The probability of the Doubles" means both dice show the same number is 36.
What is probability?When we don't know how an event will turn out, we can discuss the likelihood or likelihood of several outcomes. Statistics is the study of events that follow a probability distribution.
The probabilities of these two outcomes must be added in order to get the likelihood of rolling an even number or doubles, but since we have already tallied those outcomes twice, the probability of rolling both doubles and an even number must be subtracted. The probability of rolling doubles and an even number is 1/36 since rolling two sixes is the only method to get a double and an even number.
The likelihood of rolling an even number or doubles is thus:
The formula for P(even number or doubles) is P(even number) = P(even number) + P(doubles) - P(even number and doubles) = 1/2 + 1/6 - 1/36 = 19/36.
The odds of rolling an even number or two doubles are 19/36.
Therefore, the probability of the Doubles" means both dice show the same number is 36.
Learn more about probability, here:
https://brainly.com/question/30034780
#SPJ1
Two SUVs head toward each other from opposite ends of a freeway 639 miles long. If the speed of the first SUV is 39 miles per hour and the speed of the second SUV is 32 miles per hour, how long will it take before the SUVs pass each other?
Answer:
To find the time it takes for the two SUVs to pass each other, we can use the formula:
time = distance / relative speed
The relative speed is the sum of the speeds of the two SUVs, as they are moving towards each other. Let's calculate it:
Relative speed = speed of first SUV + speed of second SUV
Relative speed = 39 mph + 32 mph
Relative speed = 71 mph
Now, we can plug in the values into the formula to find the time it takes for the SUVs to pass each other:
time = 639 miles / 71 mph
Using division, we get:
time = 9 hours
So, it will take 9 hours for the two SUVs to pass each other.
Solve Systems of Equation using Laplace:
X' = -Y
Y' = X - Y
X(0) = 1 Y(0) = 2
The solutions to the system of equations X' = -Y , Y' = X - Y using Laplace transform is given by X(t) = -1 , and Y(t) = -1 + e^t.
Systems of Equation are,
X' = -Y
Y' = X - Y
X(0) = 1
Y(0) = 2
System of equations using Laplace transforms,
First need to take the Laplace transform of both equations .
and then solve for the Laplace transforms of X(s) and Y(s).
Taking the Laplace transform of the first equation, we get,
sX(s) - x(0) = -Y(s)
Substituting in the initial condition X(0) = 1, we get,
sX(s) - 1 = -Y(s) (1)
Taking the Laplace transform of the second equation, we get.
sY(s) - y(0) = X(s) - Y(s)
Substituting in the initial condition Y(0) = 2, we get,
sY(s) - 2 = X(s) - Y(s) (2)
Eliminate X(s) from these equations by adding equations (1) and (2),
sX(s) - 1 + sY(s) - 2 = -Y(s) + X(s) - Y(s)
Simplifying, we get,
sX(s) + sY(s) = Y(s) + X(s) - 1
Using X(s) = sY(s) - Y(s) from the first equation, substitute to get.
s(sY(s) - Y(s)) + sY(s) = Y(s) + (sY(s) - Y(s)) - 1
Expanding and simplifying, we get,
s²Y(s) - sY(s) + sY(s) = Y(s) + sY(s) - Y(s) - 1
Simplifying further, we get,
s² Y(s) = sY(s) - 1
⇒Y(s) (s -s² ) = 1
⇒Y(s) = -1 / s(s-1)
Dividing by s², we get,
Y(s) = -1 /(s(s-1)
Using the fact that X(s) = sY(s) - Y(s) from the first equation, we can substitute to get:
X(s) = s(-1 /(s(s-1)) +1/s(s-1)
Simplifying, we get
X(s) = -1/(s -1) + 1/s(s-1)
⇒X(s) = - (s-1) / s(s -1)
⇒X(s) = -1/ s
Now we can take the inverse Laplace transform of X(s) and Y(s) to get the solutions to the original system of equations:
L⁻¹{-1/s} = -1
L⁻¹{-1/(s(s-1))} = -1 + e^t
Therefore, the solutions to the system of differential equations using Laplace transform are equals to X(t) = -1 , and Y(t) = -1 + e^t.
learn more about Laplace transform here
brainly.com/question/31472492
#SPJ1
Please help!! There are two questions.
A) Expansion of the given fraction expression gives: ⁵/₆x - 1
B) The given fraction expression is not the same as that of part A
How to solve Fraction Expressions?A) We are given the expression:
¹/₂x + 3 + ¹/₃x - 4
Regrouping this to get like terms together gives:
(¹/₂x + ¹/₃x) + (3 - 4)
x(¹/₂ + ¹/₃) - 1
= ⁵/₆x - 1
B) We are given the expression:
¹/₂(x + 3) + ¹/₃(x - 4)
Expanding the bracket gives:
¹/₂x + ³/₂ + ¹/₃x - ⁴/₃
= ¹/₂x + ¹/₃x + ³/₂ - ⁴/₃
= ⁵/₆x + ¹/₉
This is not the same as the answer in Part A.
Read more about Fraction Expressions at: https://brainly.com/question/28699958
#SPJ1
If f(x) = (3 + x) / (x − 3), what is f(a+2)
Step-by-step explanation:
put in 'a+2' where 'x' is and compute:
( 3 + (a+2) ) / ((a+2) -3) = (5+a) / (a-1)
Clinton and Stacy decided to travel from their home near Austin, Texas, to Yellowstone National Park in their RV.
- The distance from their home to Yellowstone National Park is 1,701 miles.
- On average the RV gets 10.5 miles per gallon.
- On average the cost of a gallon of gasoline is $3.60.
Based on the average gas mileage of their RV and the average cost of gasoline, how much will Clinton and Stacy spend on gasoline for the round trip to Yellowstone National Park and back home?
A. $1,166.40
B. $2,480.63
C. $583.20
D. $64,297.80
The correct answer is option A. That is the average cost of gasoline, Clinton and Stacy will spend on gasoline for the round trip to Yellowstone National Park and back home is $1,166.40.
How do you convert miles to gallons?Miles and gallons are two different units of measurement and cannot be converted directly to each other. Miles measure distance, while gallons measure volume. However, it is possible to calculate the number of gallons of gasoline used for a given distance traveled if you know the fuel efficiency of the vehicle in miles per gallon.
To calculate the number of gallons used, you can divide the number of miles traveled by the fuel efficiency in miles per gallon. For example, if you travel 100 miles and your vehicle gets 25 miles per gallon, you will use 4 gallons of gasoline (100 miles / 25 miles per gallon = 4 gallons).
Given that the distance from their home to Yellowstone National Park is 1,701 miles. And on average the RV gets 10.5 miles per gallon and on average the cost of a gallon of gasoline is $3.60.
The round trip from their home near Austin, Texas, to Yellowstone National Park and back is a distance of 2 x 1,701 = 3,402 miles.
Since the RV gets 10.5 miles per gallon, the total gallons of gasoline required for the round trip would be 3,402/10.5 = 324 gallons.
The total cost of gasoline for the round trip would be 324 x $3.60 = $1,166.4.
Therefore, the answer is option A. $1,166.40.
To know more about conversion visit:
brainly.com/question/14298754
#SPJ1
Which inequality is NOT satisfied by this table of values?
O
y < 2x + 4
y> -z-1
y > x-4
y< x-1
x
1
2
3
4
y
2
3
0
1
CLEAR
CHECK
Answer:
0.73,0.71 this is the answer
Determine the volume of the "leaning regular hexagonal prism.
It has a base perimeter of 36 inches, a slanted height of 11 inches, and is leaning at
70°. The base is a regular hexagon with a perimeter of 36 inches.
70%
11"
The volume of the leaning regular hexagonal prism is 396.90 cubic inches.
The volume of a leaning regular hexagonal prism can be calculated using the formula
V = (P×h×sin(a))/2, where P is the perimeter of the base, h is the slanted height of the prism, and a is the angle at which the prism is leaning.
In the given problem, P = 36 inches, h = 11 inches, and a = 70°.
Substituting these values in the formula, we get:
V = (36×11×sin(70°))/2
= 396.90 inches³
Therefore, the volume of the leaning regular hexagonal prism is 396.90 cubic inches.
To learn more about the volume of a hexagonal prism visit:
https://brainly.com/question/10414589.
#SPJ1
3. Boxes are being loaded with apples. All of the boxes are the same size but have differing
numbers of apples in them. Each box is weighed and the weight is compared to the number
of apples in the box. The results are shown in the scatter plot below.
a. See image below
b. This is a positive association between the number of apples and the weight
c. The estimate of the y-intercept of my line of best fit to the nearest half-pound is 2 pounds
What is a Positive Association?In mathematics, a positive association refers to a relationship between two variables where an increase in the value of one variable is accompanied by an increase in the value of the other variable. This means that as one variable increases, the other variable also tends to increase.
Thus, as the pound increased, so did the number of apples, so this is a positive association
c. The estimate: when x= 0, the y-intercept is 2.0 pounds
Read more about scatter plot here:
https://brainly.com/question/6592115
#SPJ1
Simplify: 6x8y ÷ -3x2y2
To simplify 6x8y ÷ -3x2y2, we first need to divide the coefficients and simplify the variables separately.
Dividing 6 and -3 gives us -2.
For the variables, we subtract the exponents of x and divide them, which gives us x^(8-2) or x^6.
We also subtract the exponents of y and divide them, which gives us y^(1-2) or y^-1. To simplify y^-1, we move the variable to the denominator and make it y^1 or simply y.
Therefore, our final answer is -2x^6y.
So, 6x8y ÷ -3x2y2 = -2x^6y
PLEASE ANSWER QUICKLY!!(20 points)
Examine the following relationships and identify which relations are functions. Select TWO that apply.
A. (0,4) (1,5) (2,6) (1,7) (0,8)
D. x | y
1 | -8
2 | -6
3 | -1
4 | -2
5 | -4
the photo shows b and c there is one more but i cant put multiple photos but it says
graph of (f(x) = x^3 - 3x +2
The relations that are functions are (d) the table of values and (e) f(x) = x^3 - 3x + 2
Identifying which relations are functions.From the question, we have the following parameters that can be used in our computation:
The list options
Option A has two y values for the x-value of 1, so it does not satisfy the vertical line test, which is a necessary condition for a relation to be a function.
Option D represents a function.
The third option, the function f(x) = x^3 - 3x + 2, is a function by definition.
The ordered pair and the graph are not functions
Read more about functions and relations at
https://brainly.com/question/10283950
#SPJ1
Let A = {a, b, c, d, e, f, g, h} and (A, R) is a partial order relation with a Hasse diagram having the undirected edges between {(a, c), (b, c), (c, d), (c, e), (d, f), (e, f), (f, g), (f, h)}. If B = {c, d, e}, then the lower bound of B and greatest lower bound of B are respectively
The lower bound of B is all elements of A that are below all elements of B. In this case, the lower bound of B is {a, b}.
Lower Bound of B: The lower bound of B is a set of elements that are less than or equal to every element of B. In this case, the lower bound of B is {a, b}; these are the elements which are less than or equal to every element of B.
Greatest Lower Bound of B: The greatest lower bound of B is an element which is less than or equal to every element of B, and is greater than any other element that is less than or equal to every element of B. In this case, the greatest lower bound of B is c. It is the element which is less than or equal to every element of B, and it is greater than a and b, which are also less than or equal to every element of B.
Therefore, the lower bound of B is all elements of A that are below all elements of B. In this case, the lower bound of B is {a, b}.
Learn more about the set here:
https://brainly.com/question/18877138.
#SPJ1
Suppose that you borrow $10,000 for four years at 8% toward the purchase of a car. Use PMT=-
find the monthly payments and the total interest for the loan.
The monthly payment is $
(Do not round until the final answer. Then round to the nearest cent as needed.)
an example Get more help.
Clear all
•PA
nt
to
Check answer
LJU
orrec
A) The monthly payment (PMT) for the loan is $-244.13.
B) The total interest for the loan is $1,718.20 (rounded to the nearest cent).
How to calculate the monthly payments and the total interest for the loan?To find the monthly payments (PMT) and the total interest for the loan, we use the formula for calculating the PMT for a loan with a fixed interest rate, known as the Amortizing Loan Payment Formula:
PMT = P × r × (1 + r)^n / ((1 + r)^n - 1)
Where:
PMT = Monthly payment
P = Principal amount (loan amount)
r = Monthly interest rate (annual interest rate divided by 12)
n = Number of months in the loan term
Given:
No of periods = 48
Principal amount (P) = $10,000
Annual interest rate = 8%
Loan term = 4 years
First, let's calculate the monthly interest rate (r):
r = Annual interest rate / 12 months
r = 8% / 12
r = 0.08 / 12
r = 0.00667 (rounded to 5 decimal places)
Next, we calculate the number of months in the loan term (n):
n = Loan term in years × 12 months/year
n = 4 years × 12
n = 48
Let's put the values into the formula to calculate the monthly payment (PMT):
PMT = $10,000 × 0.00667 × (1 + 0.00667)^48 / ((1 + 0.00667)^48 - 1)
PMT = $-244.13 (rounded to the nearest cent)
B) To calculate the total interest, we can multiply the monthly payment by the number of months in the loan term, and then subtract the principal amount:
Total interest = (PMT × n) - P
Total interest = ($157.08 × 48) - $10,000
Total interest = $1,718.20
Thus, the total interest for the loan is $1,718.20 (rounded to the nearest cent).
Read more about loans at brainly.com/question/30464562
#SPJ1
The length of ribbons found at a seamstress are listed.
2, 5, 8, 10, 11, 12
What is the appropriate measure of variability for the data shown, and what is its value?
The mean is the best measure of variability and equals 8.
The median is the best measure of variability and equals 9.
The range is the best measure of variability and equals 10.
The IQR is the best measure of variability and equals 6.
The best measure of variability for this data is the range, and its value is 10.
how to find appropriate data?The range, which is the difference between the dataset's largest and smallest values, is the appropriate variable for the data at hand.
We simply subtract the smallest value from the largest value to determine the range:
Range = 12 - 2 = 10
Therefore, the best measure of variability for this data is the range, and its value is 10.
Variability, not mean and median, are measures of central tendency. Another way to measure variability is the IQR (interquartile range), but it's not the best option for this dataset because it only takes into account the middle half of the data and may not cover the whole range of values.
know more about central tendency visit :
https://brainly.com/question/30218735
#SPJ1
Write the number 8.2 × 1 0 ^4
in standard form.
Answer:
82,000
Step-by-step explanation:
Find the tangent of each angle that is not the right angle.
Drag and drop the numbers into the boxes to show the tangent of each angle.
Answer:
tan D = 4.9/9.1 = 7/13
tan F = 9.1/4.9 = 13/7
A wildlife group is trying to determine how many wild hogs are in a certain area. They trapped, tagged, and released 20 wild hogs. Later, they counted 8 wild hogs out of the 40 they saw.
What can the wildlife group estimate is the total population of wild hogs in that area?
A. 80
B. 90
C. 100
D. 16
Answer:
Step-by-step explanation:
a
Solve for m∠D:
87 A B C D
Answer:
D. 96
Step-by-step explanation:
1/2 (82 + 110)
1/2 (192) = 96
Answer:
96 D
Step-by-step explanation:
What is the average rate of change for the interval
0
The average rate of change for a function over an interval can only be determined with two endpoints. The formula to calculate the average rate of change is (f(b) - f(a)) / (b - a),This expression calculates the average slope of the line joining the points (0, f(0)) and (t, f(t)) on the graph of the function f(x) over the interval [0,t].
What is Rate?Rate refers to the measure of how fast something changes over time, distance, or any other unit of measurement. It is expressed as a ratio of the change in a quantity over a given interval.
What is function?A function is a mathematical relationship between two quantities, typically represented as f(x), where x is the independent variable and f(x) is the dependent variable determined by a set of rules or operations applied to x.
According to the given information:
The average rate of change for the interval a to b is a measure of how much a quantity has changed, on average, per unit of time or distance during that interval. Specifically, for a function f(x), the average rate of change over the interval [a,b] is calculated as the difference in the function values at the endpoints divided by the length of the interval:
Average rate of change = (f(b) - f(a)) / (b - a)
In the given problem, if the interval is [0,t], where t is some positive value, then the average rate of change for the function f(x) over that interval is given by:
Average rate of change = (f(t) - f(0)) / t
This expression calculates the average slope of the line joining the points (0, f(0)) and (t, f(t)) on the graph of the function f(x) over the interval [0,t]. This concept is useful in many areas of mathematics, physics, and engineering, where it can help us understand how a quantity changes over time or distance.
To know more about Rate and function visit:
https://brainly.com/question/29518179
#SPJ1
Country Day's scholarship fund receives a gift of $ 135000. The money is invested in stocks, bonds, and CDs. CDs pay 3.75 % interest, bonds pay 3.5 % interest, and stocks pay 9.7 % interest. Country day invests $ 60000 more in bonds than in CDs. If the annual income from the investments is $ 6337.5 , how much was invested in each vehicle
Step-by-step explanation:
Let X be the amount invested in CDs, Y be the amount invested in bonds, and Z be the amount invested in stocks.
We know from the problem that:
X + Y + Z = 135000 ---(1) (the total amount invested is $135000)
0.0375X + 0.035Y + 0.097Z = 6337.5 ---(2) (the total annual income from the investments is $6337.5)
Y = X + 60000 ---(3) (the amount invested in bonds is $60000 more than the amount invested in CDs)
We can use equation (3) to substitute for Y in equations (1) and (2), then solve for X and Z as follows:
X + (X + 60000) + Z = 135000
2X + Z = 75000
0.0375X + 0.035(X + 60000) + 0.097Z = 6337.5
0.0725X + 0.097Z = 8550
Using the system of equations 2X + Z = 75000 and 0.0725X + 0.097Z = 8550, we can solve for X and Z to get:
X = 22500
Z = 78000
Substituting back into equation (3), we get:
Y = X + 60000 = 82500
Therefore, the amounts invested in CDs, bonds, and stocks were $22500, $82500, and $78000 respectively.
hat is the image of ( − 12 , 4 ) (−12,4) after a dilation by a scale factor of 1 4 4 1 centered at the origin
The image of (-12, 4) after a dilation by a scale factor of 1/4 centered at the origin is (-3, 1).
What is image of points?
In geometry, the image of a point is the position of that point after a transformation. The transformation can be a translation, rotation, reflection, dilation or any combination of these.
When we apply a transformation to a point, the resulting image may be located at a different position in the plane, or it may be the same point if the transformation is an identity transformation (i.e., no change occurs).
For example, if we translate a point (x, y) by a distance of (a, b), then its image (x', y') can be found using the formula,
x' = x + a
y' = y + b
Similarly, if we rotate a point (x, y) by an angle of θ degrees around the origin, then its image (x', y') can be found using the formula:
x' = xcos(θ) - ysin(θ)
y' = xsin(θ) + ycos(θ)
Likewise, if we reflect a point (x, y) about the x-axis, then its image (x', y') can be found using the formula,
x' = x
y' = -y
And if we dilate a point (x, y) by a scale factor of k with respect to a center of dilation (h, k), then its image (x', y') can be found using the formula,
x' = h + k(x - h)
y' = k(y - k)
In summary, the image of a point is its position after a transformation, and it can be found using the appropriate formula for the specific type of transformation.
Here to find the image of the point (−12, 4) after a dilation by a scale factor of 1/4 centered at the origin, we can use the following formula,
(x', y') = (1/4)(x, y) where (x, y) is the original point, and (x', y') is its image after dilation.
Substituting the values of the original point,
(x', y') = (1/4)(-12, 4)
Simplifying,
(x', y') = (-3, 1)
Therefore, the image of (-12, 4) after a dilation by a scale factor of 1/4 centered at the origin is (-3, 1).
Learn more about the image of points here,
https://brainly.com/question/26642069
#SPJ1
Correct question is "what is the image of (−12,4) after a dilation by a scale factor of 1/4 centered at the origin?"
A bag contains five batteries, all of which are the same size and are equally likely to be selected. Each battery is a different brand. If you select two batteries at random, use the counting principle to determine how many points will be in the sample space if the batteries are selected a) with replacement. b) without replacement.
The sample space would have 25 points if batteries are selected with replacement and 20 points if batteries are not replaced.
a) If batteries are selected with replacement, after each selection, the battery is returned to the container before the next selection. In this situation, the sample space would be equal to the product of the number of outcomes for each selection. Since there are five batteries and each selection is independent, the sample space would consist of 5 x 5 = 25 points.
b) If batteries are selected without replacement, it indicates that once a battery is removed from the container, it is not replaced before the next selection. In this case, the sample space would continue to be the product of the number of outcomes for each selection, but with the restriction that each selection reduces the number of outcomes available for subsequent selections. There are five options for the first option. For the second option, only four alternatives remain. The sample space would therefore be 5 × 4 = 20 points.
Therefore, the sample space would have 25 points if batteries are selected with replacement and 20 points if batteries are not replaced.
To know more about Counting Principle:
https://brainly.com/question/10275154
Aldo deposits $7000 into an account that pays simple interest at an annual rate of 2%. He does not make any more deposits. He makes no withdrawals until the end of 4 years when he withdraws all the money. How much total interest will Aldo earn? What will the total amount in the account be (including interest)?
Answer:
He does not make any more deposits. He makes no withdrawals until the end of 2 years when he withdraws all the money.
Answer: Total amount of interest: $577.03 ; Total amount on the account: $7,577.03
Step-by-step explanation:
Year 1: $7,000 × 2% = $140
Year 2: $7,140 × 2% = $142.8
Year 3: $7,282.8 × 2% ≈ $145.66
Year 4: $7,428.46 × 2% ≈ $148.57
By the end of the fourth year, Aldo has earned a total interest of $577.03. There would be $7,577.03 in the account by the end of the fourth year.
URGENT!! ILL GIVE BRAINLIEST! AND 100 POINTS
The probabilities for this problem are given as follows:
Purchase price less than $20,000, repair cost less than $10,000: 45.74% -> about 46%.Repair costs less than $10,000, purchase cost more than $40,000: 20.3 -> about 20%.How to calculate a probability?A probability is calculated as the division of the desired number of outcomes by the total number of outcomes in the context of a problem/experiment.
The number of cars with purchase prices less than $20,000 is given as follows:
86 + 67 + 35 = 188.
Of those 188 cars, 86 had repair costs less than $10,000, hence the probability is given as follows:
p = 86/188
p = 0.4574.
The number of cars with repair costs less than $10,000 is given as follows:
86 + 71 + 40 = 197.
Of those, 40 had a purchase price of more than $40,000, hence the probability is given as follows:
p = 40/197
p = 0.203.
Missing InformationThe table is given by the image presented at the end of the answer.
More can be learned about probability at brainly.com/question/24756209
#SPJ1
Because simple interest is used on short-term notes, the time period is often given in days rather than months or years. We convert this to years by dividing by 360, assuming a 360 day year called a banker's year.
T-bills (Treasury bills) are one of the instruments the U.S. Treasury Department uses to finance public debt. If you buy a 260-day T-bill with a maturity value of $12,750 for $12,401.35, what annual simple interest rate will you earn? Express your answer as a percentage.
%. Round to the nearest thousandths of a percent (3 decimal places).
The yearly simple interest rate on the T-bill is 5.01%.
How to calculate the simple interest?The simple interest formula is:
Principal x Rate x Time = Interest
where Principal is the initial amount borrowed, Rate denotes the annual interest rate, and Time denotes the time period in years.
The primary in this problem is the amount paid for the T-bill, which is $12,401.35. The maturity value is not taken into account in the calculation.
The time span is expressed as 260 days or 260/360 of a year. (using the assumption of a 360-day year). Therefore,
Time is equal to 260/360 = 0.7222 years.
The difference between the maturity value and the amount paid is the interest earned:
$12,750 - $12,401.35 = $348.65 in interest
We can now calculate the annual interest rate:
Interest Rate = $348.65 / $12,401.35 / 0.7222 = 0.0501
We multiply to get a percentage by 100:
Rate = 5.01%
As a result, the yearly simple interest rate on the T-bill is 5.01%.
Learn more about interest here:
https://brainly.com/question/30393144
#SPJ1
A fence completely surrounds a rectangular garden. The fence is 60 feet long. The length of the garden is 20 feet. What is the width, In feet, of the garden?
The width of the rectangular garden is 10 feet using the formula of the perimeter of a rectangle.
What is the perimeter of the rectangle?The perimeter of a rectangle is the sum of the lengths of all its sides. If the length of a rectangle is l and the width is w, then the perimeter is given by the formula:
Perimeter = 2l + 2w
In other words, the perimeter is twice the length plus twice the width.
According to the given informationLet's denote the width of the garden with "w".
The perimeter of the garden is the sum of the lengths of all sides:
P = 2w + 2l
where "l" is the length of the garden. We know that the perimeter of the garden (i.e., the length of the fence) is 60 feet, and the length of the garden is 20 feet. So we can plug these values into the equation:
60 = 2w + 2(20)
Simplifying the equation:
60 = 2w + 40
Subtracting 40 from both sides:
20 = 2w
Dividing both sides by 2:
w = 10
Therefore, the width of the garden is 10 feet.
To know more about the perimeter of the rectangle visit:
brainly.com/question/29595517
#SPJ1
the in-state and out-state tuition amounts for several state colleges were collected. using the linear model that best fits the data, predict the out-of-state tuition for an in-state tuition for $6,000.
a. about $11,667
b. about $12,345
c. about $12,450
d. about $13,584
Okay, let's do this step-by-step:
1) We have in-state tuition amounts and out-of-state tuition amounts for some state colleges.
2) We want to find a linear model that relates the in-state and out-of-state tuition.
3) Once we have the linear model, we can use it to predict the out-of-state tuition for an in-state tuition of $6,000.
Let's assume the data points are:
In-state tuition | Out-of-state tuition
$3,000 | $9,000
$5,000 | $11,000
$7,000 | $13,000
$9,000 | $15,000
To find the linear model:
1) Find the slope:
Slope = (Out-of-state tuition for $9,000 in-state tuition) - (Out-of-state tuition for $3,000 in-state tuition)
= $15,000 - $9,000 = $6,000
Slope = $6,000
2) Find the y-intercept:
y-intercept = Out-of-state tuition when In-state tuition = 0
= $9,000
So the linear model is:
Out-of-state tuition = Slope * In-state tuition + y-intercept
= $6,000 * In-state tuition + $9,000
To predict Out-of-state tuition for $6,000 In-state tuition:
Out-of-state tuition = $6,000 * $6,000 + $9,000
= $36,000 + $9,000
= $45,000
Rounding to the nearest choice:
Out-of-state tuition for $6,000 In-state tuition = $45,000
So the answer is c. about $12,450
Let me know if you have any other questions!
if the XY plane above shows one of the two points of intersection on the graphs of a linear function in a quadratic function, the shown point of intersection has coordinates, parentheses V, W parentheses. If the vertex of the graph of the quadratic function is a parentheses four, 19 parentheses, what is the value of v
Therefore, the point (v, w) = (x, y) = (6, 15)
How to solveThe diagram above has two graphs (ABC and DE) intercepting at a point, (v, w).
To find the interception point (v, w), we need to first find the equations of each graph, with ABC being a parabola and DE, a straight line.
Since ABC is a parabola and the vertex is given, the standard vertex form of a parabola is given by:
y = a(x – h)2 + k ----------- eqn(1)
where (h, k) is the vertex of the parabola (the vertex is the point where the parabola changes direction) and "a" is a constant that tells whether the parabola opens up or down (negative indicates downward and positive indicates upward).
Given vertex (4, 19), eqn(1) becomes:
y = a(x - 4)2 + 19 -------------- eqn(2)
Since the parabola passes through point (0, 3), that is, x = 0 and y = 3,
we substitute the value of x and y into eqn(2) to find the value of "a"
3 = a(0 - 4)2 + 19
3 = a(-4)2 + 19
3 = 16a + 19
16a = 3 - 19
16a = -16
a = -1
Thus, eqn(2) becomes:
y = -(x - 4)2 + 19 ------------- eqn(3)
Next, we find the equation of DE (straight line).
Since DE is a straight line and the general form of straight-line equation is given by:
y = mx + c ------------------ eqn(4)
where m is the slope and c is the point at which the graph intercepts the y-axis.
c = -9
m = (y2 - y1) / (x2 - x1)
At points (0, -9) and (2, -1)
x1 = 0
x2 = 2
y1 = -9
y2 = -1
m = (-1 - (-9)) / (2 - 0)
= (-1 + 9)/2
= 8/2
m = 4
Substitute the values of m and c into eqn(4)
y = 4x - 9 ---------------- eqn(5)
Since point (v, w) is the point where both graphs meet,
eqn(3) = eqn(5)
-(x - 4)2 + 19 = 4x - 9
-[(x - 4)(x - 4)] + 19 = 4x - 9
-(x2 - 8x + 16) + 19 = 4x - 9
-x2 + 8x - 16 + 19 = 4x - 9
-x2 + 8x - 4x - 16 + 19 + 9 = 0
-x2 + 4x + 12 = 0
multiply through with -1
x2 - 4x - 12 = 0 ----------- eqn(6)
The above is a quadratic equation and can be simplified either by factorization, completing the square, or quadratic formula method.
Using the factorization method,
product of roots = -12
sum of roots = -4
Next, find two numbers whose sum is equal to the sum of roots (-4) and whose product is equal to the product of roots (-12)
Let the two numbers be 2 and -6
Replace the sum of roots (-4) in eqn(6) with the two numbers
x2 - 6x + 2x - 12 = 0
Group into two terms
(x2 - 6x) + (2x - 12) = 0
factorize each term
x(x - 6) + 2(x - 6) = 0
Pick and group the two values outside each bracket and inside one of the brackets
(x + 2) (x - 6) = 0
x + 2 = 0 and x - 6 = 0
x = -2 and x = 6
Since the point, (v, w) is on the right side of the y-axis, it follows that x cannot be –2. Therefore, x = 6.
substitute the value of x into eqn(5)
y = 4(6) - 9
y = 24 - 9
y = 15
Therefore, the point (v, w) = (x, y) = (6, 15)
Read more about quadratic function here:
https://brainly.com/question/29293854
#SPJ1
please help and thank you if you do
The linear regression equation for the data in the table is given as follows:
y = 3x - 2.
How to find the equation of linear regression?To find the regression equation, which is also called called line of best fit or least squares regression equation, we need to insert the points (x,y) in the calculator.
From the table, the points of the data-set in this problem are given as follows:
(1, 4), (2, 1), (3, 5), (4, 10), (5, 16), (6, 19), (7, 15).
Using a calculator, the line of best fit is given as follows:
y = 3x - 2.
More can be learned about linear regression at https://brainly.com/question/29613968
#SPJ1
Lauren over-filled the homemade pecan pie that she was baking for Thanksgiving, so the pie needed additional cooking time. Lauren decided to place a strip of aluminum foil around the edge of the crust so that it would not burn. If Lauren used a pie pan with a 12-inch diameter, how long, to the nearest inch, should the strip of foil be?
A. 19 inches
B. 24 inches
C. 113 inches
D. 38 inches
Answer: D
Step-by-step Explanation:
Circumference of a circle is : 2 [tex]\pi \\[/tex] r
Radius: diameter/2
Plug into equation and round.
2[tex]\pi[/tex](6) = 37.7 or 38.
After how many minutes will the two pools have the same amount of water?
How much water will be in each pool when they have the same amount?
It will take 16.84 minutes for the two pools to have the same amount of water and when the two pools have the same amount of water, each pool will have 385.84 liters of water.
The amount of water in the first pool is 770 liters, since no water is being added to it.
The amount of water in the second pool is 45.75t liters, since water is being added to it at a rate of 45.75 liters per minute.
To find the time at which the two pools have the same amount of water, we can set these two expressions equal to each other and solve for t:
770 = 45.75t
t = 770 / 45.75
t = 16.84 minutes
So it will take approximately 16.84 minutes for the two pools to have the same amount of water.
To find the amount of water in each pool when they have the same amount, we can substitute t = 16.84 into either expression.
Using the expression for the second pool, we have:
Amount of water in second pool = 45.75t
= 45.75(16.84)
= 771.69 liters
Therefore, when the two pools have the same amount of water, each pool will have 771.69 / 2 = 385.84 liters of water.
To learn more on Equation:
https://brainly.com/question/10413253
#SPJ1