is y= 8x^2-10 a function and how do i prove it?

Answers

Answer 1

Yes ,  y = 8x² - 10  is a function .

What is a linear equation in mathematics?

A linear equation in algebra is one that only contains a constant and a first-order (direct) element, such as y = mx b, where m is the pitch and b is the y-intercept.

                         Sometimes the following is referred to as a "direct equation of two variables," where y and x are the variables. Direct equations are those in which all of the variables are powers of one. In one example with just one variable, layoff b = 0, where a and b are real numbers and x is the variable, is used.

y = 8x² - 10

the graph attached below

Learn more about linear equation

brainly.com/question/11897796

#SPJ1

Is Y= 8x^2-10 A Function And How Do I Prove It?

Related Questions

This question has several parts that must be completed sequentially. If you skip able to come back to the skipped part. Tutorial Exercise Find the dimensions of a rectangle with perimeter 120 m whose area is as large as possible. Step 1 If a rectangle has dimensions x and y, then we must maximize the area A= xy. Since the perimeter is 2x +2y = 120, then y= __ - x. Step 2 We must maximize the area A= xy x=(60-x)=60x- x^2,where 0

Answers

The dimensions of the rectangle with the largest possible area and a perimeter of 120 meters are 30 meters by 30 meters.

Explanation: -

To find the dimensions of a rectangle with a perimeter of 120 meters and the largest possible area, we need to follow these steps:

Step 1: Given the dimensions x and y, we have the area A = xy. then the perimeter of the rectangle is 2x + 2y = 120. Solving for y, we get y = 60 - x.

Step 2: To maximize the area A = xy, we substitute y with the expression from step 1: A(x) = x(60 - x) = 60x - x^2, where 0 < x < 60.

To find the maximum area, we can use calculus to find the critical points.

Step 3: Find the derivative of the area function, use the formula

d/dx(x^n) =nx^n-1

so that derivative is A'(x) = 60 - 2x.

Step 4: Set A'(x) = 0 and solve for x. In this case, 60 - 2x = 0, so x = 30.

Step 5: Plug x = 30 back into the expression for y: y = 60 - x = 60 - 30 = 30.

The dimensions of the rectangle with the largest possible area and a perimeter of 120 meters are 30 meters by 30 meters.

Know more about the"maxima and minima"click here:

https://brainly.com/question/12870695

#SPJ11

To indirectly measure the distance across a lake, Nachelle makes use of a couple landmarks at points D and E. She measures CF, FD, and FG as marked. Find the distance across the lake (DE), rounding your answer to the nearest hundredth of a meter

Answers

The distance across the lake (DE) is 207.68 m.

How to find the distance across the lake (DE)?

The corresponding side lengths of two triangles that are similar are always proportional to each other.

Thus,

ΔCDE  and ΔCFG are similar to each other

FG = 142.1 m

FC = 130 m

DF = 60 m

DC = 130 + 60 = 190 m

Thus, DE/FG = DC/FC

Substituting

DE/142.1 = 190/130

DE = (190*142.1)/130

DE =  207.68 m (nearest hundredth).

Therefore, the distance across the lake (DE) to the nearest hundredth is 207.68 m.

Learn more about similar triangles on:

brainly.com/question/11899908

#SPJ1

Complete Question

Check attached image

when testing partial correlation, the impact of a third variable is ______.a. addedb. removedc. deletedd. reduced

Answers

When testing partial correlation, the impact of a third variable is removed.

Partial correlation is a statistical technique used to measure the relationship between two variables while controlling for the effect of one or more additional variables, known as "covariates" or "control variables." By removing the effect of the covariates, the partial correlation measures the direct relationship between the two variables of interest. This technique is useful when we want to examine the relationship between two variables after accounting for the effect of one or more confounding variables.

Learn more about “ partial correlation “ visit here;

https://brainly.com/question/30756215

#SPJ4

give the laplace transofrm of -6 0<=x and x

Answers

The Laplace transform of -6 for the given conditions is -6/s + 1/s^2

The Laplace transform is a mathematical operation that transforms a function of time into a function of a complex variable s, commonly used in solving linear ordinary differential equations. The Laplace transform of a function f(t), denoted by L{f(t)}, is defined as:

L{f(t)} = F(s) = ∫[f(t)e^(-st)]dt, where s is a complex variable.

In this case, the given function is -6 for 0<=x and x. Since the function is constant, it can be represented as a step function, where the value of the function changes abruptly at x=0. The step function is denoted as u(x), where u(x) = 0 for x<0, and u(x) = 1 for x>=0.

So, the given function can be written as -6u(x), where u(x) is the step function.

Now, applying the definition of the Laplace transform, we get:

L{-6u(x)} = ∫[-6u(x)e^(-sx)]dx

Since u(x) = 0 for x<0, the integral becomes:

L{-6u(x)} = ∫[0*e^(-sx)]dx = 0

Since u(x) = 1 for x>=0, the integral becomes:

L{-6u(x)} = ∫[-6*e^(-sx)]dx = -6∫[e^(-sx)]dx

Integrating e^(-sx) with respect to x, we get:

L{-6u(x)} = -6 * (-1/s) * e^(-sx) + C, where C is the constant of integration.

Finally, substituting back u(x) = 1, we get:

L{-6u(x)} = -6 * (-1/s) * e^(-sx) + C = 6/s * e^(-sx) + C

So, the Laplace transform of -6 for the given conditions is -6/s * e^(-sx) + C, which can also be written as -6/s + C/s, where C is a constant.

For more questions like Function click the link below:

https://brainly.com/question/16008229

#SPJ11

Consider a linear model of the form:
y(x,theta)=theta0+∑=1thetaxy(xn,θ)=θ0+∑d=1Dθdxnd
where x=(x1,...,x)xn=(xn1,...,xnD) and weights theta=(theta0,...,theta)θ=(θ0,...,θD). Given the the D-dimension input sample set x={x1,...,x}x={x1,...,xn} with corresponding target value y={y1,...,y}y={y1,...,yn}, the sum-of-squares error function is:
(theta)=12∑=1{y(x,theta)−y}2ED(θ)=12∑n=1N{y(xn,θ)−yn}2
Now, suppose that Gaussian noise ϵn with zero mean and variance 2σ2 is added independently to each of the input sample xxn to generate a new sample set x′={x1+1,...,x+}x′={x1+ϵ1,...,xn+ϵn}. For each sample xxn, x′=(x1+1,...,x+)xn′=(xn1+ϵn1,...,xnD+ϵnd), where n and d is independent across both n and d indices.
(3pts) Show that y(x′,theta)=y(x,theta)+∑=1thetay(xn′,θ)=y(xn,θ)+∑d=1Dθdϵnd
Assume the sum-of-squares error function of the noise sample set x′={x1+1,...,x+}x′={x1+ϵ1,...,xn+ϵn} is (theta)′ED(θ)′. Prove the expectation of (theta)′ED(θ)′ is equivalent to the sum-of-squares error (theta)ED(θ) for noise-free input samples with the addition of a weight-decay regularization term (e.g. 2L2 norm) , in which the bias parameter theta0θ0 is omitted from the regularizer. In other words, show that
[(theta)′]=(theta)+z

Answers

Step-by-step explanation:

Part 1:

We know that y(x,θ) = θ0 + ∑d=1Dθdxnd and x′n = xn + ϵn.

So,

y(x′,θ) = θ0 + ∑d=1Dθd(xnd+ϵnd)

= θ0 + ∑d=1Dθdxnd + ∑d=1Dθdϵnd

Since ϵn is independent of the weights θ, we can take it outside the summation:

y(x′,θ) = y(x,θ) + ∑d=1Dθdϵnd

Therefore, we have shown that y(x′,θ) = y(x,θ) + ∑d=1Dθdϵnd.

Part 2:

The sum-of-squares error function for the noise sample set x′ is given by:

ED'(θ) = 1/2 ∑n=1N [y(x′n,θ) - yn]^2

Using the expression for y(x′,θ) derived in part 1, we have:

ED'(θ) = 1/2 ∑n=1N [y(xn,θ) + ∑d=1Dθdϵnd - yn]^2

Expanding the square term and taking the expectation with respect to the noise ϵ, we get:

E[ED'(θ)] = E[1/2 ∑n=1N [(y(xn,θ) - yn)^2 + 2(y(xn,θ) - yn)∑d=1Dθdϵnd + (∑d=1Dθdϵnd)^2]]

Now, since ϵ is a zero-mean Gaussian noise with variance 2σ^2, we have:

E[ϵnd] = 0

E[ϵnd^2] = σ^2

Using these properties, we can simplify the above expression:

E[ED'(θ)] = E[1/2 ∑n=1N [(y(xn,θ) - yn)^2 + 2(y(xn,θ) - yn)∑d=1DθdE[ϵnd] + (∑d=1Dθd^2E[ϵnd^2])]]

= E[1/2 ∑n=1N (y(xn,θ) - yn)^2] + E[θ]^T E[Z] E[θ]

where Z is a (D-1) x (D-1) matrix with (i,j)-th element being E[ϵiϵj], and E[Z] is the matrix obtained by adding σ^2 to the diagonal elements of Z. The terms involving the cross-product of ϵ are ignored as they are zero.

The first term in the above expression is just the sum-of-squares error for the noise-free input samples. The second term is the weight-decay regularization term, which is proportional to the L2 norm of the weights θ, with the bias parameter θ0 omitted.

Therefore, we have shown that:

E[ED'(θ)] = (theta)^T(theta) + z

where z is the weight-decay regularization term.

A bird flies against a wind that is going 4 miles per hour and takes 2 hours to travel a certain distance. When flying with the current, the bird only takes 0.5 hours to travel the same distance. Approximately how fast would the bird fly, in miles per hour, without wind current, assuming it flies at a constant rate?

Answers

6.0 is the answer you're looking for

Answer:

Let's call the speed of the bird without any wind current "x".

When flying against the wind, the effective speed of the bird is its speed (x) minus the speed of the wind (4 mph). So, the distance traveled can be expressed as:

distance = speed * time

distance = (x - 4) * 2

When flying with the wind, the effective speed of the bird is its speed (x) plus the speed of the wind (4 mph). So, the distance traveled can be expressed as:

distance = speed * time

distance = (x + 4) * 0.5

We know that these two distances are the same, since the bird is traveling the same distance in both cases. So:

(x - 4) * 2 = (x + 4) * 0.5

Simplifying this equation, we get:

2x - 8 = 0.5x + 2

1.5x = 10

x = 6.67

Therefore, the bird would fly at a constant speed of approximately 6.67 mph without any wind current.

6) One hundred tickets numbered 1,2,3,...,100, are sold to 100 different people for a drawing. Three different prizes are awarded, including the grand prize (trip to Serbia), and no person can get more than one prize. a) How many ways are there to award prizes? b) In how many ways can you do this if person holding the ticket 23 must get a prize? c) In how many ways can you do this if the person holding ticket 8 and the person holding ticket 11 must win prizes? d) In how many ways can you do this if the grand prize winner is a person holding ticket 8,11 or 23?

Answers

The following parts can be answered by the concept of Combination.

a.  The total number of ways to award prizes is 100 x 99 x 98 = 970,200.

b. The total number of ways to award prizes in this scenario is 99 x 98 x 97 = 941,094.

c.  The total number of ways to award prizes in this scenario is 98 x 97 x 96 = 912,192.

d. The grand prize winner is a person holding ticket 8,11 or 23 is 3 x 99 x 98 = 29,178.

a) There are a total of 100 choices for the first prize, 99 choices for the second prize (since one person already won a prize), and 98 choices for the third prize (since two people already won prizes). So, the total number of ways to award prizes is 100 x 99 x 98 = 970,200.

b) If person holding the ticket 23 must get a prize, then there are only 99 choices for the first prize (since ticket 23 is already taken), 98 choices for the second prize, and 97 choices for the third prize. So, the total number of ways to award prizes in this scenario is 99 x 98 x 97 = 941,094.

c) If the person holding ticket 8 and the person holding ticket 11 must win prizes, then there are only 98 choices for the first prize (since tickets 8 and 11 are already taken), 97 choices for the second prize, and 96 choices for the third prize. So, the total number of ways to award prizes in this scenario is 98 x 97 x 96 = 912,192.

d) If the grand prize winner is a person holding ticket 8,11 or 23, then there are only 3 choices for the first prize (since only these three tickets are eligible for the grand prize), 99 choices for the second prize (since one person already won a prize and the grand prize winner is not eligible for the second prize), and 98 choices for the third prize (since two people already won prizes). So, the total number of ways to award prizes in this scenario is 3 x 99 x 98 = 29,178.

To learn more about Combination here:

brainly.com/question/14368656#

#SPJ11

Assume that A is row equivalent to B. Find bases for Nul A and Col A. 106 4 A2-63 2B0 2 5 2 -24 2 11-6 -3 8 A basis for Col A is ! (Use a comma to separate vectors as needed.) A basis for Nul Ais (Use a comma to separate vectors as needed.)

Answers

the null space of A is the span of the vector:
(-2, 3, 1)
A basis for Nul A is:
{(-2, 3, 1)}

To find bases for Nul A and Col A, we can use the fact that A is row equivalent to B. This means that we can perform a sequence of elementary row operations on A to obtain B. Since elementary row operations do not change the null space or column space of a matrix, the null space and column space of A will be the same as the null space and column space of B.

To find a basis for Col A, we can find the pivot columns of A (or B, since they have the same column space). The pivot columns are the columns of A that contain a leading non-zero entry in the row reduced form of A. In this case, the row reduced form of A is:

1  0  0  -1
0  1  0  2
0  0  1  3

The pivot columns are columns 1, 2, and 3. Therefore, a basis for Col A is the set of corresponding columns from A:

{(1, 0, 2), (4, 2, 5), (2, -6, -3)}

To find a basis for Nul A, we can solve the homogeneous system Ax = 0. Since A is row equivalent to B, we can use the row reduced form of B to solve for x. The row reduced form of B is:

1  0  -2/53  0
0  1  3/53   0
0  0  0      1

The solution to the system Ax = 0 can be written in parametric form as:

x1 = 2/53 s
x2 = -3/53 s
x3 = s

where s is a scalar. Therefore, the null space of A is the span of the vector:

(-2, 3, 1)

A basis for Nul A is:

{(-2, 3, 1)}

To learn more about vector, refer below:

https://brainly.com/question/29740341

#SPJ11

In the Picture. :) Ty

Answers

a) Amount of increase after the two years is: $6,772.5

b) The tuition fee after 10 years will cost approximately: $84957

How to solve exponential equation word problems?

The general form of exponential growth equation is

y = a(1 + r)^x

where:

a = initial amount

r = growth rate

x = number of intervals

we are given:

Initial cost = $21000

Percentage increase = 15% in two years

Thus:

Amount in 2010 = 21000(1 + 0.15)²

= $27,772.5

Amount of increase = 27,772.5 - 21000 = $6,772.5

In ten years time, the tuition fee will be:

21000(1 + 0.15)¹⁰ = 84,956.71245 ≅ $84957

Read more about Exponential equation word problems at: https://brainly.com/question/28189035

#SPJ1

is 132 divisible by 3

Answers

Answer:

yes clearly

Step-by-step explanation:

using rules of divisibility it is divisible

using your calculator it is divisible

the answer is 44

Yes 132 is divisible by 3

if you type 132 divided by 3 into your calculator you’ll get 44. You could do this with any 2 numbers. If your answer is a whole number, then the numbers are divisible.

Let A be a set of n ≥ 2 distinct numbers and let a1a2 · · · an be a permutation of A. For i = 2, 3, . . . , n we say that position i in the permutation is a step if ai−1 < ai . We also go ahead and just consider position 1 a step. What is the expected number of steps in a random permutation of A?

Answers

This summation is known as the harmonic number H(n) - 1. The approximate value of H(n) is given by the natural logarithm: H(n) ≈ ln(n) + γ, where γ is the Euler-Mascheroni constant (≈ 0.577). The expected number of steps in a random permutation of A is approximately: E(steps) ≈ ln(n) + γ - 1.

In a random permutation of a set A with n distinct numbers (n ≥ 2), the expected number of steps can be found using the concept of linearity of expectation.

Consider the positions i = 1, 2, ..., n. Since position 1 is always considered a step, the probability of position 1 being a step is 1. For the other positions i (i = 2, 3, ..., n), the probability of position i being a step is the probability that ai-1 < ai. Since the numbers are distinct, there are (i - 1) smaller numbers than ai, so the probability of ai-1 < ai is (i - 1) / i.

Now, using the linearity of expectation, the expected number of steps E(steps) can be found by summing the probabilities of each position being a step:

E(steps) = 1 (for position 1) + (1/2) + (2/3) + ... + ((n - 1) / n).

Learn more about probability here: brainly.com/question/11234923

#SPJ11

Solve the system using substitution. Check your solution
4x-y=62
2y=x

Answers

Answer:

(x, y) (124/7, 62/7)

Step-by-step explanation:

substitute x with 2y we get

4(2y)-y=62

8y-y=62

7y=62

y=62/7

substitute the value of y into the second eqaution

2(62/7)=x

124/7=x

substitute your values of x and y into the first eqaution to check if they are solutions

4(124/7)-62/7=62

you will get

62=62

which means they are solutions

if you want to be 99% confident of estimating the population mean to within a sampling error of ± 6 and the standard deviation is assumed to be , what sample size is required

Answers

Sample size of at least 23 is required to be 99% confident that our estimate of the population mean is within ±6.

How to calculate the sample size?

To calculate the required sample size, we can use the formula:

n = (Zα/2 * σ / E)²
Where:
n = sample size
Zα/2 = the Z-score for the desired confidence level, which is 2.58 for 99%
σ = the population standard deviation (assumed to be given)
E = the desired margin of error, which is 6 in this case.

Substituting these values, we get:

n = (2.58 * σ / 6)²

Since the population standard deviation is not given, we cannot find the exact sample size. However, we can use an estimated value of σ based on prior knowledge or a pilot study.

For example, if we assume σ = 10, then the sample size required would be:

n = (2.58 * 10 / 6)² = 22.25 ≈ 23

Therefore, we would need a sample size of at least 23 to be 99% confident that our estimate of the population mean is within ±6.

Learn more about sample size

brainly.com/question/30885988

#SPJ11

calculate the poh of 490 ml of a 0.81 m aqueous solution of ammonium chloride (nh4cl) at 25 °c given that the kb of ammonia (nh3) is 1.8×10-5.

Answers

The pOH of the 0.81 M aqueous solution of ammonium chloride (NH4Cl) at 25 °C is approximately 4.74.

To calculate the pOH of a 0.81 M aqueous solution of ammonium chloride (NH4Cl), we first need to find the concentration of hydroxide ions (OH-) using the Kb of ammonia (NH3). Here's a step-by-step explanation:
1. Write the dissociation reaction of NH4Cl in water and the equilibrium reaction of NH3 with water:
  NH4Cl → NH4+ + Cl-
  NH3 + H2O ⇌ NH4+ + OH-
2. Since NH4Cl is a strong electrolyte, its concentration will be equal to the initial concentration of NH4+. Therefore, [NH4+]initial = 0.81 M. Assume that x moles of OH- is formed at equilibrium, so [OH-] = x and [NH4+] = 0.81 - x.
3. Write the Kb expression for the equilibrium reaction:
  Kb = [NH4+][OH-] / [NH3]
4. Substitute the given Kb value and the concentrations from step 2:
  1.8×10⁻⁵ = (0.81 - x)(x) / [NH3]
5. Since NH4Cl dissociates completely, we can assume that the initial concentration of NH3 is also 0.81 M. Since x is small compared to 0.81, we can simplify the equation:
  1.8×10⁻⁵ ≈ (0.81)(x) / 0.81
6. Solve for x, which is the concentration of OH-:
  x ≈ 1.8×10⁻⁵
7. Calculate the pOH using the formula pOH = -log[OH-]:
  pOH = -log(1.8×10⁻⁵) ≈ 4.74

To learn more about aqueous solution, refer:-

https://brainly.com/question/26856926

#SPJ11

Find the surface area of the part of the cone z = sqrt(x2+y2) that lies between the plane y=x and the cylinder y=x2.

Answers

The surface area of the part of the cone z = sqrt(x2+y2) that lies between the plane y=x and the cylinder y=x2 is 2π/3 (3√3 - 2).

The surface area of a parametric surface given by:

S = ∫∫ ||r_u x r_v|| dA,

where r(u,v) is the vector-valued function.

Since the cone is symmetric around the z-axis, θ varies from 0 to 2π. ρ varies from y to ρ = z. Since z = √(x^2 + y^2), we have ρ = √(x^2 + y^2

The parameterization of the surface:

r(ρ, θ) = (ρ cos θ, ρ sin θ, ρ), for x^2 + y^2 ≤ y and 0 ≤ θ ≤ 2π.

The partial derivatives, we have:

r_ρ = (cos θ, sin θ, 1)

r_θ = (-ρ sin θ, ρ cos θ, 0)

The surface area element:

dA = ||r_ρ x r_θ|| dρ dθ

= ||(-ρ cos θ, -ρ sin θ, ρ)|| dρ dθ

= ρ √(2 + ρ^2) dρ dθ

So,

S = ∫∫ ||r_u x r_v|| dA

= ∫0^1 ∫0^2π ρ √(2 + ρ^2) dθ dρ

= 2π ∫0^1 ρ √(2 + ρ^2) dρ

= [1/3 (2 + ρ^2)^(3/2)]_0^1

= 2π/3 (3√3 - 2)

Therefore, the surface area of the part of the cone z = √(x^2 + y^2) that lies between the plane y = x and the cylinder y = x^2 is 2π/3 (3√3 - 2).

Know more about cone here:

https://brainly.com/question/28109167

#SPJ11

The areas of 10 cities are given in the table.

How much greater is the range for the cities in the south than the cities in the north?



Enter your answer in the box.


mi²

Northern Cities Southern Cities
Portland 145 mi² Orlando 111 mi²
Seattle 84 mi² New Orleans 350 mi²
New York City 305 mi² Los Angeles 503 mi²
Detroit 143 mi² San Diego 372 mi²
Minneapolis 58 mi² Atlanta 132 mi²

Answers

The range for the southern cities is 145 mi² greater than the range for the northern cities.

How to find the range of the cities?

We must determine the difference between the largest and smallest areas in each group in order to determine the range of the cities.

Minneapolis has the smallest area (58 miles2) and the largest (305 miles2) of the northern cities. Therefore, the northern cities' range is:

305 mi² - 58 mi² = 247 mi²

For the southern cities, the smallest area is 111 mi² (Orlando) and the largest area is 503 mi² (Los Angeles). So the range for the southern cities is:

503 mi² - 111 mi² = 392 mi²

To find how much greater the range is for the southern cities, we subtract the range for the northern cities from the range for the southern cities:

392 mi² - 247 mi² = 145 mi²

As a result, the cities in the south have a range that is 145 miles longer than the cities in the north.

know more about range visit :

https://brainly.com/question/30067462

#SPJ1

QUADRATIC FUNCTIONS: The profit (in hundreds of dollars) that a corporation receives depends on the amount (in hundreds of dollars) the company spends on marketing according to the model 130+10X−0.5x2130+10X−0.5x2. What expenditure for advertising yields a maximum profit? What is the mathematical name of this point?
PROBLEM 4: POLYNOMIAL FUNCTIONS: Let f(x)=4x5−8x4−5x3+10x2+x−1f(x)=4x5−8x4−5x3+10x2+x−1. The graph is presented below:
Describe f (x) in terms of
Degree of polynomial
Main coefficient
Final behavior
Maximum number of zeros
Maximum number of exchange points (relative maximums and minimums)

Answers

Step-by-step explanation:

The profit (in hundreds of dollars) that a corporation receives is given by the quadratic function:

P(x) = 130 + 10x - 0.5x^2

where x is the amount spent on marketing (in hundreds of dollars).

To find the expenditure for advertising that yields a maximum profit, we need to find the vertex of the parabola. The vertex occurs at:

x = -b/(2a) = -10/(2*(-0.5)) = 10

Substituting x = 10 back into the equation for P(x), we get:

P(10) = 130 + 10(10) - 0.5(10)^2 = 180

Therefore, an expenditure of $1000 for advertising yields a maximum profit of $18000.

The mathematical name of the point is the vertex of the parabola.

---

For the polynomial function:

f(x) = 4x^5 - 8x^4 - 5x^3 + 10x^2 + x - 1

Degree of polynomial: 5

Main coefficient: 4 (the leading coefficient)

Final behavior: As x approaches positive or negative infinity, f(x) also approaches positive infinity (since the leading term has a positive coefficient and has the highest degree).

Maximum number of zeros: 5 (since it is a fifth-degree polynomial)

Maximum number of exchange points: 4 (since there are 4 relative extrema, either maximum or minimum points)

use newton's method to approximate the indicated solution of the equation correct to six decimal places. the positive solution of e3x = x 7

Answers

the positive solution  of e³ˣ= x⁷ is approximately 0.411582.

How to solve the question?

To use Newton's method, we first need to have a function whose root we want to find. In this case, we want to find the positive solution of the equation e³ˣ= x⁷. Let's define f(x) =e³ˣ- x⁷

Now we need to choose a starting point for the iteration. Let's choose x_0 = 1.

The iterative formula for Newton's method is:

x_n+1 = x_n - f(x_n)/f'(x_n)

where f'(x) is the derivative of f(x). In this case, f(x) = e³ˣ- x⁷, so

f'(x) = 3e³ˣ- 7x⁶.

Now we can apply the formula to find x_1:

x_1 = x_0 - f(x_0)/f'(x_0) = 1 - (e³ - 1)/20.0855 = 0.408294

We continue iterating until we reach the desired level of accuracy. For example, to find x_2, we use x_1 as the starting point:

x_2 = x_1 - f(x_1)/f'(x_1) = 0.408294 - (-0.00883753)/3.41171 = 0.411794

We can repeat this process until we reach the desired level of accuracy. For example, after a few more iterations, we get:

x_3 = 0.411582

x_4 = 0.411582

x_5 = 0.411582

We can see that the approximation has converged to 0.411582. To check our answer, we can substitute this value into the original equation:

e to the power (3*0.411582) - 0.41158⁷ = 0.000001

This is very close to zero, so our answer is correct to at least six decimal places. Therefore, the positive solution of e³ˣ= x⁷is approximately 0.411582.

To know more about Newton visit :-

https://brainly.com/question/28171613

#SPJ1

the positive solution  of e³ˣ= x⁷ is approximately 0.411582.

How to solve the question?

To use Newton's method, we first need to have a function whose root we want to find. In this case, we want to find the positive solution of the equation e³ˣ= x⁷. Let's define f(x) =e³ˣ- x⁷

Now we need to choose a starting point for the iteration. Let's choose x_0 = 1.

The iterative formula for Newton's method is:

x_n+1 = x_n - f(x_n)/f'(x_n)

where f'(x) is the derivative of f(x). In this case, f(x) = e³ˣ- x⁷, so

f'(x) = 3e³ˣ- 7x⁶.

Now we can apply the formula to find x_1:

x_1 = x_0 - f(x_0)/f'(x_0) = 1 - (e³ - 1)/20.0855 = 0.408294

We continue iterating until we reach the desired level of accuracy. For example, to find x_2, we use x_1 as the starting point:

x_2 = x_1 - f(x_1)/f'(x_1) = 0.408294 - (-0.00883753)/3.41171 = 0.411794

We can repeat this process until we reach the desired level of accuracy. For example, after a few more iterations, we get:

x_3 = 0.411582

x_4 = 0.411582

x_5 = 0.411582

We can see that the approximation has converged to 0.411582. To check our answer, we can substitute this value into the original equation:

e to the power (3*0.411582) - 0.41158⁷ = 0.000001

This is very close to zero, so our answer is correct to at least six decimal places. Therefore, the positive solution of e³ˣ= x⁷is approximately 0.411582.

To know more about Newton visit :-

https://brainly.com/question/28171613

#SPJ1

The positive solution of  the equation [tex]e^{3x}=x^7[/tex]is approximately 0.411582.

How to use Newton method?

To use Newton's method, we first need to have a function whose root we want to find. In this case, we want to find the positive solution of the equation[tex]e^{3x}=x^7[/tex]. Let's define f(x) =[tex]e^{3x}-x^7[/tex]

Now we need to choose a starting point for the iteration. Let's choose

[tex]x_0[/tex] = 1.

The iterative formula for Newton's method is:

[tex]x_{n+1} = x_n -\frac{ f(x_n)}{f'(x_n)}[/tex]

where f'(x) is the derivative of f(x). In this case, f(x) = [tex]e^{3x}-x^7[/tex], so

=> f'(x) = [tex]3e^{3x}- 7x^6.[/tex]

Now we can apply the formula to find [tex]x_1:[/tex]

=> [tex]x_1 = x_0 -\frac{ f(x_0)}{f'(x_0)} = 1 - \frac{(e^3 - 1)}{20.0855} = 0.408294[/tex]

We continue iterating until we reach the desired level of accuracy. For example, to find [tex]x_2[/tex], we use [tex]x_1[/tex] as the starting point:

=> [tex]x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.408294 - \frac{(-0.00883753)}{3.41171} = 0.411794[/tex]

We can repeat this process until we reach the desired level of accuracy. For example, after a few more iterations, we get:

=> [tex]x_3 = 0.411582[/tex]

=> [tex]x_4 = 0.411582[/tex]

=> [tex]x_5 = 0.411582[/tex]

We can see that the approximation has converged to 0.411582. To check our answer, we can substitute this value into the original equation:

=> [tex]e^{(3*0.411582)} - 0.41158^7 = 0.000001[/tex]

This is very close to zero, so our answer is correct to at least six decimal places. Therefore, the positive solution of [tex]e^{3x}=x^7[/tex]is approximately 0.411582.

To learn  know more about Newton method refer the below link

http://brainly.com/question/28171613

#SPJ1

The positive solution of  the equation [tex]e^{3x}=x^7[/tex]is approximately 0.411582.

How to use Newton method?

To use Newton's method, we first need to have a function whose root we want to find. In this case, we want to find the positive solution of the equation[tex]e^{3x}=x^7[/tex]. Let's define f(x) =[tex]e^{3x}-x^7[/tex]

Now we need to choose a starting point for the iteration. Let's choose

[tex]x_0[/tex] = 1.

The iterative formula for Newton's method is:

[tex]x_{n+1} = x_n -\frac{ f(x_n)}{f'(x_n)}[/tex]

where f'(x) is the derivative of f(x). In this case, f(x) = [tex]e^{3x}-x^7[/tex], so

=> f'(x) = [tex]3e^{3x}- 7x^6.[/tex]

Now we can apply the formula to find [tex]x_1:[/tex]

=> [tex]x_1 = x_0 -\frac{ f(x_0)}{f'(x_0)} = 1 - \frac{(e^3 - 1)}{20.0855} = 0.408294[/tex]

We continue iterating until we reach the desired level of accuracy. For example, to find [tex]x_2[/tex], we use [tex]x_1[/tex] as the starting point:

=> [tex]x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.408294 - \frac{(-0.00883753)}{3.41171} = 0.411794[/tex]

We can repeat this process until we reach the desired level of accuracy. For example, after a few more iterations, we get:

=> [tex]x_3 = 0.411582[/tex]

=> [tex]x_4 = 0.411582[/tex]

=> [tex]x_5 = 0.411582[/tex]

We can see that the approximation has converged to 0.411582. To check our answer, we can substitute this value into the original equation:

=> [tex]e^{(3*0.411582)} - 0.41158^7 = 0.000001[/tex]

This is very close to zero, so our answer is correct to at least six decimal places. Therefore, the positive solution of [tex]e^{3x}=x^7[/tex]is approximately 0.411582.

To learn  know more about Newton method refer the below link

http://brainly.com/question/28171613

#SPJ1

Answer the question below in the picture. Thank you! Have a wonderful day.

Answers

Answer:

1) Statistical

2)Not statistical

3)Not statistical

Step-by-step explanation:

If your not sure just visit  it will tell you the answers.

Hope it helps!!

Debbie and her friends are making snack mix. They use 1/3 cup of oat cereal and 2/3 cup corn cereal for each bag. How many cups of cereal do they use for each snack bag? ​

Answers

Answer: 1 cup

Step-by-step explanation:

1/3 + 2/3= 1

Potential real GDP is equal to $10,000 and the current level of real GDP is equal to $9,000. The output gap is therefore equal to: Select one: a.

Answers

The output gap, which represents the difference between potential real GDP and the current level of real GDP, is equal to $1,000.

Step 1: Potential real GDP refers to the maximum level of output that an economy can produce without generating inflation. In this case, it is given as $10,000.

Step 2: Current level of real GDP refers to the actual output produced by the economy at a given point in time. In this case, it is given as $9,000.

Step 3: To calculate the output gap, we subtract the current level of real GDP from the potential real GDP: $10,000 - $9,000 = $1,000.

Therefore, the output gap is equal to $1,000, which represents the difference between potential real GDP and the current level of real GDP.

To learn more about output gap here:

brainly.com/question/31257363#

#SPJ11

Answer the questions below to find the total surface area of the can.
(Help fast please)

Answers

The calculated value of the total surface area of the can is 9.54 square cm

Calculating total surface area of the can.

From the question, we have the following parameters that can be used in our computation:

The can

To calculate the total surface area of a net, you need to add up the areas of all its faces.

The shapes in the can are

Rectangle of: 1.5 by 4Pair of Circles of radius = 0.75

Using the above as a guide, we have the following:

Area = 1.5 * 4 + 2 * (22/7 * 0.75^2)

Evaluate

Area = 9.54

Hence, the surface area is 9.54 square cm

Read more about surface area at

https://brainly.com/question/26403859

#SPJ1

If X and Y are mutually exclusive events with P(X) = 0.295, P(Y) = 0.32, then P(X ½ Y) =
a. 0.0000 b. 0.6150 c. 1.0000 d. 0.0944

Answers

The answer is b. 0.6150. Since X and Y are mutually exclusive events, they cannot occur at the same time. Therefore, P(X ½ Y) = P(X or Y) = P(X) + P(Y) = 0.295 + 0.32 = 0.6150.


If X and Y are mutually exclusive events, it means they cannot occur at the same time. In this case, P(X) = 0.295 and P(Y) = 0.32. The probability of the union of two mutually exclusive events, denoted as P(X ∪ Y), is the sum of their individual probabilities. Therefore, P(X ∪ Y) = P(X) + P(Y) = 0.295 + 0.32 = 0.615. So, the answer is: b. 0.6150

Probability distribution refers to a type of probability distribution in which the probability distribution is defined by the probability distribution's parameters. The parameters are usually numeric values that define the distribution's probability density function (PDF) or probability mass function (PMF).The probability distribution is usually used to model a population's characteristics.

Visit here to learn more about  probabilities : https://brainly.com/question/29221515
#SPJ11

1. True or false? The point estimate of a population parameter is always at the center of the confidence interval for the parameter.

Answers

The statement is true. The point estimate of a population parameter is always at the centre of the confidence interval for the parameter.

To elaborate:
- "Point estimate" refers to a single value used as an estimate of a population parameter.
- "Population parameter" is a numerical value that characterizes a specific attribute of a population, such as its mean or proportion.
- "Confidence interval" is a range of values within which we are reasonably confident that the true population parameter lies.
In this context, when we construct a confidence interval for a population parameter, the point estimate is used as the central value, and the interval is built around it based on a specified level of confidence (e.g., 95%). False. The point estimate of a population parameter is not always at the centre of the confidence interval for the parameter. The confidence interval is a range of values that is likely to contain the true value of the parameter with a certain level of confidence. The point estimate is a single value that is calculated from a sample and used to estimate the population parameter. The centre of the confidence interval is determined by the level of confidence and the variability of the data, not necessarily the point estimate.

Learn more about Values here: brainly.com/question/13708942

#SPJ11

Widely known kite ABCD
35cm^2
. Gerrard made a kite
with the length of each diagonal
each twice the length of the diagonal of the kite
ABCD kite. Calculate the area of the kite
the new one !

Answers

The area of the kite the new one is 70 cm^2.

Calculating the area of the kite the new one

The area of a kite is given by half the product of its diagonals. Let's call the diagonals of kite ABCD d1 and d2, and the diagonals of the new kite d1' and d2'.

We know that d1' = 2d1 and d2' = 2d2, so we can write:

Area of new kite = 1/2 * d1' * d2'

= 1/2 * (2d1) * (2d2)

= 2 * (1/2 * d1 * d2)

= 2 * Area of kite ABCD

= 2 * 35 cm^2

= 70 cm^2

Therefore, the area of the new kite is 70 cm^2.

Read more about area at

https://brainly.com/question/24487155

#SPJ1

Zach bought 200 shares of Goshen stock years ago for $21.35 per share. He sold all 200 shares today for $43 per share. What was his gross capital gain?

Answers

Zach's gross capital gain is calculated as the difference between the selling price and the purchase price, multiplied by the number of shares sold:

Gross capital gain = (selling price - purchase price) x number of shares sold

The purchase price was $21.35 per share, and he bought 200 shares, so the total purchase price was:

Purchase price = $21.35 x 200 = $4,270

The selling price was $43 per share, and he sold all 200 shares, so the total selling price was:

Selling price = $43 x 200 = $8,600

Therefore, the gross capital gain is:

Gross capital gain = ($8,600 - $4,270) x 200 = $8,6600

So Zach's gross capital gain from selling his 200 shares of Goshen stock is $8,6600.

Answer: 8,600

Zach's gross capital gain can be calculated as follows:

Total proceeds from selling the stock = 200 shares x $43/share = $8,600

Total cost of buying the stock = 200 shares x $21.35/share = $4,270

Gross capital gain = Total proceeds - Total cost = $8,600 - $4,270 = $4,330

Therefore, Zach's gross capital gain from selling 200 shares of Goshen stock is $4,330.

How to evaluate this surface integral ∬Te(y−x)/(y+x)dA where T is the triangular region with vertices (0,0), (1,0) and (0,1)?

Answers

The value of the surface integral is (1 - ln(2))/2.

To evaluate the given surface integral ∬Te(y−x)/(y+x)dA over the triangular region T with vertices (0,0), (1,0) and (0,1), we can use the change of variables formula for surface integrals. Let u = y - x and v = y + x be the new variables, then the transformation (x, y) → (u, v) is a linear transformation with Jacobian determinant |J| = 2. The inverse transformation is given by x = (v - u)/2 and y = (v + u)/2.

The triangular region T in (x, y) coordinates corresponds to the parallelogram region R in (u, v) coordinates with vertices (0,0), (0,1), (1,-1) and (1,0), as shown below:

(1,0) T        (1,-1) R

  /\            /\

 /  \          /  \

/____\        /____\

(0,0) (0,1)   (0,0) (1,0)

The surface integral can be written as:

∬Te(y−x)/(y+x)dA = ∬R(u/v)(1/2)|J|dudv

Substituting the Jacobian determinant and limits of integration, we get:

∬Te(y−x)/(y+x)dA = ∫0^1 ∫-u+1^1-u u/v du dv

Integrating with respect to u first and then with respect to v, we get:

∬Te(y−x)/(y+x)dA = ∫0^1 (ln(2) - ln(v)) dv = (1 - ln(2))/2

Therefore, the value of the surface integral is (1 - ln(2))/2.

To learn more about  surface integral visit: https://brainly.com/question/15177673

#SPJ11

If xy = 100 and dy dt 20, find dy for the following values of c: dt (a) If x = 10, dy dt = (b) If x = 25, dy dt = (c) If x = 50, dy dt

Answers

Therefore, the value of derivatives are-

[tex](a) If x = 10, dy/dt = -20\\(b) If x = 25, dy/dt = -8\\(c) If x = 50, dy/dt = -4[/tex]

To solve this problem, we need to use implicit differentiation. Taking the derivative of both sides with respect to time, we get:

[tex]\frac{d(xy)}{dt} = d(100)/dt[/tex]

Using the product rule and the fact that d(xy)/dt = x(dy/dt) + y(dx/dt), we can rewrite this as:
[tex]x(\frac{dy}{dt} + y\frac{dx}{dt} = 0[/tex]

Substituting in the given value for xy, we get:

[tex]10\frac{dy}{dt} + (100/x)\frac{dx}{dt} = 0[/tex]

Simplifying this equation, we get:

[tex]\frac{dy}{dt} = -(10/x)\frac{dx}{dt}[/tex]

Now we can use this equation to find dy/dt for different values of x:

[tex](a) If x = 10, \frac{dy}{dt} = -(10/10)(20) = -20\\(b) If x = 25, dy/dt = -(10/25)(20) = -8\\(c) If x = 50, dy/dt = -(10/50)(20) = -4[/tex]
Therefore, the answers are:

[tex](a) If x = 10, dy/dt = -20\\(b) If x = 25, dy/dt = -8\\(c) If x = 50, dy/dt = -4[/tex]

learn more about differentiation

https://brainly.com/question/24898810

#SPJ11

Pls help (part 3)
Give step by step explanation!

Answers

The total area to be painted is  886.5 cm².

The volume of the object is 1,834.5 cm³.

What is the total area to be painted?

The total area to be painted is calculated by subtracting the area of he circular hole from total surface area of the prism.

Total area of the prism is calculated as;

S.A = bl + (s₁ + s₂ + s₃)l

where;

b is the base of the trianglel is the length of the triangles is the faces of the triangle

S.A = (16 x 20) + (16 + 17 + 17) x 20

S.A = 1,320 cm²

The circular area of the hole is calculated as;

A = 2πr(r + h)

A =2π x 3(3 + 20)

A = 433.54 cm²

Area to be painted = 1,320 cm² - 433.54 cm² = 886.5 cm²

The volume of the object is calculated as;

V = (¹/₂blh) - πr²h

V = (¹/₂ x 16 x 20 x 15) - π(3)²(20)

V = 1,834.5 cm³

Learn  more about volume of prism here: https://brainly.com/question/28795033

#SPJ1

A 16 ounce box of pasta costs $1.12. A 32 ounce box cost 1.92. A 5 pound box cost $4.00. Which box is the best deal?

Answers

Answer:

To find the best deal, we must get the value of 1 oz for each of the boxes.

Box 1: 1.12 divided by 16 equals 0.07 / oz

Box 2: 1.92/32 equals 0.06 / oz

5 LB Box = 80 OZ

Box 3: 4/80 = 0.05 / oz

The third box is the best deal.

To determine which box is the best deal, we need to calculate the price per ounce for each one.

For the 16-ounce box:

Price per ounce = $1.12 / 16 ounces = $0.07 per ounce

For the 32-ounce box:

Price per ounce = $1.92 / 32 ounces = $0.06 per ounce

For the 5-pound box:

We first need to convert pounds to ounces (since the other two boxes are in ounces):

5 pounds = 80 ounces

Price per ounce = $4.00 / 80 ounces = $0.05 per ounce

Therefore, the 5-pound box is the best deal, with a price of $0.05 per ounce.
Other Questions
find ^200_k =99 k^3. (use table 2.) . For philosophers, the important question is not only how we came to have the particular moral principles we have, but whether we can justify them. O A: true OB: false is in view of the fact that spanking can breed aggressivity, it follows that it isnt good for children to be spanked a premise how many of the following species have tetrahedral bond angles?+ - +NH3 BF3 CH3 CH3 H2O H3OI II III IV V VI 4. What is your reaction to the Amnesty Report onApartheid Against the Palestinians? Do you find it biasedin any way? Why or why not? Which part of it you foundmost interesting? (300 to 400 words, 3 points) Describe an example of an unsafe lifting technique. Why is biomechanically correctlifting and use of leverage important? An artist makes a design using rows oftiles. Each consecutive row has 2 timesthe number of tiles as the row before.The expression 12 x 2-1 represents thenumber of tiles in the nth row of thedesign. Which statement below is true?a)The value 12 represents the number oftiles in the first row of the design.b)The value 12 represents the number oftiles in the last row of the design.c) There are 6 tiles in the first row of thedesign.d) There are 24 tiles in the first row of thedesign. A mail merge combines data from an Access table or form into a Word form letter.a)Trueb)False Osama starts with a population of 1,000 amoebas that increases 30% in size every hour for a number of hours, h. The expression 1,000(1 + 0. 3)I finds the number ofamoebas after h hours. Which statement about this expression is true? t-Butly alcohol (TBA) is an important octane enhancer that is used to replace lead additives in gasoline. t-Butyl alcohol was produced by the liquid-phase hydration (W) of isobutene (I) over an Amberlyst-15 catalyst. The liquid is normally a multiphase mixture of hydrocarbon, water and solid catalysts. However, the use of cosolvents or excess TBA can achieve reasonable miscibility. The reaction mechanism is believed to be + I.S1 + W.S2. + . TBA.S + I.S3. TBA + S4Derive a rate law assuming:(a) The surface reaction is rate-limiting(b) The adsorption of isobutene is limiting Trace strength and activation determinea.) whether something is accessible/retrievable from memory.b.) attention level and motivation.c.) affective involvement.d.) the need for cognition. How do I solve for a problem that looks like this: sinx= 0.31, x = ?For context, this problem is in an inverse trig function section. Any help is appreciated. find a formula for the nth term of the arithmetic sequence. a3 = 97, a6 = 106 A 10 kg sack slides down a smooth surface. If the normal force on the surface at the flat spot, A is 98.1 N (), the radius of the curvature is _____.a. 0.2 mb. 0.4 mc. 1.0 md. None of the above. There is no gap between thecontinents ofA. Europe and AfricaB. Europe and North AmericaC. Europe and Asia If tan (theta) = A, sin(theta)= B, then:a. sin(-theta)=C. cos(theta + 2pie) =b. tan(-theta)=d. tan(theta + pie)= there are how many distinct website graphics to be created? Pls help ASAP !!! THANKS Find the measures of angle A and B. Round to the nearest degree. two long, parallel wires are separated by 4.45 cm and carry currents of 1.73 a and 3.57 a , respectively. find the magnitude of the magnetic force that acts on a 2.13 m length of either wire.