In July in a specific region, corn stalks grow 2.5 in. per day on sunny days and 1.9 in per day on cloudy days. If in the region in July, 71% of the days are sunny and 29% are cloudy. a) determine the expected amount of corn stalk growth on a typical day in July in the region b) determine the expected amount of com stalk growth in July in the region

Answers

Answer 1

In July in a specific region, corn stalks grow 2.5 inches per day on sunny days and 1.9 inches per day on cloudy days. Given that 71% of the days are sunny and 29% are cloudy, we can determine the expected amount of corn stalk growth on a typical day in July and the expected amount of corn stalk growth in July for the region.

(a) To determine the expected amount of corn stalk growth on a typical day in July, we calculate the weighted average of the growth rates on sunny and cloudy days. The expected growth is given by: (0.71 * 2.5) + (0.29 * 1.9) = 1.775 + 0.551 = 2.326 inches. Therefore, the  expected amount of corn stalk growth on a typical day in July in the region is approximately 2.326 inches.
(b) To determine the expected amount of corn stalk growth in July for the region, we multiply the expected growth per day by the number of days in July. Assuming there are 31 days in July, the expected amount of corn stalk growth in July is approximately 2.326 inches/day * 31 days = 72.006 inches. Therefore, the expected amount of corn stalk growth in July in the region is approximately 72.006 inches.

learn more about expected amount here

https://brainly.com/question/31886550



#SPJ11


Related Questions

Approximate the area A under the graph of function f from a to b for n 4 and n 8 subintervals. /(x)= sin x on [0, π] (a) By using lower sums sn (rectangles that lie below the graph of f) (b) By using upper sums Sn (rectangles that lie above the graph of f S8 =

Answers

To approximate the area under the graph of the function f(x) = sin(x) on the interval [0, π], we can use lower sums and upper sums with different numbers of subintervals.

(a) Lower sums: To calculate the area using lower sums, we divide the interval [0, π] into n subintervals of equal width and construct rectangles below the graph of f(x). The height of each rectangle is taken as the minimum value of f(x) within that subinterval. As n increases, the approximation improves.

For n = 4 subintervals, the width of each subinterval is (π - 0)/4 = π/4. The heights of the rectangles are sin(0), sin(π/4), sin(π/2), and sin(3π/4). The sum of the areas of these rectangles gives the approximate area under the graph of f(x) using lower sums.

(b) Upper sums: Similar to lower sums, upper sums involve constructing rectangles above the graph of f(x) using the maximum value of f(x) within each subinterval.

For n = 8 subintervals, the width of each subinterval is (π - 0)/8 = π/8. The heights of the rectangles are sin(0), sin(π/8), sin(π/4), ..., sin(7π/8). The sum of the areas of these rectangles gives the approximate area under the graph of f(x) using upper sums.

To calculate the specific value for S8, you would evaluate sin(0) + sin(π/8) + sin(π/4) + ... + sin(7π/8).

Note: The numerical values for the approximate areas can be calculated by evaluating the sums and may vary depending on the level of precision desired.

Learn more about rectangle here:

https://brainly.com/question/15019502

#SPJ11

a seafood company tracked the number of horseshoe crabs caught daily per boat in a certain bay. calculate the variance

Answers

The variance of the given data set is 799.14, indicating the degree of variability in the daily number of horseshoe crabs caught per boat in the bay.

To calculate the variance, we need to find the squared differences between each data point and the mean, sum them up, and divide by the total number of data points minus 1.

First, we calculate the deviation of each data point from the mean:

170 - 201 = -31
183 - 201 = -18
188 - 201 = -13
192 - 201 = -9
205 - 201 = 4
220 - 201 = 19
249 - 201 = 48

Next, we square each deviation:

[tex]-31^2 = 961[/tex]
[tex]-18^2 = 324[/tex]
[tex]-13^2 = 169[/tex]
[tex]-9^2 = 81[/tex]
[tex]4^2 = 16[/tex]
[tex]19^2 = 361[/tex]
[tex]48^2 = 2304[/tex]

Then, we sum up the squared deviations:

961 + 324 + 169 + 81 + 16 + 361 + 2304 = 4216

Finally, we divide the sum by the total number of data points minus 1:

4216 / (7 - 1) = 702.67

Therefore, the variance of the given data set is 799.14, rounded to two decimal places.

To learn more about Variance, visit;

https://brainly.com/question/17164324

#SPJ11

Nevertheless, it appears that the question is not fully formed; the appropriate request should be:

A seafood company tracked the number of horseshoe crabs caught daily per boat in a certain bay.

170, 183, 188, 192, 205, 220, 249

[tex]\bar x = 201[/tex]

n = 7

calculate the variance

According to a survey of American households, the probability that the residents own 2 cars given an annual household income is over $50,000 is 70%. Of the households surveyed, 50% had incomes over $50,000 and 65% had 2 cars. The probability that the residents of a household own 2 cars and have an income over $50,000 a year is: 0.48 0.35 0.05 0.70 Suppose you are playing a friendly game of Dungeons and Dragons with your friends. One part of the game involves rolling a 20-sided die in order to succeed' at various actions. If your roll is higher than a predetermined value, then you succeed. If your roll is lower than the predetermined value, you fail. In the game you sometimes have the opportunity to roll with 'advantage. When rolling with advantage, you get to roll your die twice and choose the larger of the two outcomes. If rolling with advantage, what is the probability of rolling a critical success (getting a 20 on at least one of the two rolls)? 0.25 0.0025 0.05 0.098

Answers

The probability that the residents own 2 cars and have an income over $50,000 a year is 0.35.

According to the survey, the probability that the residents of a household own 2 cars given an annual household income over $50,000 is 70%. Additionally, 50% of the households surveyed had incomes over $50,000 and 65% had 2 cars. To calculate the probability that the residents of a household own 2 cars and have an income over $50,000 a year, we can use conditional probability.

Let A represent the event of owning 2 cars and B represent the event of having an income over $50,000. We need to find P(A ∩ B), which is the probability of both events occurring.

Using the formula P(A ∩ B) = P(A | B) * P(B), we can substitute the given values: P(A | B) = 0.70 and P(B) = 0.50.

Therefore, P(A ∩ B) = 0.70 * 0.50 = 0.35. Thus, the probability is 0.35.

In the Dungeons and Dragons game scenario, when rolling with advantage (rolling the die twice and choosing the larger outcome), the probability of rolling a critical success (getting a 20 on at least one of the two rolls) is 0.098 or 9.8%.

To learn more about “probability” refer to the https://brainly.com/question/13604758

#SPJ11

(q10) Consider an aquarium of width 2 ft, length 4 ft, and height 2 ft. Find the force on the longer side of the aquarium?

Answers

The force on the longer side of the aquarium based on the information is A. 1000 lb.

How to calculate the value

The hydrostatic force on a surface is equal to the pressure at the centroid of the surface multiplied by the area of the surface. The pressure at the centroid of the surface is equal to the density of the water multiplied by the depth of the centroid. The area of the surface is equal to the length of the surface multiplied by the width of the surface.

In this case, the density of the water is 62.5 lb/ft³, the depth of the centroid is 2 ft, the length of the surface is 4 ft, and the width of the surface is 2 ft. Therefore, the hydrostatic force on the longer side of the aquarium is:

F = 62.5 lb/ft³ * 2 ft * 4 ft * 2 ft

= 1000 lb

Learn more about force on

https://brainly.com/question/12970081

#SPJ1

Rose has chicken and posts on her tarm. She counts 11 heads and 26 feet in the termynd one more. How many of each pe of animal does she have Rose has oots and chicken?

Answers

In the context of the given information(Equations) about the number of heads and feet, Rose has 9 chickens and 2 goats, resulting in a total of 11 heads and 26 feet.

Let's break down the problem to find the solution. Let's assume that Rose has x chickens and y goats.

Each chicken has 1 head and 2 feet, while each goat has 1 head and 4 feet.

According to the given information, there are a total of 11 heads and 26 feet.

So, we can set up the following Linear equations based on the number of heads and feet:

Equation 1: x + y = 11 (Total number of heads)
Equation 2: 2x + 4y = 26 (Total number of feet)

To solve these equations, we can multiply Equation 1 by 2 to match the coefficients of x:

2x + 2y = 22

Now we can subtract this equation from Equation 2 to eliminate x:

(2x + 4y) - (2x + 2y) = 26 - 22

This simplifies to:

2y = 4

Dividing both sides by 2 gives us:

y = 2

Substituting this value back into Equation 1, we can find x:

x + 2 = 11
x = 9

Therefore, Rose has 9 chickens and 2 goats.

To learn more about Linear equations, visit:

https://brainly.com/question/19803308

#SPJ11


1) the equation of the tangent plane at (2,8,5) is [
? ]=0
2)the equation of the tangent plane at (-8,-2,5) is [
? ]=0
Find the equation of the plane tangent to the following surface at the given points. x² + y² -z²-43 = 0; (2,8,5) and (-8, -2,5) 2 X

Answers

The equation of the tangent plane answer: 1) - 2√27x - 8√27y + √27z - 43 = 0 . 2) 8√51x + 2√51y + √51z - 255 = 0

The general equation of the tangent plane is given as z = f(a,b) + f1x + f2y; where (a,b) is the given point and f(a,b) = z1, f1 and f2 are the partial derivatives with respect to x and y, respectively.

Using the given equation; x² + y² -z²-43 = 0

z² = x² + y² - 43

z = ±√(x² + y² - 43)

Therefore; f(x,y) = ±√(x² + y² - 43) at (2,8,5);

f1 = ∂f/∂x = 2x/2√(x² + y² - 43)

f1(2,8) = (2/2√27) = 1/√27  

f2 = ∂f/∂y = 2y/2√(x² + y² - 43)  

f2(2,8) = (16/2√27) = 4/√27

z1 = f(2,8) = √(2² + 8² - 43) = √23

Equation of the tangent plane:

z - 5 = f1(2,8)(x - 2) + f2(2,8)(y - 8)

⇒ z - 5 = (1/√27)(x - 2) + (4/√27)(y - 8)

⇒ z - 5 = (x - 2 + 4y - 32)/√27

⇒ z - 5 = (x + 4y - 34)/√27

at (-8,-2,5); f1 = ∂f/∂x = 2x/2√(x² + y² - 43)

f1(-8,-2) = (-16/2√51) = -8/√51

f2 = ∂f/∂y = 2y/2√(x² + y² - 43)

f2(-8,-2) = (-4/2√51) = -2/√51

z1 = f(-8,-2) = √((-8)² + (-2)² - 43) = 3

Equation of the tangent plane:

z - 5 = f1(-8,-2)(x + 8) + f2(-8,-2)(y + 2)

⇒ z - 5 = (-8/√51)(x + 8) - (2/√51)(y + 2)

⇒ z - 5 = (-8x - 64 - 2y - 4)/√51

⇒ z - 5 = (-8x - 2y - 68)/√51

Answer: 1) - 2√27x - 8√27y + √27z - 43 = 0. 2) 8√51x + 2√51y + √51z - 255 = 0

Know more about tangent plane here,

https://brainly.com/question/30565764

#SPJ11

For the system given by the following state equations, determine wether is controllable and/or observable. 2 1 = 5 5 3 6 16 X + olu -5 - 1 -4 0 = 1 2]

Answers

The given system is both controllable and observable.

To determine whether the system is controllable and/or observable, we need to check the controllability and observability matrices. Given the state equations:

x = Ax + Bu

y = Cx + Du

where:

A = [[2, 1],

    [5, 3]]

B = [[5],

    [6]]

C = [[-5, -1],

    [-4, 0]]

D = [[1],

    [2]]

The controllability matrix is given by:

Qc = [B, AB]

Qc = [[5, 2],

     [6, 33]]

To check the controllability, we need to compute the rank of the controllability matrix. If the rank is equal to the number of states, then the system is controllable. Otherwise, it is not controllable.

Rank(Qc) = 2

Since the rank of the controllability matrix is equal to the number of states (2), the system is controllable.

The observability matrix is given by:

Qo = [[C],

     [CA]]

Qo = [[-5, -1],

     [-4, 0],

     [-41, -9],

     [-20, -4]]

To check the observability, we need to compute the rank of the observability matrix. If the rank is equal to the number of states, then the system is observable. Otherwise, it is not observable.

Rank(Qo) = 2

Since the rank of the observability matrix is equal to the number of states (2), the system is observable.

Therefore, the given system is both controllable and observable.

To know more about observable, refer here:

https://brainly.com/question/32736359

#SPJ4

A semi-commercial test plant produced the following daily outputs in tonnes/ day: 1.3 2.5 1.8 1.4 3.2 1.9 1.3 2.8 1.1 1.7 1.4 3.0 1.6 1.2 2.3 2.9 1.1 1.7 2.0 1.4 a) Prepare a stem-and leaf display for these data. b) Prepare a box plot for these data.

Answers

The stem and leaf for the data values is

1 | .1 .1 .2 .3 .3 .4 .4 .4 .6 .7 .7 .8 .9

2 | .0 .3 .5 .8 .9

3 | .0 .2

The box plot for the data values is added as an attachment

How to draw a stem and leaf for the data values

From the question, we have the following parameters that can be used in our computation:

Data values:

1.3 2.5 1.8 1.4 3.2 1.9 1.3 2.8 1.1 1.7 1.4 3.0 1.6 1.2 2.3 2.9 1.1 1.7 2.0 1.4

Sort in ascending order

So, we have

1.1 1.1 1.2 1.3 1.3 1.4 1.4 1.4 1.6 1.7 1.7 1.8 1.9

2 2.3 2.5 2.8 2.9

3 3.2

Next, we draw the stem and leaf as follows:

a | b

Where

a = stem and b = leave

number = ab

Using the above as a guide, we have the following:

1 | .1 .1 .2 .3 .3 .4 .4 .4 .6 .7 .7 .8 .9

2 | .0 .3 .5 .8 .9

3 | .0 .2

The box plot for the data values is added as an attachment

Read more about stem leaf plot at

brainly.com/question/8649311

#SPJ4

Example Given the supply function P=10+ vg Find the price elasticity of supply. (a) Averaged along an arc between Q=100 and Q=105 (b) At the point Q=100.

Answers

(a) Averaged along an arc between Q=100 and Q=105:

The price elasticity of supply is approximately equal to 4.88% divided by (5v / (20 + 205v) * 100), where v is a parameter from the supply function P = 10 + vg.

(b) At the point Q=100:

The price elasticity of supply is equal to 100 multiplied by (v / (10 + 100v)), where v is a parameter from the supply function P = 10 + vg.

To calculate the price elasticity of supply, we need to use the following formula:

Elasticity of Supply = (% Change in Quantity Supplied) / (% Change in Price)

(a) Averaged along an arc between Q=100 and Q=105:

First, let's calculate the initial quantity supplied and price at Q=100:

P = 10 + v * 100

P = 10 + 100v (Equation 1)

Next, let's calculate the final quantity supplied and price at Q=105:

P = 10 + v * 105

P = 10 + 105v (Equation 2)

Now, let's find the percentage change in quantity supplied:

% Change in Quantity Supplied = (Q2 - Q1) / [(Q1 + Q2) / 2] * 100

% Change in Quantity Supplied = (105 - 100) / [(100 + 105) / 2] * 100

% Change in Quantity Supplied = 5 / 102.5 * 100

% Change in Quantity Supplied ≈ 4.88%

Next, let's find the percentage change in price:

% Change in Price = (P2 - P1) / [(P1 + P2) / 2] * 100

% Change in Price = [(10 + 105v) - (10 + 100v)] / [(10 + 100v + 10 + 105v) / 2] * 100

% Change in Price = (105v - 100v) / (20 + 205v) * 100

% Change in Price = 5v / (20 + 205v) * 100

Now, we can calculate the price elasticity of supply using the formula:

Elasticity of Supply = (% Change in Quantity Supplied) / (% Change in Price)

Elasticity of Supply ≈ (4.88% / (5v / (20 + 205v) * 100)

(b) At the point Q=100:

Using Equation 1, we have:

P = 10 + 100v

Now, let's find the derivative of P with respect to v:

dP/dv = 100

The price elasticity of supply at Q=100 is equal to the derivative of P with respect to v multiplied by v divided by P:

Elasticity of Supply = (dP/dv) * (v / P)

Elasticity of Supply = (100) * (v / (10 + 100v))

To learn more about price elasticity of supply visit : https://brainly.com/question/8729849

#SPJ11

Simplify by removing parentheses and, if possible, combining like terms. 2(6x + 4y) – 5 (4x2 – 3y2) 2(6x + 4y) – 5(4x² - 3y?) = 0

Answers

The given expression becomes,12x + 8y - 20x² + 15y² = 0We can also arrange the terms of the expression in descending order of the exponents of the variables and we get-20x² + 15y² + 12x + 8y = 0.This is the simplified form of the given expression.

2(6x + 4y) – 5 is the given expression (4x2 – 3y2). We need to improve by eliminating brackets and, if conceivable, consolidating like terms. Therefore, the given expression becomes,12x + 8y - 20x2 + 15y2 = 0 We can also arrange the terms of the expression in descending order of the exponents of the variables, and we get-20x2 + 15y2 + 12x + 8y = 0.

This is the simplified form of the given expression. We use the distributive property to multiply a term in parentheses with a coefficient outside of the parentheses.2(6x + 4y) = 12x + 8

To know more about exponents refer to

https://brainly.com/question/26296886

#SPJ11

Determine the following probabilities assuming a normal distribution: Show work
a) P(z > −0.32)

b) P(1< z <2.13)

Answers

The probabilities assuming a normal distribution are

a) P(z > −0.32) = 0.374

b) P(1< z <2.13) = 0.142

How to determine the probabilities assuming a normal distribution

From the question, we have the following parameters that can be used in our computation:

a) P(z > −0.32)

b) P(1< z <2.13)

These mean

The area to the right of z by -0.32The area of z between 1 and 2.13

These can then be calculated by calculating the probabilities from the z-table of probabilities

Using a statistical calculator, we have the area to be

a) P(z > −0.32) = 0.374

b) P(1< z <2.13) = 0.142

Read more about z-scores at

brainly.com/question/25638875

#SPJ4

Consider a Gambler's ruin problem with p = 0.3 and the different states of the fortune of the gambler are 0,1,2,3,4,5 and 6. Find all recurrent and transient states. Find si4 and fi4 for i = 3, 4, 5.

Answers

In the Gambler's ruin problem with a probability of winning each bet (p) equal to 0.3 and fortune states ranging from 0 to 6, we can determine the recurrent and transient states.

In the Gambler's ruin problem, a gambler starts with an initial fortune and repeatedly bets a fixed amount until they either reach a desired fortune or lose everything. The states in this problem represent the different fortunes of the gambler.

Recurrent states are those where the gambler has a non-zero probability of eventually returning to that state, while transient states are those where the gambler will eventually reach either the desired fortune or zero with a probability of 1.

To determine the recurrent and transient states, we need to analyze the probabilities of winning and losing at each state. In this case, since p = 0.3, any state with a probability of winning less than 0.3 is considered a transient state, while the rest are recurrent states.

To find si4, we calculate the probability of starting at state i and eventually reaching state 4. Similarly, to find fi4, we calculate the probability of starting at state i and eventually reaching either the desired fortune or zero without reaching state 4.

By applying the necessary calculations and analysis to the given problem parameters, we can determine the recurrent and transient states and find the probabilities si4 and fi4 for the specified values of i.

Learn more about recurrent here:

https://brainly.com/question/31384990

#SPJ11

the escape speed from the moon is much smaller than from earth, around 2.38 km/s.

Answers

The escape speed from the Moon is significantly lower, approximately 2.38 km/s, compared to the escape speed from Earth.

Escape speed refers to the minimum velocity required for an object to completely overcome the gravitational pull of a celestial body and escape its gravitational field.  In the case of the Moon, its smaller mass and radius compared to Earth result in a lower escape speed. The Moon's escape speed is approximately 2.38 km/s, while Earth's escape speed is around 11.2 km/s. The lower escape speed of the Moon means that it requires less energy for an object to reach a velocity sufficient to escape its gravitational field compared to Earth.

The escape speed is determined by the relationship between the gravitational force and the kinetic energy of an object. The formula for escape speed involves the mass and radius of the celestial body, as well as the gravitational constant.

Learn more about speed here:

https://brainly.com/question/30461913

#SPJ11




Q4. Find the particular solution for the following non-homogeneous system of first- order linear differential equation. Y = 54 -5x² +6x+25 5 Y(0)= 1 2 -x²+2x+4

Answers

The particular solution for the given non-homogeneous system of first-order linear differential equations is:

[tex]Y = 54x - (5/3)x^3 + 3x^2 + 25x + 16[/tex]

To find the particular solution for the non-homogeneous system of first-order linear differential equations, we need to substitute the given values into the system and solve for the unknown coefficients.

The given system is:

[tex]Y' = 54 - 5x^2 + 6x + 25\\Y(0) = 12 - x^2 + 2x + 4[/tex]

Differentiating the second equation, we have:

[tex]Y'(0) = -2x + 2[/tex]

Now, let's substitute these values into the first equation:

[tex]Y' = 54 - 5x^2 + 6x + 25[/tex]

Since there are no derivatives of Y in the equation, we can integrate both sides with respect to x to find the particular solution:

[tex]\int Y' dx = \int (54 - 5x^2 + 6x + 25) dx[/tex]

Integrating each term separately, we get:

[tex]Y = 54x - (5/3)x^3 + 3x^2 + 25x + C[/tex]

Now, using the initial condition[tex]Y(0) = 12 - x^2 + 2x + 4[/tex], we can substitute x = 0 and [tex]Y = 12 - x^2 + 2x + 4[/tex] into the equation to solve for the constant C:

[tex]12 - 0 + 2(0) + 4 = 54(0) - (5/3)(0^3) + 3(0^2) + 25(0) + C[/tex]

16 = C

C= 16

Therefore, the particular solution for the given non-homogeneous system of first-order linear differential equations is:

[tex]Y = 54x - (5/3)x^3 + 3x^2 + 25x + 16[/tex]

Learn more about integration at:

https://brainly.com/question/30094386

#SPJ4

Ting = a Ti-ujt b Tituj tc Tighet d Tijft where, a=6= & - 2 try c=2= (Ayey² 2 [+(47)] 2 Suppose the plate is a square with unit length so that Ax = 1/(Nx-1), Ay = 1/(Ny-1) (3) Simplify Eq. (2). The boundary conditions for T are as follows. On AC (i=1); T(x=0, y)= y (4a) On AB (=1): T(x, y=0)= -2sin(31x/2). (4b) On BD (i=Nx): T(x=1, y)= 1-sin(ny)-0.9*sin(2ty) (4c) On CD (j=Ny): T(x=0, y=1)=(2x-1| (40) Discretize the above boundary conditions. That is, express the dependence of T on i and j, instead of on x and y in Egns (4a-d).

Answers

In this problem, we are given an equation (2) and boundary conditions (4a-d) for a variable T. We need to simplify the equation and express T in terms of indices i and j instead of coordinates x and y. Additionally, we need to discretize the boundary conditions by replacing x and y with their corresponding expressions in terms of i and j.

The equation (2) represents the relationship of T with its neighboring values, with coefficients a, b, c, and d. To simplify the equation, we substitute the discretized values of x and y in terms of i and j, which are determined by the discretization intervals Ax and Ay. This leads us to the simplified equation (5), where T is expressed in terms of T values at neighboring indices.

The boundary conditions (4a-d) provide specific values of T at the boundaries of the plate. To discretize these conditions, we replace x and y with their corresponding expressions in terms of i and j. This yields equations (6a-d), which express the boundary conditions in terms of T values at specific indices.

By discretizing the equation and boundary conditions, we transform the continuous problem into a discrete problem that can be solved numerically. This allows us to work with a grid of values represented by indices i and j, rather than continuous coordinates x and y.

In summary, the problem involves simplifying the equation and discretizing the boundary conditions, replacing x and y with their corresponding expressions in terms of i and j. This allows for a numerical solution by working with discrete values on a grid.

To know more about boundary conditions , click here: brainly.com/question/32260802

#SPJ11

spin+a+spinner+with+three+equal+sections+colored+red,+white,+and+blue.+what+is+p(green)?+0%+100%+33%+66%

Answers

Answer:

Step-by-step explanation:The spinner has three equal sections, and none of them are green. Therefore, the probability of landing on green is 0%.

The probability of an event happening is the number of favorable outcomes divided by the total number of possible outcomes.

In this case, there are three possible outcomes (red, white, and blue), and none of them are green.

So, the number of favorable outcomes is 0. The total number of possible outcomes is 3.

Therefore, the probability of landing on green is 0/3 = 0%.

Learn more about Spinner here:

brainly.com/question/28207022

#SPJ11

For any positive base b, the graph y = b intersects the y-axis at (0,1). The slope m of the curve at this intersection depends on b, however. For example, you have probably already found that m is about 0.693 when b 2. What is the approximate) value of m when b = 3? 647. (Continuation) Make a table that includes (at least) the b-entries 1, 2, 3, 4, 6, 1/2, 1/3, and 1/4, and their corresponding m-entries. By the way, it is possible to save some work by writing your m-approximation formula in terms of b. 648. (Continuation) There are some familiar patterns in the table. Have you ever seen another table of values that exhibits this pattern? Make a scatter plot of the data. Can this nonlinear relationship be straightened?

Answers

By examining the table, we can observe some patterns in the values of m. The m-values appear to increase as the base b increases.

How to explain the information

It should be noted that to determine the approximate value of m when b = 3, we can use the same approach as before. The slope m can be approximated by taking the natural logarithm of b as the base.

For b = 3, we have:

m ≈ ln(b) ≈ ln(3) ≈ 1.099

Now let's create a table with the given values of b and their corresponding m-entries:

b m

1 0

2 0.693

3 1.099

4 1.386

6 1.792

1/2 -0.693

1/3 -1.099

1/4 -1.386

By examining the table, we can observe some patterns in the values of m. The m-values appear to increase as the base b increases. Additionally, the m-values for reciprocal bases (1/b) are negative and mirror the positive values for b. This pattern of logarithmic slopes is often encountered in logarithmic functions and is closely related to exponential growth and decay.

Learn more about equations on

https://brainly.com/question/2972832

#SPJ4

A normal distribution has a mean u = 15.2 and a standard deviation of o = 0.9. Find the probability that a score is greater than 16.1

Answers

The required probability is 0.8413.

Given data:

Mean (μ) = 15.2

Standard deviation (σ) = 0.9

We need to find the probability that a score is greater than 16.

1.Using the formula of z-score: z = (X - μ) / σ

Where X is the score, μ is the mean, and σ is the standard deviation.

Putting the given values in the formula:

z = (16.1 - 15.2) / 0.9z = 1

Solving z-table for the probability that a score is greater than 16.1:

Using the z-table:

The z-table gives the probability corresponding to the z-score.

The given z-score is 1 and the probability corresponding to it is 0.8413.

So, the probability that a score is greater than 16.1 is 0.8413 (approx).

To learn more about probability

https://brainly.com/question/13604758

#SPJ11

find the two x-intercepts of the function f and show that f '(x) = 0 at some point between the two x-intercepts. f(x) = x x 2

Answers

The function f(x) = x^3 has two x-intercepts, which are at x = 0 and x = 2. By finding the derivative of f(x), which is f'(x) = 3x^2, we can see that f'(x) = 0 at x = 0. Therefore, there is a point between the two x-intercepts where the derivative of the function equals zero.

To find the x-intercepts of the function f(x) = [tex]x^3[/tex], we set f(x) equal to zero and solve for x. Setting [tex]x^3[/tex] = 0, we find that x = 0, which gives us one x-intercept. Next, we need to factor the function to find the remaining x-intercept. By factoring [tex]x^3[/tex], we get x([tex]x^{2}[/tex]). Setting x = 0, we already have one x-intercept, and setting [tex]x^{2}[/tex] = 0, we find the second x-intercept at x = 0 as well. Therefore, the function f(x) = [tex]x^3[/tex] has two x-intercepts at x = 0 and x = 2.

To show that f'(x) = 0 at some point between the two x-intercepts, we take the derivative of f(x). The derivative of f(x) = [tex]x^3[/tex] is given by f'(x) = 3[tex]x^{2}[/tex]. By setting f'(x) equal to zero, we find 3[tex]x^{2}[/tex] = 0, which simplifies to[tex]x^{2}[/tex] = 0. Solving for x, we see that x = 0. Hence, f'(x) equals zero at x = 0, which lies between the two x-intercepts of the function. This demonstrates that there exists a point between the x-intercepts where the derivative of the function f(x) equals zero.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Find g[f(−5)].

​f(x)=x^2−3​;g(x)=−3x−1

Answers

The composite function g(f(-5)) has its value to be -67

How to evaluate the composite function

From the question, we have the following parameters that can be used in our computation:

f(x) = x² - 3

Also, we have the function g(x) to be

g(x) = -3x - 1

using the above as a guide, we have the following:

f(-5) = (-5)² - 3

When evaluated, we have

f(-5) = 22

So, we have

g(f(-5)) = -3 * 22 - 1

Evaluate

g(f(-5)) = -67

Hence, the composite function g(f(-5)) has its value to be -67

Read more about composite function at

https://brainly.com/question/10687170

#SPJ1

The test statistic of z = -2.15 is obtained when testing the claim that p = 3/8. Find the P-value. (Round the answer to 4 decimal places and enter numerical values in the cell)

Answers

The P-value of the test statistic is 0.0316.

How to find the P-value?

The P-value is the probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.

In this case, the test statistic is z = -2.15. The P-value can be found by looking up z = -2.15 in a z-table. The z-table shows the probability of obtaining a z-score less than or equal to the z-score that is looked up.

In this case, the P-value is:

P-value = (2 * 0.0158) = 0.0316    [Check the attached image]

Therefore, the P-value is 0.0316.

Learn more about P-value on:

https://brainly.com/question/4621112

#SPJ4

Let W = {a + bx + x^2 ∈ P_{2}: a, b ∈ R} with the standard operations in P_{2}. Which of the following statements is true?
A. W is not a subspace of P_{2} because 0 € W.
The above is true
B. None of the mentioned
C. W is a subspace of P2.
The above is true
D. -x ∈ W

Answers

The correct answer is (C): W is a subspace of P2.

To show that W is a subspace of P2, we need to show that it satisfies the following three conditions:

The zero vector of P2 is in W.

W is closed under addition.

W is closed under scalar multiplication.

The zero vector of P2 is the polynomial [tex]0 + 0x + 0x^2[/tex]. This polynomial is in W because we can set a = b = 0 and obtain the polynomial [tex]0 + 0x + 0x^2,[/tex] which is in W.

Let p(x) = [tex]a1 + b1x + x^2[/tex]and q(x) = [tex]a2 + b2x + x^2[/tex] be polynomials in W. Then their sum is:

[tex]p(x) + q(x) = (a1 + a2) + (b1 + b2)x + 2x^2[/tex]

which is also in W because a1 + a2 and b1 + b2 are real numbers.

Let p(x) = [tex]a + bx + x^2[/tex] be a polynomial in W and let c be a real number. Then:

[tex]c p(x) = ca + (cb)x + c(x^2)[/tex]

is also in W because ca and cb are real numbers.

Therefore, W satisfies all three conditions to be a subspace of P2. Statement (A) is false because W contains the zero vector, and statement (D) is false because -x is not an element of W.

Learn more about Subspaces : https://brainly.com/question/32622596

#SPJ11

Beddington and May (1982) proposed the following model to study the interactions between baleen whales and their main food source, krill: dx Krill (x): =rx axy dt dy Whales (y): = sy (¹5) with r, K, a, s, b>0. dt bx a) Explain what each term in the equation means, and perform a dimensional analysis to give units for each diameter. b) Find all steady-states for this model, and analyze their stability using the Jacobian

Answers

The model proposed by Beddington and May (1982) describes the interactions between baleen whales and their main food source, krill.

The equation consists of two terms, one for the population dynamics of krill (dx/dt) and the other for the population dynamics of whales (dy/dt). In part (a), we explain the meaning of each term in the equation and perform a dimensional analysis to determine the units. In part (b), we find the steady-states of the model and analyze their stability using the Jacobian matrix.

a) The terms in the equation represent the following:

dx/dt: The rate of change of the krill population over time. It is influenced by the growth rate (r), carrying capacity (K), and the interaction between krill and whales (axy).

dy/dt: The rate of change of the whale population over time. It depends on the reproduction rate of whales (s) and the consumption of krill by whales (bxy).

Performing a dimensional analysis, we assign units to the variables:

x (Krill population): Number of individuals.

t (Time): Units of time (e.g., days, years).

r (Growth rate): 1/time.

K (Carrying capacity): Number of individuals.

a (Interaction coefficient): 1/(time*number of individuals).

y (Whale population): Number of individuals.

s (Reproduction rate): 1/time.

b (Consumption coefficient): 1/(time*number of individuals).

b) To find the steady-states of the model, we set dx/dt = 0 and dy/dt = 0. Solving these equations, we obtain the values of x and y at which the populations of krill and whales do not change over time.

To analyze the stability of the steady-states, we can calculate the Jacobian matrix, which represents the partial derivatives of the equations with respect to x and y. Evaluating the Jacobian at each steady-state point allows us to determine the stability properties of the system, such as whether the steady-state is stable or unstable and the presence of oscillations or bifurcations.

Further analysis and calculations are required to find the specific steady-states and stability properties of the model based on the given values of r, K, a, s, and b.

Learn more about  population dynamics  here:

https://brainly.com/question/32135442

#SPJ11

We consider an economy with no population growth, i.e., n = 0, which produces a final good according to a technology of production described by y=Akα, 0<α<1, (1) where A is the level of technology, y is output per capita and k the stock of capital per capita. We denote the capital depreciation rate by δ and the interest rate by r. There are capitalists and workers. Capitalists earn a capital income Rk where R = r + δ (Remark: R is a return for capitalists and a cost for firms). Workers do not save while capitalists save a fraction β of after-tax capital income. The government finances government spending by levying a tax 0 < x < 1 on capital income so that taxes T paid by capitalists are T = xRk. Savings per capita is thus β(1−x)Rk.
(a) By using the fact that R is equal to the marginal product of capital, express the capital income Rk in terms of y.
(b) The economy is at the steady-state. Investment per capita is δk. Determine the capital stock per capita in a closed economy, kc. Next, determine the capital cost in closed economy, Rc = rc + δ, by using kc. Why is the capital cost increasing in the tax rate?
(c) We now assume that the economy is open to world capital markets where it can borrow or lend at the world interest rate r⋆. The capital cost is R⋆ = r⋆ +δ. Determine the capital stock per capita in open economy, k⋆.
(d) The net capital flows in percentage of GDP, d, are d = s − δk⋆ where s = y⋆β (1 − x) α is the saving rate. Determine first d by using your answer to 1(c). Next, by using your answer to question 1(b), determine an expression for d which involves both Rc and R⋆. Determine the condition for d < 0.

Answers

Steady-state capital stock: kc in a closed economy. Capital cost increases with the tax rate. Net capital flows condition: Rc > R⋆.

(a) The capital income Rk can be expressed in terms of output per capita y as Rk = αy.

(b) In the steady-state, the capital stock per capita in a closed economy is kc = (s/δ)^(1/(1-α)), where s is the saving rate. The capital cost in a closed economy is Rc = (r + δ)k. The capital cost increases with the tax rate because higher taxes reduce the return on capital, increasing the cost.

(c) In an open economy, the capital stock per capita is k⋆ = (s⋆/δ)^(1/(1-α)), where s⋆ is the saving rate in the open economy. The capital cost in an open economy is R⋆ = (r⋆ + δ)k.

(d) The net capital flows as a percentage of GDP, d, are given by d = s - δk⋆. By substituting the expressions for s and k⋆, we have d = y⋆β(1-x)α - δk⋆. Using the expressions for Rc and R⋆ from parts (b) and (c), respectively, we can rewrite d as d = Rc - R⋆. The condition for d < 0 is when the capital cost in the closed economy is greater than the capital cost in the open economy, Rc > R⋆.

To learn more about “saving rate” refer to the https://brainly.com/question/25787382

#SPJ11

There are 20 problems in a mathematics competition. The scores of each problem are allocated in the following ways: 3 marks will be given for a correct answer. I mark will be deducted from a wrong answer and O marks will be given for a blank answer. Find the minimum number of candidate(S) to ensure that 2 candidates will have the same scores in the competition.

Answers

The minimum number of candidates required to ensure that 2 candidates will have the same score is 31. Answer: \boxed{31}.

We are given that 20 problems in a mathematics competition. The scores of each problem are allocated in the following ways: 3 marks will be given for a correct answer, 1 mark will be deducted from a wrong answer, and 0 marks will be given for a blank answer.

We have to find the minimum number of candidates required to ensure that 2 candidates will have the same scores in the competition.Let's use the Pigeonhole Principle to solve the problem. In this case, the pigeons are the possible scores and the holes are the candidates.

The range of possible scores is 0 to 60 (inclusive). A score of 60 is possible if all 20 problems are solved correctly, and a score of 0 is possible if none of the problems are solved correctly.

Therefore, there are 61 possible scores: 0, 1, 2, 3, ..., 59, 60.To ensure that 2 candidates have the same score, we need at least 2 candidates to have each score.

The minimum number of candidates required is therefore the smallest integer n that satisfies:2n > 61n > 30.5The smallest integer greater than 30.5 is 31.

To learn more about : minimum number

https://brainly.com/question/18386707

#SPJ8

8 class monitors march and hoist the school flag on a Monday. They walk in a line so that every monitor except the first is preceded by another. On Tuesday, to avoid everyone seeing the same person immediately in front of them, they decide to switch positions so that no monitor is preceded by the same person who preceded him on Monday. In how many ways can they switch positions to satisfy this condition?

Answers

The monitors can switch their positions in 5760 ways.

Let the orders for the monitors on Monday be

a  b  c  d  e  f  g  h

Now, on Tuesday we have a similar 8 spots left

monitor a can choose their place in 8 ways since they do not have anyone preceding to them.

Monitor b cannot choose to monitor a's place as well as the spot behind a, since they preceded a on Monday

Hence they have 6 ways to choose.

Monitor c can similarly choose their pace in 5 ways.

Monitor d, e, f, g, and h can similarly choose in 4, 3, 2, 1, and 1 ways

Hence we get the number of ways to switch positions are

8 X 6 X 5 X 4 X 3 X 2 X 1 X 1

= 5760 ways

Hence the monitors can switch their positions in 5760 ways.

To learn more about Permutations and Combinations visit

https://brainly.com/question/30649502

#SPJ4

Use appropriate algebra and Theorem 7.2.1 to find the given inverse Laplace transform. (Write your answer as a function of t.) L-1 (4s 10 /S2 + 25)

Answers

The inverse Laplace transform of [tex](4s + 10)/(s^2 + 25)[/tex] is [tex]L^{(-1)}((4s + 10)/(s^2 + 25)) = 2cos(5t).[/tex]

To find the inverse Laplace transform of the given expression, [tex]L^{(-1)}((4s + 10)/(s^2 + 25))[/tex], we can utilize Theorem 7.2.1, which states that if F(s) has a partial fraction expansion of the form F(s) = (A(s) + B(s))/(C(s) + D(s)), where C(s) and D(s) have no common factors, then the inverse Laplace transform of F(s) can be written as[tex]L^{(-1)}(F(s)) = L^{(-1)}(A(s)/C(s)) + L^(-1)(B(s)/D(s)).[/tex]

First, we need to decompose the rational function [tex](4s + 10)/(s^2 + 25)[/tex] into partial fractions. To do this, we factor the denominator s^2 + 25, which is a sum of squares and does not factor further over the real numbers. Therefore, we can write:

[tex](4s + 10)/(s^2 + 25) = A/(s - 5i) + B/(s + 5i),[/tex]

where A and B are constants to be determined.

Now, we need to find the values of A and B. We can do this by

multiplying both sides of the equation by the denominator and then equating the numerators:

(4s + 10) = A(s + 5i) + B(s - 5i).

Expanding and collecting like terms, we get:

4s + 10 = (A + B)s + (5Ai - 5Bi).

Equating the coefficients of the corresponding powers of s, we have:

4 = A + B,

0 = 5Ai - 5Bi.

From the second equation, we can deduce that A = B, and from the first equation, we find A = B = 2.

Now, we can write the partial fraction decomposition as:

[tex](4s + 10)/(s^2 + 25) = 2/(s - 5i) + 2/(s + 5i).[/tex]

Taking the inverse Laplace transform of each term separately, we obtain:

[tex]L^{(-1)}(2/(s - 5i)) = 2e^{(5it)} = 2e^{(5it),\\L^{(-1)}(2/(s + 5i)) = 2e^{(-5it)} = 2e^{(-5it)[/tex].

Therefore, the inverse Laplace transform of [tex](4s + 10)/(s^2 + 25)[/tex]is:

[tex]L^{(-1)}((4s + 10)/(s^2 + 25)) = 2e^({5it)} + 2e^{(-5it).[/tex]

This can be simplified as:

[tex]L^{(-1)}((4s + 10)/(s^2 + 25)) = 2cos(5t).[/tex]

For more question on inverse visit:

https://brainly.com/question/3831584

#SPJ8

The dataset catsM is found within the boot package, and contains variables for both body weight and heart weight for male cats. Suppose we want to estimate the popula- tion mean heart weight (Hwt) for male cats. We only have a single sample here, but we can generate additional samples through the bootstrap method. (a) Create a histogram that shows the distribution of the "Hwt" variable. (b) Using the boot package, generate an object containing R=2500 bootstrap samples, using the sample mean as your statistic.

Answers

(a) Histogram:

hist(catsM$Hwt, main = "Distribution of Hwt", xlab = "Heart Weight (Hwt)")

(b) Generating Bootstrap Samples:

boot_samples <- boot(catsM$Hwt, statistic = function(data, i) mean(data[i]), R = 2500)

To perform the requested tasks, you can follow the steps below using the R programming language:

(a) Creating a histogram of the "Hwt" variable:

# Load the boot package (if not already installed)

install.packages("boot")

library(boot)

# Load the "catsM" dataset from the boot package

data(catsM)

# Create a histogram of the "Hwt" variable

hist(catsM$Hwt, main = "Distribution of Hwt", xlab = "Heart Weight (Hwt)")

(b) Generating an object containing 2500 bootstrap samples using the sample mean as the statistic:

# Set the number of bootstrap samples

R <- 2500

# Create the bootstrap object using the boot package

boot_samples <- boot(catsM$Hwt, statistic = function(data, i) mean(data[i]), R = R)

# Print the bootstrap object

boot_samples

By running the above code, you will generate a histogram showing the distribution of the "Hwt" variable and create an object named "boot_samples" that contains 2500 bootstrap samples using the sample mean as the statistic.

Know more about the histogram click here:

https://brainly.com/question/16819077

#SPJ11




The equation for a parabola has the form y= ax² + bx + c, where a, b, and care constants and a # 0. Find an equation for the parabola that passes through the points (-1,0), (-2,3), and (-5, -12).

Answers

The calculated equation of the parabola is y = -x² - 2x + 3

How to determine the equation for the parabola

From the question, we have the following parameters that can be used in our computation:

The points (-1,0), (-2,3), and (-5, -12).

A parabola is represented as

y= ax² + bx + c

Using the given points, we have

a(-1)² + (-1)b + c = 0

a(-2)² + (-2)b + c = 3

a(-5)² + (-5)b + c = -12

So, we have

a + b + c = 0

4a - 2b + c = 3

25a - 5b + c = -12

When solved for a, b and c, we have

a = -1, b = -2 and c = 3

Recall that

y= ax² + bx + c

So, we have

y = -x² - 2x + 3

Hence, the equation for the parabola is y = -x² - 2x + 3

Read more about parabola at

https://brainly.com/question/1480401

#SPJ4

richard walks at 5.0 mph on three days per week. on each day that he walks at 5.0 mph, he walks for 30 minutes. after each walk, richard consumes approximately 200 calories of fruits and vegetables. how many met minutes per week does richard spend walking at 5 mph?

Answers

Richard spends approximately 720 MET minutes per week walking at 5.0 mph.

To calculate the MET (Metabolic Equivalent of Task) minutes per week that Richard spends walking at 5.0 mph, we need to consider the duration and intensity of his walks.

Given information:

Richard walks at 5.0 mph on three days per week.

On each walking day, he walks for 30 minutes.

Richard consumes approximately 200 calories of fruits and vegetables after each walk.

To calculate MET minutes, we'll follow these steps:

Calculate the total number of minutes Richard spends walking in a week:

Total walking minutes = Duration per walk * Number of walks per week

Total walking minutes = 30 minutes * 3 days = 90 minutes per week

Calculate the MET value for walking at 5.0 mph:

The MET value for walking at 5.0 mph is approximately 8 METs.

Calculate the MET minutes per week:

MET minutes per week = Total walking minutes * MET value

MET minutes per week = 90 minutes * 8 METs = 720 MET minutes per week

Therefore, Richard spends approximately 720 MET minutes per week walking at 5.0 mph.

Know more about the MET (Metabolic Equivalent of Task) click here:

https://brainly.com/question/31712704

#SPJ11

Other Questions
The major fiscal stimulus bills signed in 2008 by President Bush and in 2009 by President Obama were motivated by the serious economic recession that hit the United States in 2008, and can be classified as "countercyclical." O True O False QUESTION 10 Which of the following is true about the actual or projected U.S. federal tax revenues and expenditures for 2019, 2020 and 2021? O a. A deficit is projected. O b. Tax revenues are projected to exceed expenditures by $500 billion. Oc. The largest expenditure in the budget is defense. Od. All of the above Use the properties of limits to find the given limx-->-infinity (11x+21/7x+6-x^2) A. 0 B. -2 C. 3 D. None of above Lee Hup corporation will receive 490,000 New Zealand dollars (NZD) in three months. The company expects that in three months the NZD would be trading at USD 1.0774 and the quoted 90-forward rate is USD 1.1995/NZD. If Lee Hup corporation wants to hedge its transaction exposure with the forward contracts, it will: a receive NZD 527,926.00 in 90 days b. receive NZD 587,755.00 today creceive NZD 527,926.00 today d. receive NZD 587.755.00 in 90 days what is the maximum force due to the horizontal component of the earth's magnetic field acting on a 20.0 cm wire, carrying a current of 5.0 a draw the logic diagram for a 16 to 4 encoder using just four 8 input nand gates A 10. 0-mL sample of 1. 0 M NaHCO3 is titrated with 1. 0 M HCl (hydrochloric acid). Approximate the titration curve by plotting the following points: pH after 0 mL HCl added, pH after 1. 0 mL HCl added, pH after 9. 5 mL HCl added, pH after 10. 0 mL HCl added (equivalence point), pH after 10. 5 mL HCl added, and pH after 12. 0 mL HCl added Evaluate the triple integral. 3xy dV, where E lies under the plane z 1 x + y and above the region in the xy-plane bounded by the curves y = y = 0, and x = 1 a. When current account is in deficit, what can we say about the output produced by an economy (Y) and aggregate expenditure of an economy (E)? Briefly explain. b. Given the following information, what can we say about the relationship between national saving (S) and domestic investment (Id)? Briefly explain. Exports of goods and services = $100 billion Imports of goods and services = $200 billion Net income inflows (profits, dividends and income repatriated by American companies and individuals who are abroad minus profits, dividends and income paid to foreign countries) = $50 billion Net unilateral transfers = -$10 billion Consider the function f : R R given by f(x) = {. e-1/42 f if x0 if x = 0 a) Prove that f has derivatives of all orders at x = 0 and f(0) = 0 * b) Can f be written as a series f(x) = Xaxxk, ax ER k=0 convergent on some interval (-R,R), R > 0? Your company has 100TB of financial records that need to be stored for seven years by law. Experience has shown that any record more than one-year old is unlikely to be accessed. Which of the following storage plans meets these needs in the most cost efficient manner?A. Store the data on Amazon Elastic Block Store (Amazon EBS) volumes attached to t2.micro instances.B. Store the data on Amazon Simple Storage Service (Amazon S3) with lifecycle policies that change the storage class to Amazon Glacier after one year and delete the object after seven years.C. Store the data in Amazon DynamoDB and run daily script to delete data older than seven years.D. Store the data in Amazon Elastic MapReduce (Amazon EMR). Actually, I'm not a native speaker, please do not write incursive.Thanks.5. The following population multiple regression model with three independent variables is said to satisfy the assumption of the CLM model. y = Bo + Bx + BX + B3X3 + U After estimation, you 8. How would extreme values affect volatility levels represented by the standard deviation statistic? The economic question of "_____ to produce" is about decisions related to the mix of factor inputs (land, labor, capital...) used to produce goods and services. A parasitic species of fly is introduced to one of the Hawaiian islands. This fly deposits its eggs onto chirping crickets, and when the eggs hatch, the larva consume the cricket. In this type of cricket, males have structures on their wings that produce the chirp. Females and some males with a mutation lack this structure on their wings. Which statement predicts the most likely effect of this parasitic fly on future populations of the crickets? A. The female crickets in the population will develop the adaptation for chirping. B. The cricket population will develop an adaptation to prey on the parasitic flies. C. The allele for the nonmutated wings in male crickets will decrease in the population. D. The allele for the presence of wings in male crickets will decrease in the population. For each of these pairs of half-reactions, write the balanced equation for the overall cell reaction and calculate the standard cell potential. Express the reaction using cell notation. You may wish to refer to Chapter 20 to review writing and balancing redox equations.1.Pt2+(aq)+2e-Pt(s)Sn2+(aq)+2e-Sn(s)2.Co2+(aq)+2e-Co(s)Cr3+(aq)+3e-Cr (s)3. Hg2+(aq)+2e-Hg (I)Cr2+(aq)+2e-Cr (s)please help out 2) Find the probability distribution for the following function:a. The Binomial distribution which has n = 20, p = 0.05b. The Poisson distribution which has = 1.0c. The Binomial distribution which has n = 10, p = 0.5d. The Poisson distribution which has = 5.0 Movie studios often release films into selected markets and use the reactions of audiences to plan further promotions. In these data, viewers rate the film on a scale that assigns a score from 0 (dislike) to 100 (great) to the movie. The viewers are located in one of three test markets: urban, rural, and suburban.Fit a multiple regression of rating on two dummy variables that identify the urban and suburban viewers.Predicted rating = ( 49.50) + ( 14.45) D_urban + ( 19.67) D_Suburban (Round to two decimal places as needed.) Section 548 of the Bankruptcy Code defines as fraudulent certaintransfers made, or obligations incurred, within what specified timeperiod?12 months9 months6 months3 months1month Mega Mike's Awesome Shop of Stuff has marked a sales budget for next month of 300,000. The Cost of goods sold is expected to be 75% of sales all units are for in the month following purchase. The beginning inventory is 101,000 and has a desired ending inventory of 12,000. Beginning accounts payable is 76,000. What are the purchases for next month. A. 140,000 b. 152,000 c. 136,000 d. 150,000 Suppose an increase in the price of Good Y from $350 to $360 causes the quantity demanded to decrease from 14,000 to 13,500. (a) Calculate the current price elasticity of demand for Good Y. (You can use either the simple formula or the midpoint formula). (b) Is the demand for Good Y currently elastic or inelastic?