Answer:
wtfrick- that's so confusing
Step-by-step explanation:
sorry I don't have an answer wish this was a comment
A firm's marginal revenue and marginal cost functions are given by MR = R'(x) = 205 -0.5x2 and MC = C'(x) = 85 +0.7x2. Fixed costs are 10. a) Write down an expression for total revenue and deduce the corresponding demand function. Write down an expression for the total cost function. c) Determine the maximum profit.
a) The expression for total revenue is:
[tex]R(x) = \int MR(x) dx = \int (205 -0.5x^2) dx = 205x - 0.25x^3[/tex]
The demand function is:
[tex]x = R^{-1}(R) = \frac{205}{0.25R + 1}[/tex]
b) The expression for the total cost function is:
[tex]C(x) = \int MC(x) dx = \int (85 +0.7x^2) dx = 85x + 0.21x^3 + 10[/tex]
c)The maximum profit, is 1079.56
How to write an expression for total revenue and deduce the corresponding demand function?a) Total revenue is the integral of marginal revenue. Thus, expression for total revenue is:
[tex]R(x) = \int MR(x) dx = \int (205 -0.5x^2) dx = 205x - 0.25x^3[/tex]
The demand function is the inverse of the total revenue function:
[tex]x = R^{-1}(R) = \frac{205}{0.25R + 1}[/tex]
b) Total cost is the integral of marginal cost:
[tex]C(x) = \int MC(x) dx = \int (85 +0.7x^2) dx = 85x + 0.21x^3 + 10[/tex]
c) Profit is total revenue minus total cost:
P(x) = R(x) - C(x) = 205x - 0.25x³ - (85x + 0.21x³ + 10) = 120x - 0.46x³ - 10
To find the maximum profit, we need to find the point where marginal profit is zero. Marginal profit is the derivative of profit:
P'(x) = 120 - 1.38x² = 0
Solve for x:
120 - 1.38x² = 0
1.38x² = 120
x² = 120/1.38
x = √(120/1.38)
x = 9.33
We find that the maximum profit is achieved when x = 9.33. Thus, the maximum profit:
P(9.33) = 120(9.33) - 0.46(9.33)³ = 1079.56
Learn more about marginal revenue on:
https://brainly.com/question/25623677
#SPJ4
What is the value of t? need an answer asap
Answer:
im pretty sure its 69
Step-by-step explanation:
im not joking im pretty sure both angles are 69 because of the triangle formula
Simplify: 36.6 ÷ (12)
Answer:
Hi! The answer to your question is [tex]3.05[/tex]
Step-by-step explanation:
☆*: .。..。.:*☆☆*: .。..。.:*☆☆*: .。..。.:*☆☆*: .。..。.:*☆
☆Brainliest is greatly appreciated!☆
Hope this helps!!
- Brooklynn Deka
PLEASE HELP ME OUT! QUICK POINTS FOR YOU!
All information needed can be found in the image below
Thank you in advance.
Answer:
circle area = 50.24 units²
Step-by-step explanation:
circle area = πr² = 3.14(4²) = 3.14(16) = 50.24 units²
The following is an incomplete paragraph proving that the opposite angles of parallelogram ABCD are congruent: Parallelogram ABCD is shown where segment AB is parallel to segment DC and segment BC is parallel to segment AD.
According to the given information, segment AB is parallel to segment DC and segment BC is parallel to segment AD . Using a straightedge, extend segment AB and place point P above point B. By the same reasoning, extend segment AD and place point T to the left of point A. Angles ______________ are congruent by the Alternate Interior Angles Theorem. Angles ______________ are congruent by the Corresponding Angles Theorem. By the Transitive Property of Equality, angles BCD and BAD are congruent. Angles ABC and BAT are congruent by the Alternate Interior Theorem. Angles BAT and CDA are congruent by the Corresponding Angles Theorem. By the Transitive Property of Equality,∠ ABC is congruent to∠ CDA. Consequently, opposite angles of parallelogram ABCD are congruent. What angles accurately complete the proof? (5 points) 1. BCD and CDA 2. CDA and BCD 1. BCD and PBC 2. PBC and BAD 1. PBC and CDA 2. CDA and BAD 1. PBC and BAT 2. BAT and BAD
To accurately complete the proof, the angles that can be filled in are: BCD and CDA; ABC and BAT.
Let's go step by step to understand why these angles are congruent. Given that segment AB is parallel to segment DC and segment BC is parallel to segment AD, we extend segment AB to point P above point B and extend segment AD to point T to the left of point A.
According to the Alternate Interior Angles Theorem, angles BCD (angle at point C) and CDA (angle at point D) are congruent. This is because these angles are formed by a transversal (segment AD) intersecting two parallel lines (AB and DC).
Next, applying the Corresponding Angles Theorem, angles ABC (angle at point A) and BAT (angle at point T) are congruent. This is because these angles are corresponding angles formed by a transversal (segment AB) intersecting two parallel lines (AD and BC).
By the Transitive Property of Equality, we can conclude that angle ABC is congruent to angle CDA. Therefore, opposite angles of parallelogram ABCD are congruent, and the proof is complete.
To learn more about Alternate Interior Angles Theorem visit:
brainly.com/question/11933154
#SPJ11
How many bit strings of length 8 can you have if each string has
only two zeros that are never together
There are 28 different bit strings of length 8 that satisfy the condition of having two zeros that are never together.
To count the number of bit strings of length 8 with two zeros that are never together, we can use the concept of combinations.
First, let's consider the possible positions for the two zeros. The zeros cannot be adjacent to each other, which means they must be placed in non-adjacent positions in the string.
Since there are 8 positions in the string, we can choose 2 positions for the zeros in C(8, 2) ways. This gives us the number of ways to select the positions for the zeros.
Once we have chosen the positions for the zeros, the remaining 6 positions must be filled with ones. There is only one way to do this, as all the remaining positions will be filled with ones.
Therefore, the total number of bit strings of length 8 with two zeros that are never together is equal to C(8, 2) = 28.
Learn more about bit strings https://brainly.com/question/31168016
#SPJ11
What is the surface area of this prism?
5 yd
5 yd
11 yd
6 yd
Can someone help me please
Answer:
its C
Step-by-step explanation:
Answer:
c. I believe
Step-by-step explanation:
because all of the other options dont go in a consistent order/pattern. C. matches the vertical side
please consider marking me as brainliest. as I explained my answer!
Please and thanks!
11 Megan has $500 in her savings account. The interest rate is 7%, which is not compounded. How much money in dollars) will she have in her account after 5 years? Write the correct
answer.
Answer:
701
Step-by-step explanation:
At the end of 5 years, your savings will have grown to $701.
You will have earned in $201 in interest.
answer.
Expand x(4 --3.4y) show FULL work
Answer:
4x - 3.4xy
Step-by-step explanation:
x(4 - 3.4y)
4x - 3.4xy
This is due in 15 minutes help.
The probability that the next student he sees will be a boy with brown eyes is 25%. All of them are the exact same so 100 divided by 4 is 25.
Someone pls help me I’ll give out brainliest please dont answer if you don’t know.
Answer:
-12n - 6
Step-by-step explanation:
6(-2n - 1 ) -12n - 6 You need to multiply the 6 by the numbers inside the Parenthesis.factor 5a2 – 30a 40. question 17 options: a) 5(a – 2)(a 4) b) 5(a – 2)(a – 4) c) (5a – 5)(a – 8) d) (a – 20)(a – 2)
The answer that you are looking for is b) 5(a – 2)(a – 4). In order to factor the formula, we must first locate two numbers whose sum is equal to -30 and whose product is equal to 40. Both constraints are met by the values -4 and -10, and as a result, we are able to factor the statement as 5(a – 2)(a – 4).(option b)
The following procedures can be used by us while factoring polynomials:
Find two numbers that, when added together, give you the coefficient of the middle term, and then multiply those two values by themselves to get the constant term.
Create the expression as the product of two binomials, with each binomial having one of the two numbers discovered in step 1. Write the equation as a product of two binomials.
Eliminate any factors that are frequent.
In this particular instance, the coefficient of the intermediate term is -30, while the value of the constant term is 40. When added together, the numbers -4 and -10 equal -30, and when multiplied together, they equal 40. Therefore, the expression can be factored as 5(a minus 2)(a minus 4).
Learn more about polynomials here:
https://brainly.com/question/11536910
#SPJ11
Caught error while evaluating the code in this question: syntax error, unexpected" Let S be the universal set, where: Let sets A and B be subsets of S, where: LIST the elements in the set (AUB) [(AUB)]={ } Enter the elements as a list, separated by commas. If the result is the empty set, enter DNE You may want to draw a Venn Diagram to help answer this question.
The solution to the problem is `{5, 10, 15, 20, 25, 30}`.
The error message "syntax error, unexpected" is a common message you might encounter when there is a syntax error in your code.
This error message often points to an unexpected symbol or typo in your code. For instance, in the context of a code snippet like this, such an error message could be prompted due to an invalid command or misspelling, or a misused symbol or expression.
Also, another likely cause could be an incorrect use of a function or a non-existent variable or keyword. Hence, to solve the error message, you might need to double-check your code and fix any errors that could cause such an issue. Now, let's answer the question that follows: Given the universal set, S, as;`S = {5, 10, 15, 20, 25, 30}` and the subsets A and B as; A = {5, 10, 15, 20} B = {15, 20, 25, 30}.
To list the elements in the set (AUB) we need to find the union of A and B. The union of two sets A and B is a set of all the elements that are either in A or in B or in both. That is, `AUB = {x: x ∈ A or x ∈ B}`
Therefore, the union of sets A and B is the set `AUB = {5, 10, 15, 20, 25, 30}`
Thus, the list of elements in the set (AUB) is:`{5, 10, 15, 20, 25, 30}` Hence, the solution to the problem is `{5, 10, 15, 20, 25, 30}`.
Learn more about sets at: https://brainly.com/question/14951743
#SPJ11
nobody is helping me on this pls answer and ty
Answer:
38.7
Step-by-step explanation:
[tex]\frac{sinA}{A}=\frac{sinB}{B}=\frac{sinC}{C}[/tex]
A, B and C are the sides of the triangle and sinA, sinB and sinC are the opposing angles
[tex]\frac{sin95}{43}=\frac{A}{27}[/tex]
[tex]A = sin^{-1} (\frac{27*sin95}{43} )=38.72018809[/tex]
What is the volume of the can below? Use Pi = 3.14 and round your answer to the nearest tenth. A cylinder with height 96 millimeters and diameter of 66 millimeters.
Answer
328,268.2 mm cubed is correct!
Step-by-step explanation:
If you use the formula V=πr²h with these steps:
1. Calculate the area of the base (which is a circle)
2. use the equation πr² where r is the radius of the circle.
3. Then, multiply the area of the base by the height of the cylinder
4. The volume is found!
Answer:
328,268.2 cubic millimeters
Step-by-step explanation:
I did it on edge
What is the value, to the nearest tenth, of 15 x 3 - 12 x 2 when x = 2.5
Answer:
159.4
Step-by-step explanation:
I'm assuming that it's supposed to be 15x^3-12x^2 because when you copy and paste the "^" gets cut out
15*2.5^3 - 12*2.5^2 = 234.375 - 75 = 159.375
rounded is 159.4
Ahmed received a box of gifts. The box is a rectangular prism with the same height and width, and the length
is twice the width. The volume of the box is 3,456 in? What is the height of the box?
Answer:
12 inches
Step-by-step explanation:
Ahmed received a box of gifts. The box is a rectangular prism with the same height and width, and the length
is twice the width. The volume of the box is 3,456 in? What is the height of the box?
Volume of a Rectangular pyramid = Length × Width × Height
From the above question
Height = Width = x
Length = 2 × Width
Length = 2x
Volume = 3,456 cubic inches
Hence,
3,456 = 2x × x × x
3456 = 2x³
x³ = 3456/2
x³ = 1728
Cube root both sides
Cube root(x³) = cube root (1728 cubic Inches)
x = 12 inches
Therefore, the height is 12 inches
Width, Height and Length of rectangular prism are 12, 12 and 24 inch respectively.
Assume;Width of rectangular prism = a
Height of rectangular prism = a
Length of rectangular prism = 2a
We know that;Volume of the rectangular prism = (l)(b)(h)
Volume of the rectangular prism = (2a)(a)(a)
3,456 = 2a³
a³ = 1,728
a = 12 inch
So,
Width of rectangular prism = 12 inch
Height of rectangular prism = 12 inch
Length of rectangular prism = 2(12)
Length of rectangular prism = 24 inch
Learn more:
https://brainly.com/question/16571778?referrer=searchResults
If cos theta = 0.3090, which of the following represents approximate values of sin thetha for 0 degrees <90 degrees?
A. sin thetha =0.9511;tan theta = 0.3249
B.sin thetha =0.9511 ;tan thetha =3.0780
C. sin thetha 3.2362 ; tan thetha=0.0955
D. sin thetha = 3.2362;tan thetha=10.4731
The approximate value of sin(theta) for 0 degrees < theta < 90 degrees, given cos(theta) = 0.3090, is approximately ±0.9511. The correct answer from the given options is A, which states sin(theta) = 0.9511 and tan(theta) = 0.3249.
To determine the value of sin(theta) given that cos(theta) is 0.3090, we can use the identity [tex]\(\sin^2(\theta) + \cos^2(\theta) = 1\)[/tex].
Since we know cos(theta) is 0.3090, we can substitute it into the identity:
[tex]\(\sin^2(\theta) + 0.3090^2 = 1\)[/tex]
[tex]\(\sin^2(\theta)\)[/tex] + 0.095481 = 1
[tex]\(\sin^2(\theta)\)[/tex] = 0.904519
Taking the square root of both sides, we get:
sin(theta) = √(0.904519)
sin(theta) ≈ ±0.9511
So, the approximate value of sin(theta) is approximately ±0.9511.
Now let's evaluate the given options:
A. sin(theta) = 0.9511; tan(theta) = 0.3249
B. sin(theta) = 0.9511; tan(theta) = 3.0780
C. sin(theta) = 3.2362; tan(theta) = 0.0955
D. sin(theta) = 3.2362; tan(theta) = 10.4731
We can eliminate options C and D immediately since the value of sin(theta) cannot be greater than 1.
Now, let's consider options A and B. Both options have sin(theta) = 0.9511, which matches our approximate value. However, the value of tan(theta) in option A is 0.3249, while in option B it is 3.0780.
Since we're looking for values of sin(theta) and tan(theta) that are consistent with the given cos(theta) = 0.3090, we can conclude that option A is the correct answer.
Therefore, the approximate values of sin(theta) and tan(theta) for 0 degrees < theta < 90 degrees are:
sin(theta) ≈ 0.9511
tan(theta) ≈ 0.3249
Therefore, the correct answer is A. sin(theta) = 0.9511; tan(theta) = 0.3249.
For more such questions on theta
https://brainly.com/question/29186791?referrer=searchResults
#SPJ8
Please answer correctly! I will mark you as Brainliest!
Answer:
I have actually done this before, I got it right and I chose C!
hope this helps. love u guys!
Answer:
The 4th answer choice
Explain:
195 divided by 3 is 65. Then the diameter of 307 needs to be divided by 2 to get the radius. Now take the radius and square it to get 23562.25. Now times 3.14. Lastly, multiply by the 65 to get 4809055.225. Hope that helps! :)
A bag contains white, blue and red ping-pong balls in the ratio 8 : 3 : 2. There are 10 balls. If 10 white and 10 blue balls are removed from the bag, the new ratio is ?
Answer:
the new ratio of white, red and blue balls is 6:2:1
Step-by-step explanation:
The computation of the new ratio is shown below:
If you have 10 red balls, so the blue balls is in proportion of 3:2 that means 15 would be the blue balls. In addition to this, the while balls is in proportion 8:2 = 4:1 so there is a 40 white balls
Now if 10 white and 10 blue balls would be eliminated
So there is 30 white, 10 red, 5 blue bals
Also
30 = 5 × 6
And,
10 = 5 × 2
so the new ratio of white, red and blue balls is 6:2:1
I really need help with this
Answer:add 11 on both sides sorry
Answer: subtract 11 from both sides
Step-by-step explanation: this was an assigned assignment for me two days ago
a student performed the following steps to find the solution to the equation x^2 + 14x + 45=0
where did the student go wrong?
Step 1. Factor the polynomial into (x + 5) and (x + 9)
Step 2. x + 5 = 0 or x - 9 = 0
Step 3. x = -5 or x = 9
a. in Step 2
b. in Step 3
c. The student did not make any mistakes, the solution is correct
d. in Step 1
While factoring the given equation, the mistake occurred in Step 1 (option d.)
Upon reviewing the steps, we can see that the student made a mistake in Step 1. The factorization of the polynomial should be (x + 5)(x + 9), not (x + 5)(x - 9).
The correct factorization should be:
[tex]x^2 + 14x + 45 = (x + 5)(x + 9)[/tex]
The mistake occurred when the student incorrectly wrote (x - 9) instead of (x + 9) as one of the factors.
As a result, the subsequent steps are also affected. In Step 2, the student incorrectly set x - 9 = 0 instead of x + 9 = 0. This leads to an incorrect value in Step 3, where the student states that x = 9 instead of the correct value x = -9.
Therefore, the student made a mistake in Step 1, which caused subsequent errors in Step 2 and Step 3. The correct answer is d. The mistake occurred in Step 1.
To know more about factoring, refer here:
https://brainly.com/question/14549998
#SPJ4
Find the radius of a cone with a volume of 196 x 3.14 mm and a height of 12 mm.
Answer:
r=7 my
answer needs to be 20 characters long
A researcher would like to estimate the mean amount of money the typical American spends on lottery tickets in a month. The researcher would like to estimate the mean with 99% confidence. Which sample size options would yield the smallest margin of error?
Based on the formula, we can say that the margin of error will be reduced if the sample size is increased.
To obtain the smallest margin of error with 99% confidence, a sample size of 1689 would be needed.
A margin of error refers to the degree of error that may arise due to chance when attempting to estimate a population parameter such as a mean. It is calculated as the product of a critical value, a standard deviation, and a confidence interval, then divided by the square root of the sample size.
N is the sample size, which refers to the number of items included in the sample from the population. A larger sample size would be beneficial since it lowers the margin of error. When the sample size rises, the standard error of the mean decreases, implying that we are more confident in our estimate of the population mean. A smaller margin of error is desirable since it results in a more precise estimate of the population parameter.
The formula for the margin of error is given by:
Margin of Error = (Critical Value) (Standard Deviation) / sqrt(N).
To obtain the smallest margin of error with 99% confidence, a sample size of 1689 would be needed. The formula for the sample size calculation for this scenario is:
N = [(Zα/2)σ / E]²
Where, Zα/2 = 2.58, σ is the standard deviation, and E is the margin of error.
Using Zα/2 = 2.58 for a 99% confidence interval and the smallest possible margin of error to obtain a sample size for which the margin of error is minimized, we have:
N = [(Zα/2)σ / E]² = [(2.58)σ / E]²
Since the goal is to minimize the margin of error, we use the smallest possible value for E:1.
Therefore, N = [(2.58)σ / 1]²2.
Solving for N:
N = 6.6564σ²
To obtain the smallest margin of error with 99% confidence, we must solve for the smallest possible value of N that satisfies the above equation. We obtain:
N = 6.6564σ²
We don't have any information about the standard deviation, σ, in the given question, so we can't solve for N.
However, based on the formula, we can say that the margin of error will be reduced if the sample size is increased.
Learn more about margin of error here:
https://brainly.com/question/29419047
#SPJ11
A lottery consists of selecting 7 numbers out of 35 numbers. You win $10 if exactly three of your 7 numbers are matched to the winning numbers chosen. What is the probability of winning the $10?
the number of favorable outcomes is 35 * 20475 = 716,625.
Probability = 716,625 / (35! / (7!(35 - 7)!)).
To determine the probability of winning the $10 prize by matching exactly three numbers, we need to calculate the total number of possible outcomes and the number of favorable outcomes.
The total number of possible outcomes can be calculated using combinations. Since we are selecting 7 numbers out of 35, the total number of possible outcomes is given by the combination formula:
C(n, r) = n! / (r!(n - r)!)
In this case, n = 35 (total numbers) and r = 7 (numbers selected). Substituting these values into the formula:
C(35, 7) = 35! / (7!(35 - 7)!)
= 35! / (7!28!)
The number of favorable outcomes is determined by choosing 3 winning numbers from the 7 numbers selected and 4 non-winning numbers from the remaining 28 numbers. The number of favorable outcomes can be calculated using combinations as well:
C(7, 3) * C(28, 4)
Substituting the values into the formula:
C(7, 3) * C(28, 4) = (7! / (3!(7 - 3)!)) * (28! / (4!(28 - 4)!))
Calculating these values:
C(7, 3) = 7! / (3!(7 - 3)!)
= 7! / (3!4!)
= (7 * 6 * 5) / (3 * 2 * 1)
= 35
C(28, 4) = 28! / (4!(28 - 4)!)
= 28! / (4!24!)
= (28 * 27 * 26 * 25) / (4 * 3 * 2 * 1)
= 20475
Therefore, the number of favorable outcomes is 35 * 20475 = 716,625.
Now, we can calculate the probability of winning the $10 prize by dividing the number of favorable outcomes by the total number of possible outcomes:
Probability = Number of favorable outcomes / Total number of possible outcomes
= 716,625 / C(35, 7)
Calculating this value:
Probability = 716,625 / (35! / (7!(35 - 7)!))
It is important to note that calculating the factorial of 35 might result in very large numbers, which may be computationally intensive. Alternatively, you can use numerical methods or estimation techniques to approximate the probability.
Visit to know more about Probability:-
brainly.com/question/24756209
#SPJ11
Over a 5-year period, a company reported annual profits of $8 million, $3 million, $2 million, and $9 million. In the fifth year, it reported a loss of $7 million. What was the mean annual profit?
Given
Annual profits of four years $8 million, $3 million, $2 million, and $9 million.
In the fifth year, it reported a loss of $7 million.
To find:
The mean annual profit.
Solution:
Formula for mean is:
[tex]\text{Mean}=\dfrac{\text{Sum of observations}}{\text{Number of observations}}[/tex]
Annual profits are $8 million, $3 million, $2 million, $9 million and -$7 million. Here negative sign represent loss.
So, the mean annual profit is:
[tex]\text{Mean}=\dfrac{8+3+2+9+(-7)}{5}[/tex]
[tex]\text{Mean}=\dfrac{22-7}{5}[/tex]
[tex]\text{Mean}=\dfrac{15}{5}[/tex]
[tex]\text{Mean}=3[/tex]
Therefore, the mean annual profit is $3 million.
a grating that has 3200 slits per cm produces a third-order fringe at a 24.0 ∘ angle.
To solve this problem, we can use the grating equation:
m * λ = d * sin(θ)
Where:
m is the order of the fringe
λ is the wavelength of light
d is the slit spacing (distance between adjacent slits)
θ is the angle of the fringe
In this case, we're given:
m = 3 (third-order fringe)
θ = 24.0°
We need to calculate the slit spacing (d) using the information that the grating has 3200 slits per cm. First, we convert the number of slits per cm to the slit spacing in meters:
slits per cm = 3200
slits per m = 3200 * 100 = 320,000
Now we can calculate the slit spacing (d):
d = 1 / (slits per m)
d = 1 / 320,000
Now, let's substitute the given values into the grating equation and solve for λ (wavelength):
m * λ = d * sin(θ)
3 * λ = (1 / 320,000) * sin(24.0°)
λ = (1 / (3 * 320,000)) * sin(24.0°)
Using a calculator, we can calculate the value of λ:
λ ≈ 5.79 × 10^(-7) meters or 579 nm
Therefore, the wavelength of light for which the grating with 3200 slits per cm produces a third-order fringe at a 24.0° angle is approximately 579 nm.
Learn more about approximately here:
https://brainly.com/question/31695967
#SPJ11
Which quadrilateral has four right angles and four sides of equal length?
Answer:
Square.
Step-by-step explanation:
A square is a rectangle, but a rectangle is not a square.
Answer:
A square
Step-by-step explanation:
The file below can help you out understand the properties of the square better!
Simplify the following expression when x=14 y=10 z=6 .
3x+3y divided by z