THIS WILL HELP A LOT OF PPL PLZ HLP!!!!!!
Determine the interval where the graph of the function is negative.

ANSWER CHOICES AND GRAPH IN IMAGES

THIS WILL HELP A LOT OF PPL PLZ HLP!!!!!!Determine The Interval Where The Graph Of The Function Is Negative.ANSWER
THIS WILL HELP A LOT OF PPL PLZ HLP!!!!!!Determine The Interval Where The Graph Of The Function Is Negative.ANSWER

Answers

Answer 1

Answer:

If I'm correct I think its answer B

Step-by-step explanation:

I'm not sure but i hope this help

Answer 2

Answer:

second option

-∞ < x < 1

Step-by-step explanation:


Related Questions

If the ratio of boys to girls is 1:4 and there are 20 girls in your class, how many boys are there?

Answers

Answer:

Step-by-step explanation:

5 boys

Answer:

me

Step-by-step explanation:

beceaus im the best Guy

The number of pizzas consumed per month by university students is normally distributed with a mean of 12 and a standard deviation of 3. A. What proportion of students consume more than 13 pizzas per month? Probability = = B. What is the probability that in a random sample of size 10, a total of more than 110 pizzas are consumed? Probability = Note: You can earn partial credit on this problem.

Answers

The probability to consume more than 13 pizzas per month is 0.3707 and more than 110 pizzas in a random sample of size 10 is 0.9646.

The number of pizzas consumed per month by university students is normally distributed with a mean of 12 and a standard deviation of 3.

A. Probability that more than 13 pizzas consumed by students:

For finding the probability, we need to find the Z-score first.

z = (x - μ) / σz = (13 - 12) / 3z = 0.3333

Now, we have to use the z-table to find the probability associated with the z-score 0.3333.

The area under the normal distribution curve to the right of 0.3333 is 0.3707 (rounded off to 4 decimal places).

Thus, the probability that a student consumes more than 13 pizzas per month is 0.3707.

B. Probability that more than 110 pizzas consumed in a random sample of size 10:

Let x be the number of pizzas consumed in the random sample of size 10.

Then, the distribution of x is a normal distribution with the mean = 10 × 12 = 120 and standard deviation = √(10 × 3²) = 5.4772

We have to find the probability that the total number of pizzas consumed is greater than 110. i.e. P(x > 110).

For finding the probability, we need to find the Z-score first.z = (110 - 120) / 5.4772z = -1.8257

The area under the normal distribution curve to the right of -1.8257 is 0.9646 (rounded off to 4 decimal places).

Thus, the probability that more than 110 pizzas are consumed in a random sample of size 10 is 0.9646.

#SPJ11

Let us know more about probability: https://brainly.com/question/11034287.

Plot the x-intercepts, the y-intercept, and the vertex of the graph (Must use Desmos!)

Answers

Answer:

x-intercept: (-1,0)

y-intercept: (0,3)

Vertex: (-2,-1)

Step-by-step explanation:

PLSS HELP IMMEDIATELY!!! i’ll give brainiest if u don’t leave a link!

Answers

Answer:

it is A

Step-by-step explanation:

i remember doing this in middle school.


HELP PLS ITS ALMOST DUE PLS PLS PLS

Answers

Answer:

19. B

20. C

Step-by-step explanation:

Suppose that A and B are mutually exclusive events Select the correct answer below, O A. Since A and B are mutually exclusive events, then the probability that A or Boccur is 1. That is, P(A)*P(B)-1 OB. Since A and B are mutually exclusive events, then the probability that both A and B occur is O. That is, PA}{B} = 0, OC. Since A and B are mutually exclusive events, then the probability that A or B occur is 1. That is, PIA & B)=1, OD. Since A and B are mutually exclusive events, then the probability that both A and B occur is O. That is, P(A&B)=0

Answers

The correct answer is option D. Since A and B are mutually exclusive events, the probability that both A and B occur is 0. In other words, P(A&B) = 0.

When two events, A and B, are mutually exclusive, it means that they cannot occur simultaneously. If one event happens, the other event cannot happen at the same time. In this scenario, the correct answer is option D, which states that the probability of both events A and B occurring together is 0, i.e., P(A&B) = 0.

To understand this concept, consider a simple example. Let's say event A represents flipping a coin and getting heads, while event B represents flipping a coin and getting tails. Since getting heads and getting tails are mutually exclusive outcomes, it is impossible for both events A and B to occur simultaneously. Therefore, the probability of both A and B occurring together is 0. In summary, when events A and B are mutually exclusive, the correct answer is option D, which states that the probability of both A and B occurring together is 0, i.e., P(A&B) = 0.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

Which expression is equivalent to the expression shown below? --8x – 2(5 + 4x)​

Answers

-8x-2(5+4x)

Step-by-step explanation:

-8x-10-8x -8x-8x-10 -16x-10

Find the value of the variable.
20
12

A. 10
В. 13
C. 16
D.18

Answers

Answer:

option c.

by Pythagoras theorem.

hypotenuse²=height ²+base²

20²=x²+12²

400=x²+144

400-144=x²

256=x²

256½=x

16=x

help me find the answer please​

Answers

Answer:

A x<1125

Step-by-step explanation:

Giving away 30 points, have a good day​

Answers

Answer:

For real???

Step-by-step explanation:

Tysm!! <3 you deserve so much!

Answer:thanks

Step-by-step explanation:

what is 21x+1 in simple form

Answers

Answer:

( 21 x X ) + 1

Step-by-step explanation:

For f, g € L’[a,b], prove the Cauchy-Schwarz inequality |(f,g)| = ||$||||$||. = Hint: Define a function Q(t) = (f + tg, f + tg) for any real number t. Use the rules of inner product to expand this expression and obtain a quadratic polynomial in t; because Q(t) > 0 (why?), the quadratic polynomial can have at most one real root. Examine the discriminant of the polynomial.

Answers

Given that f, g ∈ L’[a, b], we need to prove the Cauchy-Schwarz inequality, |(f, g)| = ||$|| . ||$||.

The Cauchy-Schwarz inequality for inner product in L’[a, b] states that for all f, g ∈ L’[a, b],|(f, g)| ≤ ||$|| . ||$||Proof: Consider a function Q(t) = (f + tg, f + tg) for any real number t. Then, by using the rules of inner product, we can expand this expression and obtain a quadratic polynomial in t.$$Q(t) = (f + tg, f + tg) = (f, f) + t(f, g) + t(g, f) + t^2(g, g)$$$$ = (f, f) + 2t(f, g) + t^2(g, g)$$. Now, Q(t) > 0 because Q(t) is a sum of squares. So, Q(t) is a quadratic polynomial that can have at most one real root since Q(t) > 0 for all t ∈ R.

To find the discriminant of Q(t), we need to solve the equation Q(t) = 0.$$(f, f) + 2t(f, g) + t^2(g, g) = 0$$.

The discriminant of Q(t) is:$$D = (f, g)^2 - (f, f)(g, g)$$

Since Q(t) > 0 for all t ∈ R, the discriminant D ≤ 0.$$D = (f, g)^2 - (f, f)(g, g) ≤ 0$$$$\Right arrow (f, g)^2 ≤ (f, f)(g, g)$$$$\Right arrow |(f, g)| ≤ ||$|| . ||$||$$

Thus, |(f, g)| = ||$|| . ||$||, which proves the Cauchy-Schwarz inequality. Therefore, the given statement is true.

To know more about quadratic polynomial refer to:

https://brainly.com/question/26140455

#SPJ11

The perimeter of a square (perimeter = 4 times one side) is less than 16 inches. One side of the square measures x. what are the viable solutions for the value of x?

Answers

Answer:

C

Step-by-step explanation:

The perimeter of the square has to be only positive values, and so there has to be restrictions on the values. We can rule out answers A and B. Because the perimeter the values of x have to be less than 4. If they were greater than 4, then 4x>16. So we can rule out answer d. The correct answer is C.

Let X1 and X2 be independent random variables with mean μ and variance σ2. Suppose that we have two estimators of μ: Math and 1 = X1+X2/2 and math2=x1 + 3x2/4
(a) Are both estimators unbiased estimators of μ? (b) What is the variance of each estimator? Hint: Law of expected values

Answers

(a) Math2 is not an unbiased estimator of μ. (b)Math1 has a variance of

σ[tex]^{2}[/tex] and Math2 has a variance of  5σ[tex]^2[/tex]/8

(a) Neither of the estimators, Math1 or Math2, is an unbiased estimator of μ. An unbiased estimator should have an expected value equal to the parameter being estimated, in this case, μ.

For Math1,

the expected value is

E[Math1] = E[([tex]X_{1}[/tex] + [tex]X_{2}[/tex]) / 2]

= (E[[tex]X_{1}[/tex]] + E[[tex]X_{2}[/tex]]) / 2

= μ/2 + μ/2 = μ,

which means Math1 is an unbiased estimator of μ.

For Math2,

the expected value is

E[Math2] = E[([tex]X_{1}[/tex] + [tex]3X_{2}[/tex]) / 4]

= (E[[tex]X_{1}[/tex]] + 3E[[tex]X_{2}[/tex]]) / 4

= μ/4 + 3μ/4

= (μ + 3μ) / 4

= 4μ/4

= μ/2.

(b) To calculate the variances of the estimators, we'll use the property that the variance of a sum of independent random variables is the sum of their variances.

For Math1,

the variance is Var[Math1]

= Var[([tex]X_{1}[/tex] + [tex]X_{2}[/tex]) / 2]

= (Var[[tex]X_{1}[/tex]] + Var[[tex]X_{2}[/tex]]) / 4

= σ[tex]^2[/tex]/2 + σ[tex]^2[/tex]/2

= σ[tex]^2[/tex]

For Math2,

the variance is Var[Math2]

= Var[([tex]X_{1}[/tex] + [tex]3X_{2}[/tex]) / 4]

= (Var[[tex]X_{1}[/tex]] + 9Var[[tex]X_{1}[/tex]]) / 16

= σ[tex]^2[/tex]/4 + 9σ[tex]^2[/tex]/16

= 5σ[tex]^2[/tex]/8

Math1 has a variance of σ[tex]^2[/tex]

and Math2 has a variance of 5σ[tex]^2[/tex]/8

Learn more about parameter here:

https://brainly.com/question/31608396

#SPJ4

Each letter in the word THEORETICAL is placed on a separate piece of paper
and placed in a hat. A letter is chosen at random from the hat. What is the
probability that the letter chosen is an E?
(Give answer in format 'a/b, no spaces, use slash for fraction bar)

Answers

Answer:

The answer is 1/11

Step-by-step explanation:

Explanation is in the picture above

please mark as brainliest

The ratio of boys to girls at the play was 4 to 3. If there were 15 girls, how many boys were there?

Answers

Answer:

20 boys

Step-by-step explanation:

If there are 4 boys for every 3 girls, multiply both numbers by 5 (3*5 = 15) to find the number of boys.

Answer:

20

Step-by-step explanation:

4/3 = ?/15

multiply both sides by 15

15*4/3 = ?

? = 20

Florida Immigration 9 Points 910 randomly sampled registered voters in Tampa, FL were asked if they thought workers who have illegally entered the US should be allowed to keep their jobs and apply for US citizenship. (ii) allowed to keep their jobs as temporary guest workers but not allowed to apply for US citizenship, (iii) lose their jobs and have to leave the country, or (iv) not sure. These voters were also asked about their political ideology, to which they responded one of the following: conservative, liberal, or moderate. Q4.4 Type I Error 3 Points Describe what it would mean if we made a Type I Error on this test. (You must discuss what decision we made, and what the actual truth about the population is.)

Answers

Type I Error: A Type I error is the first kind of error that can occur when testing a hypothesis. A Type I error occurs when a null hypothesis is rejected even when it is accurate.

If we make a Type I Error on this test, it would mean that we reject a null hypothesis that is true. This mistake would be made if we made a decision to reject the null hypothesis when there is no significant evidence to support that decision. The null hypothesis is the hypothesis that claims no change or no difference between the groups being compared. Null hypothesis is the opposite of the alternative hypothesis which is the hypothesis that claims that there is a difference between groups being compared.

In this context, making a Type I Error would mean that we reject the null hypothesis which is that all groups of voters would agree that workers who have illegally entered the US should be allowed to keep their jobs and apply for US citizenship. Making this error would mean we have come to the conclusion that they do not agree, which would be incorrect.

To know more about mean refer to:

https://brainly.com/question/14532771

#SPJ11

Find the lateral area of this square
based pyramid.
10 in
5 in
[ ? ] in

Answers

The missing answer is 5 in as well

Answer:

100in

Step-by-step explanation:

1/2 *10*5=25

4(25)=100

What is the surface area of a cylinder with height 8 ft and radius 4 ft

Answers

The Surface area of the cylinder with a height of 8 ft and a radius of 4 ft is approximately 301.44 square feet.

The surface area of a cylinder, we need to consider the lateral surface area and the area of the two circular bases.

The lateral surface area of a cylinder can be determined by multiplying the height of the cylinder by the circumference of its base. The formula for the lateral surface area (A) of a cylinder is given by A = 2πrh, where r is the radius and h is the height of the cylinder.

In this case, the height of the cylinder is 8 ft and the radius is 4 ft. Therefore, the lateral surface area can be calculated as follows:

A = 2π(4 ft)(8 ft)

A = 64π ft²

The area of each circular base can be calculated using the formula for the area of a circle, which is A = πr². In this case, the radius is 4 ft. Therefore, the area of each circular base is:

A_base = π(4 ft)²

A_base = 16π ft²

Since a cylinder has two circular bases, the total area of the two bases is:

A_bases = 2(16π ft²)

A_bases = 32π ft²

the total surface area, we sum the lateral surface area and the area of the two bases:

Total surface area = Lateral surface area + Area of bases

Total surface area = 64π ft² + 32π ft²

Total surface area = 96π ft²

Now, let's calculate the numerical value of the surface area:

Total surface area ≈ 96(3.14) ft²

Total surface area ≈ 301.44 ft²

Therefore, the surface area of the given cylinder, with a height of 8 ft and a radius of 4 ft, is approximately 301.44 square feet.

In conclusion, the surface area of the cylinder with a height of 8 ft and a radius of 4 ft is approximately 301.44 square feet.

To know more about Surface area .

https://brainly.com/question/951562

#SPJ8

we used the Optional Stopping Theorem to solve the Gambler's Ruin Problem. Specifically, we showed that if Sn So +?=1X; is a biased random walk starting at So = 1, where the steps X; are independent and equal to +1 with probability p1/2 and equal to - 1 with the remaining probability q=1 – p, then the probability of hitting N (jackpot") before 0 ("bust") is (g/p) - 1 PJ So = 1) = (g/p)N-1 Recall that the key to this was the martingale Mn = (g/p)Sn, which is only useful when pq. (a) For any pe [0, 1], argue that P(T<) = 1, where T = inf{n> 1: Sne {0,1}} is the first time that the walk visits 0 or N. Hint: One way is to consider each time that the walk visits 1 before time T, and then compare with a geometric random variable. Note: This is the one condition in the Optional Stopping Theorem that we did not verify during the lecture. (b) Find P(J|So = n) when instead So = n, for some 1

Answers

(a) To argue that P(T < ∞) = 1, where T is the first time the walk visits 0 or N, we can consider each time the walk visits 1 before time T.

Suppose the walk visits 1 for the first time at time k < T. At this point, the random walk is in a state where it can either hit 0 before N or hit N before 0.

Let's define a new random variable Y, which represents the number of steps needed for the walk to hit either 0 or N starting from state 1. Y follows a geometric distribution with parameter p since the steps are +1 with probability p and -1 with probability q = 1 - p.

Now, we can compare the random variable T and Y. If T < ∞, it means that the walk has hit either 0 or N before reaching time T. Since T is finite, it implies that the walk has hit 1 before time T. Therefore, we can say that T ≥ Y.

By the properties of the geometric distribution, we know that P(Y = ∞) = 0. This means that there is a non-zero probability of hitting either 0 or N starting from state 1. Therefore, P(T < ∞) = 1, as the walk is guaranteed to eventually hit either 0 or N.

(b) To find P(J|So = n), where So = n, we need to determine the probability of hitting N before hitting 0 starting from state n.

Recall that the probability of hitting N before 0 starting from state 1 is given by (g/p)^(N-1), as shown in the Optional Stopping Theorem formula. In our case, since the walk starts at state n, we need to adjust the formula accordingly.

The probability of hitting N before 0 starting from state n can be calculated as P(J|So = n) = (g/p)^(N-n).

This probability takes into account the number of steps required to reach N starting from state n. It represents the likelihood of hitting the jackpot (N) before going bust (0) when the walk starts at state n.

It's worth noting that this probability depends on the values of p, q, and N.

To know more about Optional Stopping Theorem refer here:

https://brainly.com/question/31828935#

#SPJ11

1/(x+6)+(×+1)/x=13/(x+6)

Answers

Answer:

x = 3, 2

Step-by-step explanation:

Answer: x = 3, 2

Step-by-step explanation:

The cost of a banquet at Nick's Catering is $215 plus $27.50 per person. If
the total cost of a banquet was $2827.50, how many people were invited?​

Answers

Answer:

x = 95

Step-by-step explanation:

Given that,

The cost of a banquet at Nick's Catering is $215 plus $27.50 per person

The total cost of a banquet was $2827.50

We need to find the number of people invited. Let there are x people. So,

215+27.5x = 2827.50

27.5x = 2827.50 -215

27.5x = 2612.5

x = 95

So, there are 95 people that were invited.

.16 with the 6 repeating to a fraction

Answers

The answer is


1/6









1/6

Find three numbers whose sum is 21 and whose sum of squares is a minimum. The three numbers are________ (Use a comma to separate answers as needed.)

Answers

the three numbers whose sum is 21 and whose sum of squares is a minimum are 7, 7, and 7.

To find three numbers whose sum is 21 and whose sum of squares is a minimum, we can use a mathematical technique called optimization. Let's denote the three numbers as x, y, and z.

We need to minimize the sum of squares, which can be expressed as the function f(x, y, z) = x² + y² + z²

Given the constraint that the sum of the three numbers is 21, we have the equation x + y + z = 21.

To find the minimum value of f(x, y, z), we can use the method of Lagrange multipliers, which involves solving a system of equations.

First, let's define a Lagrange multiplier, λ, and set up the following equations:

1. ∂f/∂x = 2x + λ = 0

2. ∂f/∂y = 2y + λ = 0

3. ∂f/∂z = 2z + λ = 0

4. Constraint equation: x + y + z = 21

Solving equations 1, 2, and 3 for x, y, and z, respectively, we get:

x = -λ/2

y = -λ/2

z = -λ/2

Substituting these values into the constraint equation, we have:

-λ/2 - λ/2 - λ/2 = 21

-3λ/2 = 21

λ = -14

Substituting λ = -14 back into the expressions for x, y, and z, we get:

x = 7

y = 7

z = 7

Therefore, the three numbers whose sum is 21 and whose sum of squares is a minimum are 7, 7, and 7.

Learn more about Sum here

https://brainly.com/question/2292486

#SPJ4

If f(x) = (x + 7)2 and g(x) = x2 +9,
which statement is true?
A fo) B f(-4) > g(-3)
C f(1) = g(1)
D f(2) > g(2)

Answers

ANSWER : D

EXPLANATION : 81 > 13 is true

6. Markets with elastic supply and demand curves: a) Have demand and supply curves that never intersect. B) Are very sensitive to a change in price. C) Have greater movements in quantity than prices. D) Are very sensitive to a change in quantity. E) Are only theoretical and do not exist in the real world.

Answers

Answer:

The correct statement is B (are very sensitive to change in price)

Step-by-step explanation:

Option B is correct because of the following reason -:

The degree to which a rise in price affects the quantity demanded or supplied is known as elasticity. In the case of elastic demand and supply, as the price rises, the quantity demanded falls and the quantity supplied rises more than proportionally. Inelastic price elasticity of demand and supply, on the other hand, induces a less than proportional change in quantity as prices change.

Hence , the correct option is B .

If a random variable has binomial distribution with n = 150 and p = 0.6. Using normal approximation the probability; P(X≥ 95) =---

Answers

The required probability is 0.2023.

Given random variable X with binomial distribution with n=150 and p=0.6.

The binomial distribution with parameters n and p has probability mass function:

$$f(x)= \begin{cases} {n\choose x} p^x (1-p)^{n-x} & \text{for } x=0,1,2,\ldots,n, \\ 0 & \text{otherwise}. \end{cases}$$

Now the mean, μ = np = 150 × 0.6 = 90 and standard deviation, σ = √(npq) = √(150 × 0.6 × 0.4) = 6

Using the normal approximation,

we have:

$$\begin{aligned}P(X ≥ 95) &\approx P\left(Z \geq \frac{95 - \mu}{\sigma}\right)\\ &\approx P(Z \geq \frac{95 - 90}{6})\\ &\approx P(Z \geq 0.8333) \end{aligned}$$

Using the standard normal table, the area to the right of 0.83 is 0.2023.

Therefore, P(X ≥ 95) = 0.2023.

To know more about binomial distribution, visit:

https://brainly.com/question/29137961

#SPJ11

According to the given information, the required probability is 0.2019.

The random variable has a binomial distribution with n = 150 and p = 0.6.

We can use the normal approximation to the binomial distribution to find the probability P(X ≥ 95).

Normal Approximation:

The conditions for the normal approximation to the binomial distribution are:

np ≥ 10 and n(1 - p) ≥ 10

The expected value of the binomial distribution is given by the formula E(X) = np

and the variance is given by the formula [tex]Var(X) = np(1 - p)[/tex].

Let X be the number of successes among n = 150 trials each with probability p = 0.6 of success.

The random variable X has a binomial distribution with parameters n and p, i.e., X ~ Bin(150, 0.6).

The expected value and variance of X are:

[tex]E(X) = np = 150(0.6) = 90[/tex],

[tex]Var(X) = np(1 - p) = 150(0.6)(0.4) = 36[/tex].

The probability that X takes a value greater than or equal to 95 is:

[tex]P(X ≥ 95) = P(Z > (95 - 90) / (6))[/tex]

where Z ~ N(0,1) is the standard normal distribution with mean 0 and variance 1.

[tex]P(X ≥ 95) = P(Z > 0.8333)[/tex]

We can use a standard normal distribution table or a calculator to find this probability.

Using a standard normal distribution table, we find:

[tex]P(Z > 0.8333) = 0.2019[/tex]

Thus, [tex]P(X ≥ 95) = 0.2019[/tex] (rounded to four decimal places).

Therefore, the required probability is 0.2019.

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

Find the unit rate for each, then compare. Which is faster?
8 laps in 70 seconds
12 laps in 98 seconds.

Answers

Answer:

8 laps in 70 seconds is faster.

Step-by-step explanation:

If we divide 70/8 and 98/12 we get the following:

70/8= 8.75

98/12=8.16

8.75>8.16

The unit rate is 1 lap in 8.75 seconds and 1 lap in 8.16 seconds

A hiker is lost in the forest, but has his cell phone with a weak signal. Cell phones with GPS can give an approximate location through triangulation, which works by giving distances from two known points. Suppose the hiker is within distance of two cell phone towers that are 22.5 miles apart along a straight highway (running east to west, double-dashed line). Based on the signal delay, it can be determined that the signal from the hiker's phone is 14.2 miles from Tower A and 10.9 miles from Tower B. Assume the hiker is traveling a straight path south reach the highway quickly. How far must the hiker travel to reach the highway

Answers

Answer:

The distance the hiker must travel is approximately 5.5 miles

Step-by-step explanation:

The distance between the two cell phone towers = 22.5 miles

The distance between the hiker's phone and Tower A = 14.2 miles

The distance between the hiker's phone and Tower B = 10.9 miles

The direction of the highway along which the towers are located = East to west

The direction in which the hiker is travelling to reach the highway quickly = South

By cosine rule, we have;

a² = b² + c² - 2·b·c·cos(A)

Let 'a', 'b', and 'c', represent the sides of the triangle formed by the imaginary line between the two towers, the hiker's phone and Tower A, and the hiker's hone and tower B respectively, we have;

a = 22.5 miles

b = 14.2 miles

c = 10.9 miles

Therefore, we have;

22.5² = 14.2² + 10.9² - 2 × 14.2 × 10.9 × cos(A)

cos(A) = (22.5² - (14.2² + 10.9²))/( - 2 × 14.2 × 10.9) ≈ -0.6

∠A = arccos(-0.6) ≈ 126.9°

By sine rule, we have;

a/(sin(A)) = b/(sin(B)) = c/(sin(C))

∴ sin(B) = b × sin(A)/a

∴ sin(B) = 14.2×(sin(126.9°))/22.5

∠B = arcsine(14.2×(sin(126.9°))/22.5) ≈ 30.31°

∠C = 180° - (126.9° - 30.31°) = 22.79° See No Evil

The distance the hiker must travel, d = c × sin(B)

∴ d = 10.9 × sin(30.31°) ≈ 5.5

Therefore, the distance the hiker must travel, d ≈ 5.5 miles.

Which transformation carries the parallelogram onto itself?

Answers

rotations this’s the correct answer

Answer: D) a rotation of 180 degrees Clockwise about the center of the parallelogram

Step-by-step explanation:

Other Questions
Streptocoup has two naturally occurring isotopes. The mass of bismuth-209 is 208.591 amu and the mass of bismuth-211 is 210.591 amu. Using the average mass of 208.980 amu from the periodic table, find the abundance of each isotope. when you touch a hot stove and immediately withdraw your hand, it is called a(n) __________ and is the result of interneurons within the ________ A 100. 0 mL sample of natural water was titrated with NaOH. The titration required 13. 57 mL of 0. 1123 M NaOH solution to reach a light pink phenolphthalein end point. Calculate the number of millimoles of NaOH required for the titration Discuss these questions/topic:Distinguish between internet and digital banking and discuss the benefits of digital bankingPayment services, their methods, innovations and competition. Select a few to comment on.Distinguish between digital, virtual and crypto currencies and their use in the payment system.Traditionial banks stand threatened. Where is the threat coming from? DiscussDiscuss e-technology developments in mortgage and insurance industry.Security and Privacy Issues in e-bankingTechnology trends: what is open banking? Multiple Choice . Please place the letter of your choice in the blank space. 1. The A) income statement B) statement of cash flows C) balance sheet is the summary of revenues and expenses for a period. 2. A) Revenue B) Loss C) Owner's withdrawal does not decrease owner's equity. 3. A) Multi-step B) Single-step C) Reorganized income statements itemize operating expenses under selling and administrative expenses. 4. Inventory is recorded on the balance sheet and becomes A) Common Stock B) Cost of Goods Sold C) Long-term Debt when sold. Please fill in the blanks 5. is a liability account for goods received by a business but not paid for yet. 6. have been incurred (service used) in the period but cash has not been paid yet. 7. From the company buying inventory's perspective, accounts _reflects the amount owed to a vendor. 8. We use to recognize the cost of an intangible asset over the periods it is used 9. Net income kept in the business and not paid in dividends goes into the account on the balance sheet 10. In preparing a statement of cash flows, an increase in the Common Stock during a period would be acn) activity Gary's workbook include three worksheets of data and text. Minutes to change all instance of account to accounts (plural). He estimates that account a virus at least 75 times in the workbook. What do you recommend?A. Use find to locate each instance and make the manual change one by oneB. Use replace all to change all instances on every tab simultaneouslyC. Klik the replace button for each instances as find locates it.D. Make one manual replacement and then copy and paste to all other instances Provide examples of each of the following: (a) A partition of Zthat consists of 2 sets (b) A partition of R that consists ofinfinitely many sets 4. The PE ratio multiple shows its limitations when: a. There are significant extraordinary incomes or expenses b. Many comparables have negative earnings c. Firms in the industry have very different iffirms invest out of retained profit rather than borrowed capital,will its investment decision be affected by interest rates?Explain? Smart Company in a competitive product market. The expected seting price is $340 per unit, and Smart Company's target pet is 20%a. trueb. false some traits, such human height, are controlled by more than one set of ____________ . Free soul is a personal products company manufacturing shampoo, conditioner, and liquid soap selling 2 million bottles of shampoo under Free soul brand. The operations director wishes to use the spare capacity on the manufacturing line by producing a shampoo for a supermarket chain under the supermarkets own label. The operations director confirms that the contract would be for 450,000 bottles and be sold at a 20% discount on current selling prices 1.50 per bottle. Direct costs would be the same (0.6 per bottle), but instead of variable distribution costs (0.2 per bottle) there would be a bulk delivery charge of 80,000. Allocated costs are 0.45 per bottle. Assess the impact of agreeing to the contract. What other factors should be taken into account? You have a definite plan in mind about new product launches for the new financial year.Three months after the plan was made, you find that you have to make frequent changes to the original plan because of business environmental factors. Should you discard planning altogether? If not, what is your reason? in what type of political system is genocide most like to occur? H5OH (1) + 302(g) 2CO(g) + 3HO(g)1.25 mol C2H5OH reacts withexcess oxygen. What volume ofCO2 gas is produced at STPduring the reaction? citation style is determined by: question 1 options: individual instructors geographic areas disciplines or fields of study none of the above Jae is offered the choice of two uncertain investments, each of which will require an Investment of 10,000. Jae's wealth, if they do not invest, is 18,000.Investment A returns:+20% with probability 30%+5% with probability 15%-15% with probability 45%+0% with probability 10% Investment B returns:+30% with probability 41% -20% with probability 59%Jae has utility of wealth given by the function: U(w) In(w)a) Show whether either of the investments is a fair gambleb) Determine which, if any, of the investments Jae will accept.c) A new investment, also requiring an investment of 10,000, is offered to Jae.The new investment returns: -10% with probability 40%.Calculate the return required with probability 60% to ensure that this investment is preferred by Jae to not investing A satellite orbiting the earth is directly over a point on the equator at 12:00 midnight every two days. It is not over that point at any time in between. What is the radius of the satellite's orbit? 1. Consider the following multiple linear regression modelY= Xi +(a) Derive the ordinary least squares estimator(b) According to Gauss Markov theorem, OLS estimator is said to be BLUE. Do you agree/Disagree? Show that OLS is(i) Unbiased; - the expected values of the estimated beta and alpha equal the true values describing the relationship between X and Y(ii) Linear; - if the relationship is not linear OLS is not applicable(iii) Best ; - variance of the OLS estimator is minimal, smaller that the variance of any other estimator ABC company is considering whether or not to invest in a joint venture.The initial cost is $7.2 million and the estimated operating cash flows are shown in the following table:Period Cash Flow1$900.000,2$930,0003$950,000