given that H(1) = 9 and H(2) = 3, we can find H(3) by multiplying H(1) and H(2): H(3) = H(1) x H(2) = 9 x 3 = 27.

describe an algorithm that takes as input a list of n integers and finds the number of negative integers in the list.

Answers

An algorithm that takes as input a list of n integers and finds the number of negative integers in the list:

1. Initialize a variable called count to 0.
2. Loop through the list of n integers:
  a. If the current integer is negative, increment the count variable by 1.
  b. Otherwise, continue to the next integer.
3. Return the count variable as the number of negative integers in the list.

This algorithm iterates through each integer in the list and checks if it's negative. If it is, it increments a count variable. At the end of the loop, the count variable contains the total number of negative integers in the list, which is returned as the output of the algorithm.

Know more about algorithm here;

https://brainly.com/question/22984934

#SPJ11

An algorithm that takes as input a list of n integers and finds the number of negative integers in the list:

1. Initialize a variable called count to 0.
2. Loop through the list of n integers:
  a. If the current integer is negative, increment the count variable by 1.
  b. Otherwise, continue to the next integer.
3. Return the count variable as the number of negative integers in the list.

This algorithm iterates through each integer in the list and checks if it's negative. If it is, it increments a count variable. At the end of the loop, the count variable contains the total number of negative integers in the list, which is returned as the output of the algorithm.

Know more about algorithm here;

https://brainly.com/question/22984934

#SPJ11

create an equation that models the total amount of money that Madison spends on fruit

Answers

Answer: 2.15g+0.75w=20.35

Step-by-step explanation:

Since we're creating an equation, we know it has to have an = sign. The total amount of money spent on g pounds of grapes and w pounds of watermelon is $2-.35, so we know that's going to be on the opposite side of the equal to sign. $2.15 is what a pound of g costs, so a g pounds of grapes would cost 2.15g. I used the same reasoning for the watermelons too to get 2.15g + 0.75w.

Answer:

2.15g+0.75w=20.35

Step-by-step explanation:

sorry im in a rush bye gtg :D

4. Find the length of arc s.
7 cm
0
02 cm.
5 cm

Answers

The length of the arc s as required to be determined in the attached image is; 17.5 cm.

What is the length of the arc s?

It follows from the task content that the length of the arc s is to be determined from the given information.

As evident in the task content, the angle subtended at the center of the two concentric circles is same for the 2cm and 5 cm radius circles.

On this note, it follows from proportion that the length of an arc is directly proportional to the radius of the containing circle.

Therefore, the ratio which holds is;

s / 5 = 7 / 2

s = (7 × 5) / 2

s = 17.5 cm.

Consequently, the length of the arc s is; 17.5 cm.

Read more on length of an arc;

https://brainly.com/question/28108430

#SPJ1

a right triangle has legs of 12 inches and 16 inches whose sides are changing. the short leg is decreasing by 2 in/sec and the long leg is growing at 5 in/sec. what is the rate of change of the hypotenuse? O-0.8 inch/sec O 16 inch/sec O 11.2 inch/sec O-0.2 inch/sec

Answers

the correct option is [tex]11.2 inch/sec[/tex] , as it represents the rate of change of the hypotenuse with the correct sign. Thus, option C is correct.

What is the change of the hypotenuse?

Let's denote the short leg by 'x' and the long leg by 'y'. The given information states that   [tex]dx/dt = -2[/tex] in/sec (since the short leg is decreasing by 2 in/sec) and dy/dt = 5 in/sec (since the long leg is growing at 5 in/sec).

We can use the Pythagorean theorem to relate the short leg, long leg, and hypotenuse of the right triangle:

[tex]x^2 + y^2 = h^2[/tex]

where 'h' represents the length of the hypotenuse.

Differentiating both sides of the equation with respect to time 't', we get:

[tex]2x(dx/dt) + 2y(dy/dt) = 2h(dh/dt)[/tex]

Substituting the given values for [tex]dx/dt, dy/dt, x,[/tex] and  [tex]y,[/tex] we have:

[tex]2(12)(-2) + 2(16)(5) = 2h(dh/dt)[/tex]

Simplifying, we get:

[tex]-48 + 160 = 2h(dh/dt)[/tex]

[tex]112 = 2h(dh/dt)[/tex]

Dividing both sides by 2h, we get:

[tex](dh/dt) = 112/(2h)[/tex]

We can now plug in the given values for x and y to find h:

[tex]x = 12 in[/tex]

[tex]y = 16 in[/tex]

Using the Pythagorean theorem, we can solve for h:

[tex]h^2 = x^2 + y^2[/tex]

[tex]h^2 = 12^2 + 16^2[/tex]

[tex]h^2 = 144 + 256[/tex]

[tex]h^2 = 400[/tex]

[tex]h = \sqrt400[/tex]

h = 20 in

Now, substituting the value of h into the equation for  [tex](dh/dt),[/tex] we get:

[tex](dh/dt) = 112/(2\times 20)[/tex]

[tex](dh/dt) = 112/40[/tex]

[tex](dh/dt) = 2.8 in/sec[/tex]

So, the rate of change of the hypotenuse is 2.8 in/sec. However, note that the question asks for the rate of change of the hypotenuse with the correct sign, indicating whether it is increasing or decreasing.

Since the long leg is growing at 5 in/sec and the short leg is decreasing at 2 in/sec.

the hypotenuse must be increasing at a rate of 2.8 in/sec (as the change in the long leg is dominating over the change in the short leg).

Therefore, the correct option is  [tex]11.2 inch/sec,[/tex] as it represents the rate of change of the hypotenuse with the correct sign.

Learn more about hypotenuse here:

https://brainly.com/question/29407794

#SPJ1

What is the value of the constant of variation when y varies inversely as x and the following are true y = 5 and x = 2?​

Answers

Answer:

k = 10

Step-by-step explanation:

given y varies inversely as x then the equation relating them is

y = [tex]\frac{k}{x}[/tex] ← k is the constant of variation

to find k use the condition that y = 5 when x = 2

5 = [tex]\frac{k}{2}[/tex] ( multiply both sides by 2 )

10 = k

Is W a subspace of the vector space? W is the set of all matrices in Mn,n with zero determinants

Answers

W is not a subspace of the vector space of all matrices in Mn,n.

To determine if W is a subspace of the vector space:

We need to check if W meets the criteria of a subspace.
To be a subspace of a vector space, W must satisfy three conditions:
1. W must contain the zero matrix.
2. W must be closed under vector addition.
3. W must be closed under scalar multiplication.
Let's examine each condition for W:
1. W contains the zero matrix: The zero matrix has a determinant of 0, so it is included in W.
2. W is closed under vector addition: If A and B are matrices in W with zero determinants, their sum,

A + B, should also have a zero determinant to be in W.

The determinant property for sums of matrices doesn't guarantee that det(A+B) = det(A) + det(B), so we can't guarantee that W is closed under vector addition.
Since W fails to meet the second condition, it is not a subspace of the vector space of all matrices in Mn,n.

To know more about Matrix:

https://brainly.com/question/9967572

#SPJ11

Divide 500 among aryl,joy and kenneth such that arlyn's share is 2/3 of joy's share ang joy's share is 2/3 of Kenneth's share how much will each get?

Answers

The amount that each will get from the given fraction of amount is :

Kenneth's share = $236.842

Joy's share = 2/3 x = $157.895

Arlyn's share = 4/9 x = $105.263

Given that,

Total amount = 500

Let the fraction of amount of money Kenneth gets = x

The fraction of amount of money Joy gets = 2/3 of Kenneth's share

                                                                       = 2/3 x

The fraction of amount of money Arlyn gets = 2/3 of joy's share

                                                                         = 2/3 (2/3 x)

                                                                         = 4/9 x

Now,

x + 2/3x + 4/9 x = 500

(9x + 6x + 4x) / 9 = 500

9x + 6x + 4x = 4500

19x = 4500

x = 236.842

Kenneth's share = $236.842

Joy's share = 2/3 x = $157.895

Arlyn's share = 4/9 x = $105.263

Hence each will get $236.842, $157.895 and $105.263.

Learn more about Fractions here :

https://brainly.com/question/30423291

#SPJ1

Help
Please now ASAPpppp

Answers

The area of the given hexagon is 419.1 square units

Calculating the area of a hexagon

From the question, we are to determine the area of the given hexagon.

The area of a  hexagon is given by the formula,

Area = 1/2 Apothem × Perimeter

From the given information,

Apothem = 11

Now, we will determine the perimeter

First, we need to find the length of  a side

Let the length of a side be s and half the length be x

Then,

tan (30°) = x / 11

x = 11 × tan(30)

x = 6.35

Length of a side = 6.35 × 2

Length of a side = 12.70

Thus,

Area = 1/2 Apothem × Perimeter

Area = 1/2 × 11 × 6 × (12.70)

Area = 419.1 square units

Hence,

The area is 419.1 square units

Learn more on Calculating area of hexagon here: https://brainly.com/question/30384520

#sPJ1

calculate the mean, median, q1, q3. what is the relationship between the mean and the median and why?

Answers

To calculate the mean, median, q1, and q3, you will need a set of data. Once you have the data, you can find the mean by adding up all the numbers and dividing by the total number of values. The median is the middle value of the data set when it is arranged in order from lowest to highest. Q1 is the value that separates the bottom 25% of the data from the top 75%, while Q3 separates the top 25% from the bottom 75%.

The relationship between the mean and the median can tell you about the distribution of the data. If the mean is equal to the median, then the data is evenly distributed. If the mean is greater than the median, then the data is skewed to the right, meaning that there are a few high values that are affecting the overall average. If the mean is less than the median, then the data is skewed to the left, meaning that there are a few low values that are affecting the overall average.
To calculate the mean, median, Q1, and Q3, follow these steps:

1. Mean: Add all the values in your dataset and divide by the total number of values.
2. Median: Arrange the values in ascending order, then find the middle value. If there are two middle values, take their average.
3. Q1: Find the median of the lower half of the dataset, excluding the overall median if there's an odd number of values.
4. Q3: Find the median of the upper half of the dataset, excluding the overall median if there's an odd number of values.

The relationship between the mean and the median helps identify the skewness of the dataset. If the mean is greater than the median, the dataset is right-skewed, indicating more high-value outliers. If the mean is less than the median, the dataset is left-skewed, indicating more low-value outliers. If the mean and median are approximately equal, the dataset is likely symmetric with no skewness. This relationship helps understand the overall distribution of the data.

Visit here to learn more about outliers brainly.com/question/14704592

#SPJ11

identify the integers that are congruent to 5 modulo 13. (check all that apply.)
a. 103
b. -34
c. -122
d. 96

Answers

Answer:

Therefore, the integer that is congruent to 5 modulo 13 is 122.

Step-by-step explanation:

Other Questions
Consider the following.C = x3 10x2 + 33xUse the cost function to find the production level at which the average cost is a minimum.x =For this production level, show that the marginal cost and average cost are equal.marginal cost$average cost$ northwest fur co. started 2021 with $99,000 of merchandise inventory on hand. during 2021, $430,000 in merchandise was purchased on account with credit terms of 2/15, n/45. all discounts were taken. purchases were all made f.o.b. shipping point. northwest paid freight charges of $8,300. merchandise with an invoice amount of $3,700 was returned for credit. cost of goods sold for the year was $374,000. northwest uses a perpetual inventory system.Assuming Northwest uses the gross method to record purchases, what is the cost of goods available for sale? What exercise would be good for advanced core training?medicine ball wall tossplank holdbicycle crunchesreverse crunch Which equation represents the linear relationship between the x-values and the y values in the table ?A. y = -x + 9B. y = 3x +5C. y = -2x + 8D. y = 4x + 3 Calculate the pH of a 2.00 M solution of nitrous acid (NHO2). The Ka for nitrous acid is 4.5 x 10-4 A. 1.54 B. 2.23 C. 2.97 D. 4.14. a = 2.7 cm, b = 12 cm and c = 9.2 cm. If m is the midpoint of SR Calculate the size of angle MwwT (correct to 1 d.p.) fixed exchange rate regimes include each of the following, except which one?a. the Bretton Woods exchange rate systemb. exchange rate pegsc. dollarizationd. currency boards Your organization is shopping for a booster capable of accelerating a 453.5 kg payload to and ideal velocity of 5795 m/s (Assume no gravity, no drag losses and a non rotating earth) Two companies have submitted proposals. Check if they are acceptable, and then show which one is better and why:A) A single stage with Ve=3050 m/s, All-up mass of 6803 kg, and a empty (Structural) mass of 907 kg.B) Two stages with Ve=3059 m/s for both stages: First stage gross mass of 6803 kg and an empty mass of 720 kg; Second stage gross mass of 1757 kg and and empty mass of 186.4 kg. HELP PLEASEQuestion 11 In an argumentative essay, an effective claim will take a clear stance on a position. True False All other things being equal if a division's traceable fixed expenses increase:A. the division's contribution margin ratio will decrease.B. the division's segment margin ratio will remain the same.C. the division's segment margin will decrease.D. the overall company profit will remain the same. You invest $2,000 in a Certificate of Deposit (CD) with an APR 2.25% for 3 yearsthat compounds annually. What is the balance after 3 years? Someone seeking a firearms permit in Georgia would go to which court?1.juvenile court2.superior court3.state court4.probate court which average is the most representative of the data consider the relative intensities of the spectra of h2 and d2 to determinewhich raman rotation spectrum will yield lines alternating in intensity andhaving a relative intensity of 1/2. A patient suddenly develops signs and symptoms that resemble hemiballismus (expression of involuntary movement), but only on one side of the body. Knowing that such hyperkinetic movement disorders have something to do with the basal ganglia and that you suspect the patient had a stroke, which cerebral artery should you consider as possibly being involved in this stroke?a lenticulostriate branch of the middle cerebral arteryan amygdalo-hippocampal branch of the anterior choroidal arterysulcal branch of the anterior spinal arterya circumferential branch of the basilar arterya paramedian perforating branch of the posterior cerebral artery what Wisconsin Teaching Standard relates to a guidance philosophy? Classify the following statements about human use of antibiotics as true or false:1. Antibiotics became widely used in the 20th century.2. Antibiotics are prescribed to treat bacterial infections.3. Overuse or misuse of antibiotics can contribute to antibiotic resistance.4. Antibiotics are effective against viral infections.5. Proper antibiotic usage includes completing the full prescribed course, even if symptoms improve. Construct a frequency distribution for the data using five classes. Describe the shape of the distribution.Weekly grocery bills (in dollars) for 20 randomly selected households135 120 115 132 136 124 119 145 98 110125 120 115 130 140 105 116 121 125 108a) the distribution is skewed to the rightb) the distribution is approximately bell shapedc) the distribution is uniformd) the distribution is skewed to the left 1. Think about what you've done so far today, and what you still have to do. Writethree sentences using the present perfect tense to tell what you've done, and threesentences in the present perfect to tell what you haven't done yet. For example: Yahe asistido a mis clases. Todava no he hecho mi tarea.1.2.3.4.5.6. imitative new entry involves offering a radical new product or highly innovative service, true or false?