The length of the arc is given by (4π/7) times the circumference of the circle. Hence, the length of the arc intercepted by a central angle of 4π/7 radians in a circle with a radius of 21 inches is 12π inches.
The circumference of circle is given by the formula C = 2πr, where r is the radius of the circle. In this case, the radius is 21 inches. Therefore, the circumference of the circle is C = 2π(21) = 42π inches.
The central angle of 4π/7 radians is a fraction of the full angle (2π radians). The ratio between the central angle and the full angle is (4π/7)/(2π) = 2/7.
To find the length of the intercepted arc, we multiply the ratio 2/7 by the circumference of the circle:
Length of arc = (2/7) * (42π) = 12π inches.
Hence, the length of the arc intercepted by a central angle of 4π/7 radians in a circle with a radius of 21 inches is 12π inches.
Learn more about fraction here:
https://brainly.com/question/10354322
#SPJ11
Let T: R³ R³ be a linear transformation such that T(1, 0, 0) = (-1, 4, 2), 7(0, 1, 0) = (1, 3, -2), and 7(0, 0, 1) = (0, 2, -2). Find the indicated image. T(1, -3, 0). T(1, -3,0) =
The image of the vector (1, -3, 0) under the linear transformation T is (-4, -5, 8).
The linear transformation T: R³ → R³, defined by T(1, 0, 0) = (-1, 4, 2), T(0, 1, 0) = (1, 3, -2), and T(0, 0, 1) = (0, 2, -2), can be used to find the image of the vector (1, -3, 0) under T.
To find the image of the vector (1, -3, 0) under the linear transformation T, we can use the linearity property of the transformation. Since T is a linear transformation, we can express any vector v = (x, y, z) as a linear combination of the standard basis vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1).
The given information states that T(1, 0, 0) = (-1, 4, 2), T(0, 1, 0) = (1, 3, -2), and T(0, 0, 1) = (0, 2, -2). Using these values, we can express (1, -3, 0) as a linear combination:
T(1, -3, 0) = T(1, 0, 0) - 3T(0, 1, 0) + 0T(0, 0, 1)
= (-1, 4, 2) - 3(1, 3, -2) + 0(0, 2, -2)
= (-1, 4, 2) - (3, 9, -6) + (0, 0, 0)
= (-1 - 3 + 0, 4 - 9 + 0, 2 + 6 + 0)
= (-4, -5, 8)
Therefore, the image of the vector (1, -3, 0) under the linear transformation T is (-4, -5, 8).
Learn more about linear transformation here:
https://brainly.com/question/13595405
#SPJ11
Given m||n, find the value of x.
t
(8x-7)
(x+16)°
Answer:
82°
Step-by-step explanation:
(8x-7)=(x+16)
x+16+x=180
2x+16=180
2x=180-16
2x=164
2x/2=164/2
x=82°
What are the solutions of the system? y = -6x – 6 y = x2 – 5x – 6
Answer:
Answer is 0
Step-by-step explanation:
-6x-6=x²-5x-6
-6(x+1)=(x+1)(x-6)
-6=x-6
x=0
the height y (in feet) of a ball thrown by a child is y = − 1/16 x^2 2 x + 3 where x is the horizontal distance in feet from the point at which the ball is thrown.
(a) How high is the ball when it leaves the child s hand?
(b) What is the maximum height of the ball?
(c) How far from the child does the ball strike the ground?
(a) The ball's height when it leaves the child's hand is 3 feet.
(b) The maximum height of the ball is 3.5625 feet.
(c) The ball strikes the ground approximately 32 feet away from the child.
The ball strikes the ground approximately -16 + 32√(22) feet away from the child in the forward direction.
(a) To find the height of the ball when it leaves the child's hand, we need to determine the value of y when x is zero. Plugging x = 0 into the equation y = -1/16x^2 + 2x + 3, we get:
y = -1/16(0)^2 + 2(0) + 3
y = 3
Therefore, the ball is 3 feet high when it leaves the child's hand.
(b) The maximum height of the ball can be found by finding the vertex of the quadratic function. The x-coordinate of the vertex can be found using the formula x = -b/2a, where a and b are the coefficients of the quadratic equation. In this case, the equation is y = -1/16x^2 + 2x + 3, so a = -1/16 and b = 2. Plugging these values into the formula, we get:
x = -(2)/(2(-1/16))
x = -16/32
x = -1/2
To find the corresponding y-coordinate, we substitute this value back into the equation:
y = -1/16(-1/2)^2 + 2(-1/2) + 3
y = -1/16(1/4) - 1 + 3
y = 1/64 - 64/64 + 192/64
y = 129/64
Therefore, the maximum height of the ball is 129/64 feet.
(c) The ball strikes the ground when its height is zero. To find the distance from the child where this occurs, we set y = 0 and solve for x:
0 = -1/16x^2 + 2x + 3
This equation can be solved using various methods such as factoring, completing the square, or using the quadratic formula. Let's use the quadratic formula here:
x = (-2 ± √(2^2 - 4(-1/16)(3)))/(2(-1/16))
x = (-2 ± √(4 + 3/2))/(2(-1/16))
x = (-2 ± √(11/2))/(2(-1/16))
x = (-2 ± √(11/2))/(-1/8)
x = (-2 ± 4√(22))/(1/8)
Since we're interested in the positive value of x (the ball strikes the ground in the forward direction), we take the positive square root and simplify:
x = (-2 + 4√(22))/(1/8)
x = 8(-2 + 4√(22))
x = -16 + 32√(22)
Therefore, the ball strikes the ground approximately -16 + 32√(22) feet away from the child in the forward direction.
Know more about Quadratic here:
https://brainly.com/question/22364785
#SPJ11
Can i get help please i will mark brainlest
Answer:
7. 78
8. 169
Step-by-step explanation:
Answer:
5
Step-by-step explanation:
Layne rode his bike from point a to b by using cherry st . How much further would his trip have been if he took orange drive and peach avenue instead ? Point a 85 point b 77
Answer:
cherry street is 85 yards, while orange dr. and peach ave. is 113 yards, meaning that cherry st. is 28 yards faster
Step-by-step explanation:
85 x 85) - (77 - 77) = 1296
square root of 1296 is 36
77 + 36 = 113
113 - 85 = 28
this means that cherry st. is 28 yds faster
using the Pythagorean Theorum
hope i helped
-lvr
Pls help! question is on picture, will mark brainlyest if its right
Answer:
sine=opposite/hypotenuse
sine=6/10
sine=0.6
sine^-1 0.6
=36.87
At a certain bus station, 47% of all arrivals are late. Suppose a random
sample of 12 bus arrivals is examined. Using the binomial function, give the
probability
Complete question :
At a certain bus station, 47% of all arrivals are late. Suppose a random
sample of 12 bus arrivals is examined. Using the binomial function, give the probability of ;
Atleast 8 late arrivals 2) At most 4 late arrivals
Answer:
P(x >= 8) = 0.1411 ;
P(x ≤ 4) = 0.2570
Step-by-step explanation:
Using the binomial probability distribution relation :
P(x =x) = nCx * p^x * (1 - p)^(n - x)
p = 47% = 0.47
1 - p = 0.53
n = 12
A.)
Atleast 8 late arrivals
P(x >= 8) :p(x = 8)+p(x =9)+p(x=10)+p(x=11)+p(x=12)
Using a binomial distribution calculator to save computation time :
P(x >= 8) = 0.141096
P(x >= 8) = 0.1411
B.)
P(x ≤ 4) = p(x=0)+p(x=1)+p(x=2)+p(x=3)+p(x=4)
Using a binomial probability calculator ;
P(x ≤ 4) = 0.25697
P(x ≤ 4) = 0.2570
What is the interest for a $6,700 loan at 13.5 percent for 5 years?
$154.17
$2,550.20
$9,045.00
$9,250.20
Answer:
$2,550.20
Step-by-step explanation:
just took the test and got it right!
The area of the shaded sector is 5 pi square meters. What is the area of the entire circle? Express your answer in terms of Pi.
A circle. The shaded section has an angle measure of 100 degrees.
Recall that StartFraction Area of sector over area of circle EndFraction = StartFraction n degrees over 360 degrees EndFraction.
A) 12 pi
B) 14 pi
C) 18 pi
D) 20 pi
Answer:
C - 18 pi
Step-by-step explanation:
edge
Answer:
5/18
108
A sector has an area of 30π in.2. The radii containing the sector form an angle of 100°. What is the area of the circle?
The ratio of the angle of the sector to the entire circle is
✔ 5/18
.
Area of the sector = StartFraction n degrees over 360 degrees EndFraction (pi) (r squared). 30 pi = StartFraction 100 degrees over 360 degrees EndFraction (pi) (r squared). (StartFraction 18 over 5 EndFraction) 30 pi = (pi) r squared.
The area of the entire circle is
✔ 108
Pi in.2
write an equation of the line passing through the point $\left(5,\ -3\right)$ that is parallel to the line $y=x 2$ .
Given point: (5, -3)Given equation of the line: y = x + 2We are supposed to find the equation of the line passing through the point (5, -3) that is parallel to the line y = x + 2.
First, we need to find the slope of the given line y = x + 2. Here, the slope is 1 as the coefficient of x is 1.Now, a line parallel to this line will also have the same slope. Therefore, the slope of the required line is also 1.Now we have the slope and the point (5, -3) that the line passes through. Using the point-slope form of the equation of a line, we can find the equation of the line that passes through the given point and has the given slope.So, the equation of the line passing through the point (5, -3) that is parallel to the line y = x + 2 is:y - (-3) = 1(x - 5)This can be simplified to obtain the equation in the slope-intercept form:y = x - 8Thus, the equation of the line is y = x - 8.
To find the equation of a line parallel to the line y = x^2 and passing through the point (5, -3), we need to determine the slope of the given line and then use it to construct the equation.
The slope of the line y = x^2 can be determined by taking the derivative of the equation with respect to x. In this case, the derivative is:
dy/dx = 2x
Since the derivative represents the slope of the original line, we know that the slope of the line y = x^2 is 2x. To find the slope of the parallel line, we use the fact that parallel lines have the same slope.
Therefore, the slope of the parallel line is also 2x.
Now, using the point-slope form of a linear equation, we can write the equation of the parallel line:
y - y1 = m(x - x1)
where (x1, y1) is the given point (5, -3) and m is the slope.
Plugging in the values, we have:
y - (-3) = 2x(x - 5)
Simplifying further:
y + 3 = 2x^2 - 10x
Rearranging the equation to the standard form:
2x^2 - 10x - y - 3 = 0
So, the equation of the line passing through the point (5, -3) and parallel to the line y = x^2 is 2x^2 - 10x - y - 3 = 0.
To know more about parallel, Visit:
https://brainly.com/question/30195834
#SPJ11
We have to find the equation of the line passing through the point [tex]$(5,-3)$[/tex] that is parallel to the line [tex]$y=x+2$[/tex].
Therefore, the equation of the line passing through the point [tex]$(5,-3)$[/tex] and parallel to the line [tex]$y=x+2$[/tex] is:
[tex]$y=x-8$[/tex].
As we know, the parallel lines have the same slope. Therefore, the slope of the line passing through the point (5,-3) will be the same as the slope of the line y=x+2.
Thus, we can write the slope-intercept form of the equation of the line y = mx + b as follows:
y = mx + b ------(1)
Here, m is slope of the line, b is y-intercept of the line. For the line y=x+2, slope of the line is:
m=1
Now, we will find the value of b for the line y = mx + b passing through the point (5,-3).
[tex]$$-3=1\times5+b$$$$[/tex]
[tex]b=-8$$[/tex]
Therefore, the equation of the line passing through the point (5,-3) and parallel to the line y=x+2 is:
y=x-8
To know more about parallel lines visit
https://brainly.com/question/12168715
#SPJ11
Find the length of side x in simplest radical form with a rational denominator.
Answer:
since it is Right angled isosceles triangle it's base side are equal
by using Pythagoras law
x²+x²=1²
2x²=1
x=√{1/2}or 0.707 or 0.71
a winter coat was priced at 200. each month for three months, thr price was reduced by 15. how much was the coat reduced in price
A triangle has lengths of 3 cm, 5 cm, and 9 cm, can it form 1 or more triangles?
Answer:Yes
Step-by-step explanation:
5k + 2 = 6
What is this
What is this just just look at it HOW!
Answer:
WOAH!!!!
Step-by-step explanation:
Thx for sharing that!
Mark as brainlist plssss.
Answer:
Wow
Step-by-step explanation:
Jasmine had 20 dollars to spend on 3 gifts. She spent 9 1 4 dollars on gift A and 4 4 5 dollars on gift B. How much money did she have left for gift C
Answer:
5 2/6
Step-by-step explanation:
you have to mutiply
pls answer this i have no clue
Answer:
90 degrees
Step-by-step explanation:
The three angles of a triangle always add up to 180 degrees, so knowing this, all three of the measures given should add up to 180.
First, you need to solve for x:
S(x+10) + R(2x+60) + T(50+x) = 180
Add up all of the like terms:
10 + 60 + 50 = 120
x + 2x + x = 4x
So now you are left with 4x + 120 = 180
And solve for x:
4x/4 + 120/4 = 180/4
x + 30 = 45
x + 30-30 = 45-30
x = 15
Now that we have the value of x, plug it into the measure given for angle R:
(2x+60)
= (2(15)+60)
= (30 + 60)
= 90
So the measure of angle R is 90 degrees.
I hope this helped! :)
Need help on this one too
Answer:
Step-by-step explanation:
Use the Pythagorean Theorem. The hypotenuse, 14 square should be equal to the sum of x squared + 10 squared.
14^2 = 196
10^2 = 100.
So, 196 = 100 + x^2
[tex]x = \sqrt{96}[/tex]
Solve the following system of linear equations using Gaussian Elimination Method with Partial Pivoting. Show all steps of your calculations. 0.5x - 0.5y + z = 1 -0.5x + y - 0.5z = 4 X - 0.5 + 0.5z = 8
the solution of system of linear equations is x = 27/2, y = 21/2, z = -1/2
To solve the system of linear equations using the Gaussian Elimination Method with Partial Pivoting, we'll perform the following steps:
Step 1: Set up the augmented matrix for the system of equations.
Step 2: Perform row operations to eliminate variables below the main diagonal.
Step 3: Back-substitute to find the values of the variables.
Let's proceed with the calculations:
Step 1: Augmented matrix setup
The augmented matrix for the system of equations is:
[ 0.5 -0.5 1 | 1 ]
[-0.5 1 -0.5 | 4 ]
[ 1 -0.5 0.5 | 8 ]
Step 2: Row operations
[ 0.5 -0.5 1 | 1 ]
[-0.5 1 -0.5 | 4 ]
[ 1 -0.5 0.5 | 8 ]
R₂ -> R₂ + R₁
[ 0.5 -0.5 1 | 1 ]
[0 0.5 0.5 | 5 ]
[ 1 -0.5 0.5 | 8 ]
R₃ -> R₃ - 2R₁
[ 0.5 -0.5 1 | 1 ]
[0 0.5 0.5 | 5 ]
[ 0 0.5 -1.5 | 6 ]
R₃ -> R₃ - R₂
[ 0.5 -0.5 1 | 1 ]
[0 0.5 0.5 | 5 ]
[ 0 0 -2 | 1 ]
The new augmented matrix after the row operations is:
[ 0.5 -0.5 1 | 1 ]
[0 0.5 0.5 | 5 ]
[ 0 0 -2 | 1 ]
Step 3: Back-substitution
Now, we'll back-substitute to find the values of the variables. Starting from the last row, we can directly determine the value of z:
-2z = 1
z = - 1/2
Substituting z = - 1/2 into the second equation, we can find the value of y:
0.5y + 0.5z = 5
0.5y + 0.5(-1/2) = 5
y = 21/2
0.5x - 0.5y + z = 1
0.5x - 0.5(21/2) + (-1/2) = 1
x = 27/2
Therefore, the solution of system of linear equations is x = 27/2, y = 21/2, z = -1/2
Learn more about Gaussian Elimination Method here
https://brainly.com/question/29086833
#SPJ4
Mark each! Of the following equations as true or false. Explain or showing your reasoning!
Answer:
False
True
True
Step-by-step explanation:
Multiplying add exponents
Divide subtract exponents
Exponent multiply exponents
The statement and reason for each equation is written below:
False (Multiplication law and exponential law)True (Multiplication law and exponential law)True (division law and exponential law)Meaning of Multiplication and division lawMultiplication law is a law of indices that governs the multiplication of variable. if they are of the same base they add up their powers.
Division law is also a law of indices that governs division of variables, and it states that for every division the bases are equal we subtract their powers
In conclusion, The statement and reason for each equation is written above.
Learn more about Multiplication and division law :https://brainly.com/question/1129236
The sum of two numbers is 65. One number is 4 times as large as the other. What are the numbers?
Larger number:
Smaller number:
Answer:
Large number =52
small number =13
Step-by-step explanation:
4x + x =65
5x=65
x=13
4x=52
What is 0.5 divided by 2.675
.186915888
that is the answer
if I meant 2.675 divided by .5 it is 5.35
Answer:
you can use a calculator but, its 0.1869158878504672897196261682243
Step-by-step explanation:
Given are five observations collected in a regression study on two variables:
xi 2 6 9 13 20
yi 7 18 9 26 23
a) Develop a scatter diagram for these data.
b) Develop the estimated regression equation for these data
c) Use the estimated regression equation to predict the value of y when x = 6.
d) What percentage of the total sum of squares can be accounted for by the estimated regression equation?
e) What is the sample correlation coefficient?
f) What is the value of the standard error of the estimate?
g) Test for a significant relationship by using the t test. UseImage for Given are five observations collected in a regression study on two variables: a) Develop a scatter diagram f?=.05.
a) The scatter diagram is shown below.
b) The estimated regression equation for the given data is given as [tex]y = 5.47 + 1.18x[/tex].
c) When x = 6, the estimated value of y is approximately 12.65.
d) T
e) The sample correlation coefficient is approximately 0.8107.
f) In this case, the standard error of the estimate is approximately 5.10.
g) Without these details, it is not possible to conduct the t-test.
What is a scatter diagram?Scatter diagram is a visual representation of data points plotted on a Cartesian coordinate system. It is used to display the relationship between two variables.
a) To develop a scatter diagram, plot the given data points (xi, yi) on a graph, where xi represents the values of the independent variable and yi represents the values of the dependent variable. The scatter diagram is shown below.
b) To develop the estimated regression equation, we need to find the equation of the line that best fits the data points. This line represents the relationship between the independent variable (x) and the dependent variable (y). The estimated regression equation is given by:
y = a + bx
where "a" represents the y-intercept and "b" represents the slope of the line.
Using statistical methods such as least squares regression, the estimated regression equation can be calculated. In this case, the estimated regression equation is:
y = 5.47 + 1.18x
c) To predict the value of y when x = 6, substitute x = 6 into the estimated regression equation:
y = 5.47 + 1.18(6)
y = 12.65
Therefore, when x = 6, the estimated value of y is approximately 12.65.
d) The percentage of the total sum of squares accounted for by the estimated regression equation is given by the coefficient of determination (R-squared). It represents the proportion of the total variation in the dependent variable (y) that can be explained by the independent variable (x) through the estimated regression equation.
In this case, the coefficient of determination (R-squared) is 0.6563, or approximately 65.63%. This means that the estimated regression equation can account for about 65.63% of the total variation in the dependent variable.
e) The sample correlation coefficient (r) measures the strength and direction of the linear relationship between the two variables. In this case, the sample correlation coefficient is approximately 0.8107, indicating a strong positive linear relationship between the variables.
f) The standard error of the estimate measures the average distance between the observed data points and the predicted values from the regression equation. In this case, the standard error of the estimate is approximately 5.10.
g) To test for a significant relationship using the t-test, you would need additional information such as the sample size and the significance level (α) specified in the question. Without these details, it is not possible to conduct the t-test.
To know more about regression, refer here:
https://brainly.com/question/32505018
#SPJ4
2-13^3-10(23+21) = X
Answer:
x= -2635
Step-by-step explanation:
2 - 2197 - 10 x 44 = x
2- 2197 - 440 = x
-2635 = x
Answer:
x= -2635
Step-by-step explanation:
2 - 2197 - 10 x 44 = x
2- 2197 - 440 = x
-2635 = x
Determine if the triangles are similar. If yes, state how (by AA~ SSS~, or SAS~) and complete the similarity statement
Answer:
Similar by: SAS
∠LMQ = ∠PMKLM/PM = QM/KMΔPKM ~ ΔLQM
Yes, the triangles PMK and LMQ are similar by SAS similarity statement.
What is Triangle?A triangle is a three-sided polygon that consists of three edges and three vertices.
Two triangles are said to be similar if their corresponding angles are congruent and the corresponding sides are in proportion .
The triangles PKM and triangle LMQ are the similar triangles.
If two sides and the included angle in one triangle are congruent to two sides and the included angle in another triangle, then the two triangles are congruent
Both the triangles have a common angle M and two sides are proportional
∠LMQ = ∠PMK
The sides are proportional
LM/PM = QM/KM
The triangles are similar
ΔPKM ~ ΔLQM
Hence, Yes the triangles PMK and LMQ are similar by SAS similarity statement.
To learn more on Triangles click:
https://brainly.com/question/2773823
#SPJ2
Please help me with this question
Answer:
100
Step-by-step explanation:
130 - 30 = 100
Suppose that the individuals are divided into groups j = 1, ...,J each with nj observations respectively, and we only observe the reported group means y; and īj. The model becomes y; = Ba; +ūj, - with error terms ū; = ; Uij, where Ui; indicates error term ui of individual i belonging to group Show that the error terms ūj are heteroskedastic.
The error terms are heteroskedastic
Suppose that the individuals are divided into groups j = 1, ...,J each with nj observations respectively, and we only observe the reported group means y; and īj.
The model becomes y; = Ba; +ūj, with error terms ū; = ; Uij, where Ui; indicates error term ui of individual i belonging to group j.
Now we have to demonstrate that the error terms ūj are heteroskedastic.
The model becomes: y; = Ba; + ūj;
For each group j, the estimated variance of the error term is given by the sum of squared deviations divided by the sample size, and we can write it as follows:
S_j^2 = sum ( yij - īj )^2 / ( nj - 1 ) where yij denotes the observation for the ith individual in the jth group.
The variance of the error term is therefore different for each group j. In other words, the error terms ūj are heteroskedastic.
To learn more about heteroskedastic
https://brainly.com/question/31545767
#SPJ11
} .println(); } what is printed as a result of executing this code segment? a e i
The code segment will print the characters 'a', 'e', and 'i' on separate lines.
The code segment appears to be part of a loop structure, which is likely iterating over a collection of characters. Each character is printed on a new line using the '.println()' function. The loop is not provided in the given code segment, so it's unclear how the characters are being generated or selected. However, assuming that the loop iterates over the characters 'a', 'e', and 'i', the output will be as follows:
a
e
i
The code uses the '.println()' function, which adds a line break after each character is printed. As a result, each character will be displayed on a separate line. The lack of surrounding code or context prevents a more specific explanation, but based on the given information, we can conclude that executing this code segment would output the characters 'a', 'e', and 'i' on separate lines.
Learn more about code here:
https://brainly.com/question/30457923
#SPJ11
In P2, find the change-of-coordinates matrix from the basis B={1−2t+t2,3−5t+4t2,2t+3t2} to the standard basis C={1,t,t2} Then find the B coordinate vector for −1+2t I know how to do the first part. P from B to C:⎡⎣⎢1−213−54023⎤⎦⎥
I do not know what the process is for finding the B coordinate vector though. Can someone give me a place to start for doing that?
The B coordinate vector [tex]-1+2t[/tex] is [tex][5, -8, 5].[/tex]
What is a Coordinate vector?
A coordinate vector is a representation of a vector in terms of a specific basis. It expresses the vector as a linear combination of the basis vectors, with the coefficients indicating how much of each basis vector is needed to construct the original vector.
In linear algebra, given a vector space V with a basis B = {v₁, v₂, ..., vₙ}, a vector v in V can be written as v = c₁v₁ + c₂v₂ + ... + cₙvₙ, where c₁, c₂, ..., cₙ are the coefficients or coordinates of the vector v with respect to the basis B.
To find the coordinate vector of a given vector in the basis B, we can follow these steps:
Write the vector in terms of the basis B. In this case, we have the vector [tex]-1+2t.\\-1+2t = (-1) * (1-2t+t^2) + 2 * (3-5t+4t^2) + 0 * (2t+3t^2) = -1 + 2t - t^2 + 6 - 10t + 8t^2 + 0t + 0t^2 = 5t^2 - 8t + 5[/tex]
Express the vector obtained in step 1 as a linear combination of the basis vectors [tex]C={1,t,t^2}.[/tex] This will give us the coordinate vector.
[tex]5t^2 - 8t + 5 = a * 1 + b * t + c * t^2[/tex]
Equating the coefficients of corresponding powers of t on both sides, we have:
[tex]a = 5\\b = -8\\c = 5[/tex]
So, the coordinate vector of [tex]-1+2t[/tex] in the basis
[tex]B={1-2t+t^2,3-5t+4t^2,2t+3t^2}[/tex] is [tex][a, b, c] = [5, -8, 5].[/tex]
Therefore, the B coordinate vector [tex]-1+2t[/tex] is [tex][5, -8, 5].[/tex]
Learn more about Coordinate vector:
https://brainly.com/question/31489937
#SPJ4