Using only the periodic table, arrange the following elements in order of increasing ionization energy:

arsenic, selenium, potassium, gallium

Answers

Answer 1

The following elements in order of increasing ionization energy:

Potassium < Gallium < Arsenic < Selenium

What are elements?

Elements are compounds that cannot be chemically reduced by conventional chemical processes into simpler ones. They only contain one kind of atom, one with a particular number of protons in the nucleus.

Ionization energy tends to increase over a period from left to right and decrease down a group. As potassium belongs to the first group of elements (alkali metals) and only has one valence electron, it has the lowest ionization energy among the other elements. Because it belongs to the third group of post-transition metals and has three valence electrons, gallium has a somewhat greater ionization energy. Due to its five valence electrons and position in the same period as gallium but one group to the right (metalloids), arsenic has a higher ionization energy than gallium. Because it belongs to the same group as oxygen (chalcogens) and has six valence electrons, selenium has the highest ionization energy of the four elements mentioned.

To know more about elements, visit:

brainly.com/question/1580815

#SPJ1


Related Questions

What gaseous by-product is eventually given off from the base-catalyzed anhydride hydrolysis reagent? Hint: the proton-transfer reaction between sodium bicarbonate and the tetrahedral intermediate [RCO2CO-(OH)R] gives a dicarboxylate and eventually carbonic acid (upon the addition of hydrochloric acid during the work-up) (H2C03 pKa 6.35; see Mechanism in Question 9). What do you know about carbonic acid?

Answers

Carbonic acid (H2CO3) is a weak, diprotic acid that forms when carbon dioxide (CO2) dissolves in water. It is an important compound in the carbon cycle and plays a significant role in regulating the pH of natural water systems, including the ocean.

In the base-catalyzed anhydride hydrolysis reagent, the gaseous by-product given off is carbon dioxide (CO2). This occurs as the proton-transfer reaction between sodium bicarbonate and the tetrahedral intermediate [RCO2CO-(OH)R] forms a dicarboxylate. Upon the addition of hydrochloric acid during the work-up, carbonic acid (H2CO3) is formed, which then decomposes into water (H2O) and carbon dioxide (CO2). Carbonic acid has a pKa of 6.35 and is a weak acid involved in various chemical reactions and equilibria in natural systems, such as the carbonate buffering system in water.

To know more about Carbonic acid please refer: https://brainly.com/question/13929437

#SPJ11

rank the following radicals in order of decreasing stability, putting the most stable first.i. CH3CH₂ ii. H₂C=CHCH₂ iii. CH3CHCH3 IV. (CH3)3CA. II>IV>III>IB. III>II>IV>IC. IV>III>II>ID. IV>III>I>II

Answers

The following radicals in order of decreasing stability, putting the most stable first:

i. CH3CH₂ (Primary Radical)
ii. H₂C=CHCH₂ (Allylic Radical)
iii. CH3CHCH3 (Secondary Radical)
iv. (CH3)3C (Tertiary Radical)

Radicals are generally more stable when they have more substituents attached to the carbon atom with the unpaired electron. This is because the electron delocalization helps stabilize the molecule. The order of stability for these radicals is:

Tertiary (IV) > Secondary (III) > Allylic (II) > Primary (I)

So, the correct answer is: IV>III>II>I (Option D).

To know more about electron delocalization :

https://brainly.com/question/31179584

#SPJ11

The following radicals in order of decreasing stability, putting the most stable first:

i. CH3CH₂ (Primary Radical)
ii. H₂C=CHCH₂ (Allylic Radical)
iii. CH3CHCH3 (Secondary Radical)
iv. (CH3)3C (Tertiary Radical)

Radicals are generally more stable when they have more substituents attached to the carbon atom with the unpaired electron. This is because the electron delocalization helps stabilize the molecule. The order of stability for these radicals is:

Tertiary (IV) > Secondary (III) > Allylic (II) > Primary (I)

So, the correct answer is: IV>III>II>I (Option D).

To know more about electron delocalization :

https://brainly.com/question/31179584

#SPJ11

Can water molecules evaporate?

Answers

Yes, water molecules can evaporate. Evaporation is a physical process where a liquid turns into a gas, and it occurs when the molecules of the liquid gain enough energy to break free from their bonds and escape into the air. When water is exposed to air, some of its molecules will gain enough energy to evaporate and become water vapor in the atmosphere. This is why clothes dry when hung outside, and why puddles disappear on a hot day. The rate of evaporation depends on several factors, including temperature, humidity, and air movement, among others.

Have a Great Day!

-

bao2, barium peroxide, decomposes when heated to give bao and o2. write a balanced equation for this reaction. if 0.500 mol of bao2 is decomposed, the number of moles of o2 formed is __.

Answers

The balanced equation for the decomposition of barium peroxide (BaO2) is 2 BaO2 → 2 BaO + O2 . This means that for every 2 moles of BaO2 that decompose, 1 mole of O2 is formed. Therefore, if 0.500 moles of BaO2 decompose, the number of moles of O2 formed would be: 0.500 moles BaO2 × (1 mole O2 / 2 moles BaO2) = 0.250 moles O2

The balanced equation for the decomposition of barium peroxide (BaO2) is 2 BaO2 → 2 BaO + O2, which indicates that 2 moles of BaO2 decompose to yield 2 moles of barium oxide (BaO) and 1 mole of oxygen gas (O2). This means that the mole ratio between BaO2 and O2 is 2:1.

If we have 0.500 moles of BaO2 that decompose, we can use this mole ratio to calculate the number of moles of O2 formed. By multiplying 0.500 moles of BaO2 by the conversion factor of 1 mole O2 per 2 moles BaO2 (from the balanced equation), we can determine the amount of O2 produced:

0.500 moles BaO2 × (1 mole O2 / 2 moles BaO2) = 0.250 moles O2

Therefore, 0.500 moles of BaO2 would yield 0.250 moles of O2 through the decomposition reaction according to the balanced equation.

Learn more about barium peroxide here:

https://brainly.com/question/188392

#SPJ11

What is the change in Gibb's Free energy for the following reaction at 25 °C?



3A + B

Answers

This equation can be used to determine the specific change in Gibbs free energy:

ΔG° = ΔH° - TΔS°

where,

T is the temperature in Kelvin,

H is the standard change in enthalpy, and

S is the standard change in entropy.

The thermochemical table can be used to determine the standard enthalpy of reaction (H°) and the standard entropy (S°) of a reaction.

The H and S values ​​for the given reaction are as follows on the basis of normal conditions:

ΔH° = -483.6 kJ/mol

ΔS° = -202.4 J/(mol·K)

Note that the units for S° are J/(molK), which are different from the units for H°. To be used in the above equation, S° must first be converted to kJ/(mol K). Therefore,

ΔS° = -0.2024 kJ/(mol·K)

When we plug the values ​​into the equation, we get:

ΔG° = (-483.6 kJ/mol) - (298 K)(-0.2024 kJ/(mol·K))ΔG° = -483.6 kJ/mol + 60.3 kJ/molΔG° = -423.3 kJ/mol

Consequently, the standard change in Gibbs free energy of the reaction at 25 °C is -423.3 kJ/mol.

Learn more about Gibbs free energy, here:

https://brainly.com/question/20358734

#SPJ1

Your question is incomplete, most probably the complete question is:

Calculate the standard change in Gibbs free energy for the following reaction at 25°C?

[tex]3H_2(g)+ Fe_2O_3 ------ > 2Fe (s)+ 3H_2O(g)[/tex]

In the lab, Grignard reactions can be slow to initiate because of the magnesium metal turnings. This is because: a. magnesium is flammable b. the magnesium is coiled too tightly c. the magnesium reacts with air to form a magnesium oxide coating d. magnesium reacts with water

Answers

Grignard reactions can be slow to initiate because, C. the magnesium reacts with air to form a magnesium oxide coating.

What is magnesium metal turnings?

Magnesium metal turnings are thin shavings or filings of magnesium metal. They are commonly used as a reagent in organic chemistry reactions, such as the Grignard reaction, where they react with organic halides to form carbon-carbon bonds.

Magnesium turnings are often preferred over other forms of magnesium, such as powder or ribbon, because they have a higher surface area and are easier to handle. However, they can also pose some safety risks, such as flammability and reactivity with air and water.

Find out more on magnesium metal turnings here: https://brainly.com/question/30669128

#SPJ1

the decomposition of 4.21 g nahco3 yields 2.07 g na2co3. what is the percent yield of this reaction?

Answers

the decomposition of 4.21 g nahco3 yields 2.07 g [tex]Na_{2} CO_{3}[/tex].The percent yield of this reaction is 77.94%.

To calculate the percent yield of the decomposition reaction of [tex]NaHCO_{3}[/tex]to [tex]Na_{2} CO_{3}[/tex], you'll need to follow these steps:
Step 1: Determine the balanced chemical equation for the decomposition reaction:
2  [tex]Na_{2} CO_{3}[/tex]→  [tex]Na_{2} CO_{3}[/tex] +[tex]H_{2} O[/tex] + [tex]CO_{2}[/tex]
Step 2: Calculate the theoretical yield:
Find the molar mass of  [tex]NaHCO_{3}[/tex]: (1 × 22.99) + (1 × 1.01) + (1 × 12.01) + (3 × 16.00) = 84.01 g/mol
Find the molar mass of [tex]Na_{2} CO_{3}[/tex]: (2 × 22.99) + (1 × 12.01) + (3 × 16.00) = 105.99 g/mol
Find the moles of  [tex]NaHCO_{3}[/tex]: 4.21 g / 84.01 g/mol = 0.0501 mol
Using the balanced equation, 2 moles of  [tex]NaHCO_{3}[/tex]produce 1 mole of  [tex]Na_{2} CO_{3}[/tex], so the moles of  [tex]Na_{2} CO_{3}[/tex] produced: 0.0501 mol / 2 = 0.02505 mol
Calculate the theoretical yield of  [tex]Na_{2} CO_{3}[/tex]: 0.02505 mol × 105.99 g/mol = 2.655 g
Step 3: Calculate the percent yield:
Percent yield = (Actual yield / Theoretical yield) × 100
Percent yield = (2.07 g / 2.655 g) × 100 = 77.94%
The percent yield of this reaction is 77.94%.

learn more about decomposition here

https://brainly.com/question/19607269

#SPJ11

the decomposition of 4.21 g nahco3 yields 2.07 g [tex]Na_{2} CO_{3}[/tex].The percent yield of this reaction is 77.94%.

To calculate the percent yield of the decomposition reaction of [tex]NaHCO_{3}[/tex]to [tex]Na_{2} CO_{3}[/tex], you'll need to follow these steps:
Step 1: Determine the balanced chemical equation for the decomposition reaction:
2  [tex]Na_{2} CO_{3}[/tex]→  [tex]Na_{2} CO_{3}[/tex] +[tex]H_{2} O[/tex] + [tex]CO_{2}[/tex]
Step 2: Calculate the theoretical yield:
Find the molar mass of  [tex]NaHCO_{3}[/tex]: (1 × 22.99) + (1 × 1.01) + (1 × 12.01) + (3 × 16.00) = 84.01 g/mol
Find the molar mass of [tex]Na_{2} CO_{3}[/tex]: (2 × 22.99) + (1 × 12.01) + (3 × 16.00) = 105.99 g/mol
Find the moles of  [tex]NaHCO_{3}[/tex]: 4.21 g / 84.01 g/mol = 0.0501 mol
Using the balanced equation, 2 moles of  [tex]NaHCO_{3}[/tex]produce 1 mole of  [tex]Na_{2} CO_{3}[/tex], so the moles of  [tex]Na_{2} CO_{3}[/tex] produced: 0.0501 mol / 2 = 0.02505 mol
Calculate the theoretical yield of  [tex]Na_{2} CO_{3}[/tex]: 0.02505 mol × 105.99 g/mol = 2.655 g
Step 3: Calculate the percent yield:
Percent yield = (Actual yield / Theoretical yield) × 100
Percent yield = (2.07 g / 2.655 g) × 100 = 77.94%
The percent yield of this reaction is 77.94%.

learn more about decomposition here

https://brainly.com/question/19607269

#SPJ11

find the missing length of CD in kite ABCD

Answers

Note that the missing part CD in the kite is 5

what is the explanation for the above?

Given Kite ABCD

To find the lenght of CD

We know that, in a kite, the diagonals are perpendicular.

Thus,

Using Pythagoras Theorem,

CD² = 3² + 4²
CD = 9² + 16²

CD² = 25
√CD = 5 Units


The missing lenght of CD is 5

Learn more about Kite:
https://brainly.com/question/26679673
#SPJ1

Full Question:

See attached image.

Aromatic compounds often have multiple names that are all accepted by IUPAC. Choose the three different systematic (IUPAC) names for the following compound. Choose 3 below
4-bromo-1-hydro-2-methylbenzene
1-bromo-4-hydroxy-2-methylbenzene
5-hydroxy-2-bromotoluene
5-bromo-2-hydroxytoluene
2-hydro-5-bromotoluene
4-bromo-1-hydroxy-2-methylbenzene
4-bromo-2-methylphenol
2-bromo-4-methylphenol

Answers

The three different systematic (IUPAC) names for the same compound are:

1. 5-bromo-2-hydroxytoluene

2. 4-bromo-1-hydroxy-2-methylbenzene

3. 4-bromo-2-methylphenol

The IUPAC nomenclature is the set of rules for naming the organic compounds as per the International Union of Pure and Applied Chemistry.

To know more about IUPAC nomenclature, click on the below link:

https://brainly.com/question/30086566

#SPJ11

what mass of benzoic acid, hc7h5o2, would you dissolve in 350.0 ml of water to produce a solution with a ph of 2.85? ka for benzoic acid = 6.3 10-5 .

Answers

Approximately 3.93 g of benzoic acid would need to be dissolved in 350.0 mL of water to produce a solution with a pH of 2.85.

To calculate the mass of benzoic acid needed to prepare a solution with a pH of 2.85, we need to use the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

where pH is the desired pH, pKa is the acid dissociation constant of benzoic acid (6.3 × 10^-5), [A-] is the concentration of the benzoate ion, and [HA] is the concentration of benzoic acid.

At pH 2.85, the concentration of [A-]/[HA] is 0.316.

We can assume that the concentration of benzoic acid in water is equal to its solubility limit, which is approximately 0.34 g/100 mL at room temperature.

Therefore, we can set up the following equation to solve for the mass of benzoic acid needed:

0.316 = 10^(2.85-4.2) = [A-]/[HA]

0.316 = [C7H5O2^-] / [C7H5O2H]

0.316 = x / (0.34 g/100 mL * 350.0 mL)

Solving for x gives:

x = 0.316 * (0.34 g/100 mL * 350.0 mL)

x = 3.93 g

Therefore, approximately 3.93 g of benzoic acid would need to be dissolved in 350.0 mL of water to produce a solution with a pH of 2.85.

Learn more about benzoic acid ,

https://brainly.com/question/24052816

#SPJ4

Can the pH of a buffer solution of potassium hydroxide decrease when exposed to air overnight?

Answers

Yes, the pH of a buffer solution of potassium hydroxide ([tex]K_{O}H[/tex]) can decrease when exposed to air overnight, depending on the specific conditions. Buffer solutions are made by mixing a weak acid and its corresponding conjugate base, or a weak base and its corresponding conjugate acid, in order to maintain a relatively constant pH when small amounts of acid or base are added to the solution.

However, when a buffer solution is exposed to air overnight, it can undergo changes that affect its pH. For example, carbon dioxide ([tex]Co_{2}[/tex]) from the air can dissolve in the buffer solution to form carbonic acid ([tex]H_{2} Co{3}[/tex]), which can react with the weak base in the buffer and decrease its concentration, leading to a decrease in pH. Additionally, if the buffer solution is not stored properly, it may undergo bacterial or fungal growth, which can alter the pH by producing acidic or basic compounds.

Therefore, while a buffer solution of potassium hydroxide is generally resistant to changes in pH, it is still possible for its pH to decrease when exposed to air overnight, depending on the specific conditions of the environment.

To know more about buffer solution

brainly.com/question/24262133

#SPJ11

what conclusions can you make regarding the genetics relating to sodium benzoate? is there a clear dominant/ recessive trait?

Answers

The genetic link to sodium benzoate is not yet fully understood, as there is no clear dominant/recessive trait and studies have provided mixed results. Further research is needed to clarify the relationship and identify other contributing factors.

Why there is no clear dominant trait about genetic link to sodium benzoate?

There is no clear evidence to suggest a direct genetic link or a clear dominant/recessive trait related to sodium benzoate. While some studies have suggested that certain genetic variations may affect an individual's sensitivity to sodium benzoate, more research is needed to confirm these findings and to determine the underlying mechanisms involved.

Additionally, other factors such as diet, lifestyle, and environmental exposures may also play a role in an individual's response to sodium benzoate.

Learn more about Dominant trait

brainly.com/question/20744588

#SPJ11

how many moles of no are required to generate 7.32×1025 no2 molecules according to the following equation: 2no o2→2no2

Answers

Since NO and NO₂ have a molar ratio of 1:1, 3.66 x 10²⁵ moles of NO are needed.

Avogadro's number is 6.02 x 10²³, why?

It shows how many atoms or molecules make up one gramme of an element's or compound's molecular weight. The result is 6.022 x 10²³ when the atomic mass of an element is divided by the actual mass of its atom.

The balanced chemical equation indicates: 2 NO + O₂ → 2 NO₂

1 mole of O₂ and 2 moles of NO₂ combine to form 2 moles of NO₂. The molar ratio of NO to NO₂ is thus 2:1, or just 1:1. Accordingly, one mole of NO₂ is created for every mole of NO that is utilised.

Therefore, the amount of NO₂ in moles is:

7.32×10²⁵ NO₂ molecules / 2 = 3.66×10²⁵ moles of NO₂

To know more about molecules visit:-

https://brainly.com/question/19922822

#SPJ1

which gas effuses slowest? 1. chlorine 2. carbon dioxide 3. nitrogen 4. fluorine 5. carbon monoxide

Answers

The gas that effuses slowest is carbon dioxide. This is because effusion is the escape of a gas through a small hole or opening, and the rate of effusion is inversely proportional to the square root of the molar mass of the gas.

Carbon dioxide has a molar mass of 44.01 g/mol, which is higher than that of nitrogen (28.01 g/mol) and carbon monoxide (28.01 g/mol), but lower than that of chlorine (70.91 g/mol) and fluorine (38.00 g/mol). Therefore, carbon dioxide will effuse slower than nitrogen and carbon monoxide, but faster than chlorine and fluorine.

The gas that effuses slowest among the options provided is chlorine. This is because effusion rate is inversely proportional to the square root of the molecular mass, according to Graham's Law of Effusion. Chlorine has the highest molecular mass (70.9 g/mol) among the listed gases, resulting in a slower effusion rate compared to the others.

Visit here to learn more about carbon dioxide brainly.com/question/3049557

#SPJ11

The gas that effuses slowest is carbon dioxide. This is because effusion is the escape of a gas through a small hole or opening, and the rate of effusion is inversely proportional to the square root of the molar mass of the gas.

Carbon dioxide has a molar mass of 44.01 g/mol, which is higher than that of nitrogen (28.01 g/mol) and carbon monoxide (28.01 g/mol), but lower than that of chlorine (70.91 g/mol) and fluorine (38.00 g/mol). Therefore, carbon dioxide will effuse slower than nitrogen and carbon monoxide, but faster than chlorine and fluorine.

The gas that effuses slowest among the options provided is chlorine. This is because effusion rate is inversely proportional to the square root of the molecular mass, according to Graham's Law of Effusion. Chlorine has the highest molecular mass (70.9 g/mol) among the listed gases, resulting in a slower effusion rate compared to the others.

Visit here to learn more about carbon dioxide brainly.com/question/3049557

#SPJ11

using the vsepr model, the electron pair arrangement around the central bromine atom in brf4- is __________.

Answers

The molecular geometry around the central bromine atom in BrF4- is trigonal bipyramidal.

In the BrF4- ion, the central bromine atom is bonded to four fluorine atoms and has one lone pair of electrons. To determine the electron pair arrangement around the central bromine atom using the VSEPR (Valence Shell Electron Pair Repulsion) model, we need to first draw the Lewis structure of the molecule:

Bromine (Br) has 7 valence electrons, while each fluorine (F) atom has 7 valence electrons. The negative charge on the ion (-1) indicates the addition of an extra electron, so there are a total of 36 valence electrons (7 + 4(7) + 1 = 36).

The Lewis structure of BrF4- can be represented as:

F F

| |

F--Br--F

| |

F -

where "-" represents the lone pair of electrons on the Br atom.

Using the VSEPR model, we can determine the electron pair arrangement around the central bromine atom by considering both the bonding pairs and the lone pair of electrons. In this case, there are 5 electron pairs around the central bromine atom (4 bonding pairs and 1 lone pair). The electron pair geometry is therefore trigonal bipyramidal.

However, we also need to consider the molecular geometry, which takes into account only the position of the atoms around the central atom (not the lone pair of electrons). The bonding pairs in BrF4- are all bonded to the central atom, so the molecular geometry is the same as the electron pair geometry.

learn more about VSEPR model here:

https://brainly.com/question/29022281

#SPJ11

During today's lab, hydrochloric acid is used to: (select all that apply)
A)Neutralize any grignard reagent still present in the reaction
B) Neutralize the THF
C) Convert the remaining magnesium into dye
D) Convert the alkoxide to the alcohol, and then allow it to eliminate, forming the dye

Answers

The correct option is D) Convert the alkoxide to the alcohol, and then allow it to eliminate, forming the dye.

What function does the play in the Grignard reaction?

Hydrochloric acid must be added in order to dissolve any remaining Grignard reagent and transform the magnesium alcoholate into alcohol. The dimethylamino group would also be protonated if the pH level was too low, making the end product far more water soluble.

What is the purpose of a Grignard reagent?

It is possible to count the halogen atoms in a halogen compound using Grignard reagents. For the chemical examination of several triacylglycerols as well as numerous cross-coupling reactions for the synthesis of various carbon-carbon and carbon-heteroatom linkages, Grignard degradation is employed.

To know more about alkoxide visit:-

https://brainly.com/question/31413844

#SPJ1

identify the transition metal ion and the number of electrons with the following electron configuration, [ar]4s03d7.

Answers

The transition metal ion with the electron configuration [Ar]4s0 3d7 is Mn²⁺, and it has 25 electrons.

How to determine the electron configuration of an element?

To identify the transition metal ion and the number of electrons with the electron configuration [Ar]4s0 3d7,

1. Identify the core electron configuration: [Ar] represents the electron configuration of argon, which has 18 electrons.
2. Count the number of valence electrons: In this case, 4s0 has 0 electrons, and 3d7 has 7 electrons.
3. Add the core and valence electrons to find the total number of electrons: 18 (core) + 7 (valence) = 25 electrons.

The element with 25 electrons is manganese (Mn). However, since it's a transition metal ion, we need to identify the charge of the ion. The electron configuration of the neutral Mn atom is [Ar]4s2 3d5. Comparing this with the given electron configuration [Ar]4s0 3d7, we see that 2 electrons are missing from the 4s orbital. This indicates a +2 charge on the Mn ion.

To know more Electron Configuration:

https://brainly.com/question/29416284

#SPJ11

How many moles will react with one mole of the following if the GR (Grignard reagent) is found in excess? ketone [Choose ] aldehyde [Choose ] ester [Choose ] diester [Choose ] acid [Choose ]

Answers

If the Grignard reagent is found in excess, one mole of aldehyde will react with one mole of the reagent. The number of moles that will react with other compounds listed depends on their specific chemical structure.

To determine the number of moles that will react with one mole of the following, consider the reactions of Grignard reagent (GR) with different functional groups:
1. Ketone: One mole of ketone reacts with one mole of Grignard reagent to form a tertiary alcohol.
2. Aldehyde: One mole of aldehyde reacts with one mole of Grignard reagent to form a secondary alcohol.
3. Ester: One mole of ester reacts with two moles of Grignard reagent to form a tertiary alcohol and one mole of alkoxide.
4. Diester: One mole of diester reacts with four moles of Grignard reagent to form a tertiary alcohol and two moles of alkoxide.
5. Acid: Grignard reagents cannot be used directly with acids, as they will react with the acidic proton and generate the corresponding alkane.
So, the number of moles reacting with one mole of each are:
- Ketone: 1 mole of GR
- Aldehyde: 1 mole of GR
- Ester: 2 moles of GR
- Diester: 4 moles of GR
- Acid: Cannot react directly with GR

To learn more about Grignard reagent click here https://brainly.com/question/30144052

#SPJ11

Determine which liquid is which, two blue solutions and two clear choices:
CuSO4
Cu(NO3)2
NH4OH
CaCl2

Answers

To determine which liquid is which among the two blue solutions (CuSO4 and Cu(NO3)2) and two clear choices (NH4OH and CaCl2), follow these steps:

Step 1: Identify the colors of the given solutions:


- CuSO4 (copper sulfate) is a blue solution.
- Cu(NO3)2 (copper nitrate) is also a blue solution.
- NH4OH (ammonium hydroxide) is a colorless or clear solution.
- CaCl2 (calcium chloride) is a colorless or clear solution.

Step 2: Match the solutions with their respective colors:


- The two blue solutions are CuSO4 and Cu(NO3)2.
- The two clear choices are NH4OH and CaCl2.

Answer: The two blue solutions are copper sulfate (CuSO4) and copper nitrate (Cu(NO3)2), while the two clear choices are ammonium hydroxide (NH4OH) and calcium chloride (CaCl2).

https://brainly.com/question/22595955

#SPJ11

Addition Reactions: Write the reagents on the arrows and draw ONLY the major product for each reaction. DON'T repeat same reaction. A. Addition reaction of alkenes. B. Hydrogenation (Pt, Lindlar's cat., Na/NH:()) 1 C. Addition reaction of alkynes. (Don't repeat hydrogenation reactions used in B)

Answers

The reactions are: (A) Addition reaction of alkenes: CH₂=CH₂ + HBr → CH₃-CH₂Br (B) Hydrogenation: CH₂=CH₂ + H₂ (Pt catalyst) → CH₃-CH₃;  HC≡CH + H₂ (Lindlar's catalyst) → CH₂=CH₂; HC≡CH + NaNH₂ (in NH₃) → trans-CH=CH (C) Addition reaction of alkynes: HC≡CH + HBr → CH₂=CHBr

A. Addition reaction of alkenes: In this reaction, a reagent is added to an alkene, breaking the double bond and forming a single bond. One of the most common reagents used in alkene addition reactions is HBr.

Example: CH₂=CH₂ + HBr → CH₃-CH₂Br

B. Hydrogenation: This is the process of adding hydrogen (H₂) to an unsaturated hydrocarbon (alkenes or alkynes) in the presence of a catalyst such as Pt, Lindlar's catalyst, or Na/NH₃. The double or triple bond is broken, and the resulting product is a saturated hydrocarbon.

1. Hydrogenation with Pt:
Example: CH₂=CH₂ + H₂ (Pt catalyst) → CH₃-CH₃

2. Hydrogenation with Lindlar's catalyst (used for alkynes to alkenes):
Example: HC≡CH + H₂ (Lindlar's catalyst) → CH₂=CH₂

3. Hydrogenation with Na/NH₃ (used for alkynes to trans-alkenes):
Example: HC≡CH + NaNH₂ (in NH₃) → trans-CH=CH

C. Addition reaction of alkynes (not repeating hydrogenation reactions used in B): A common addition reaction for alkynes is the hydrohalogenation, where a hydrogen halide (like HBr) is added to the triple bond, resulting in an alkene with a halogen atom attached.

Example: HC≡CH + HBr → CH₂=CHBr

To learn more about alkynes, visit: https://brainly.com/question/29654692

#SPJ11

what is the [h3o ] of a 5.9×10−9 m ba(oh)2 solution?

Answers

The [H3O+] of a 5.9×10−9 M Ba(OH)2 solution is 8.47 x 10^-7 M.

To find the [H3O+] of a 5.9×10−9 M Ba(OH)2 solution, we need to first recognize that Ba(OH)2 is a strong base and dissociates completely in water to form Ba2+ and 2 OH- ions.

The reaction can be written as:
Ba(OH)2 (s) → Ba2+ (aq) + 2OH- (aq)

Since OH- is a strong base, it will react with water to form H3O+ and OH- ions:
OH- (aq) + H2O (l) → H3O+ (aq) + OH- (aq)

The equilibrium constant for this reaction is Kw = [H3O+][OH-] = 1.0 x 10^-14 at 25°C.

To find the [H3O+] of the Ba(OH)2 solution, we need to first find the concentration of OH- ions:
[OH-] = 2 x 5.9×10−9 M = 1.18 x 10^-8 M

Using the Kw expression, we can solve for [H3O+]:
Kw = [H3O+][OH-]
1.0 x 10^-14 = [H3O+](1.18 x 10^-8)
[H3O+] = 8.47 x 10^-7 M

Therefore, the [H3O+] of a 5.9×10−9 M Ba(OH)2 solution is 8.47 x 10^-7 M.

Know more about Strong Base here:

https://brainly.com/question/28402352

#SPJ11

list the elements in the compound cf2br2 in order of decreasing mass percent composition.

Answers

The elements in CF2Br2 in order of decreasing mass percent composition are: Bromine (Br) > Carbon (C) > Fluorine (F), Bromine has the highest mass percent composition, followed by Carbon and then Fluorine.

CF2Br2 is a compound made up of carbon, fluorine, and bromine. To determine the order of decreasing mass percent composition, we need to calculate the mass percent of each element in the compound.

First, we need to find the molecular weight of CF2Br2 by adding the atomic weights of each element:

Molecular weight of CF2Br2 = (1 x C) + (2 x F) + (2 x Br) = 12.01 + 2(18.99) + 2(79.90) = 219.79 g/mol

Next, we can calculate the mass percent of each element in the compound:

Mass percent of C = (1 x 12.01 g/mol / 219.79 g/mol) x 100% = 5.46%

Mass percent of F = (2 x 18.99 g/mol / 219.79 g/mol) x 100% = 17.26%

Mass percent of Br = (2 x 79.90 g/mol / 219.79 g/mol) x 100% = 77.28%

Therefore, the elements in the compound CF2Br2 in order of decreasing mass percent composition are Br (77.28%), F (17.26%), and C (5.46%).

learn more about mass percent here:

https://brainly.com/question/5394922

#SPJ11

Which half-cell, when connected with the Cu2+ /Cu half-cell (Cu2+ + 2e- → Cu), will result in a positive cell potential? 1-/12 Fe2+/Fe3+
Ag/Ag Sn2+ /Sn

Answers

Okay, let's evaluate the options to determine which half-cell will result in a positive cell potential when combined with the Cu2+/Cu half-cell:

1. Fe2+/Fe3+: This half-cell converts Fe2+ ions to Fe3+ ions. The standard cell potential for Fe2+/Fe3+ is +0.77 V. When combined with the Cu2+/Cu half-cell, the overall cell potential will be +0.77 V - E°Cu2+/Cu = +0.77 V - 0.34 V = +0.43 V. This is a positive value, so Fe2+/Fe3+ will work.

2. Ag/Ag+: The standard cell potential for Ag/Ag+ is +0.80 V. Combined with Cu2+/Cu, the cell potential would be +0.80 V - 0.34 V = +0.46 V. This is also positive, so Ag/Ag+ can be used.

3. Sn2+/Sn: The standard cell potential for Sn2+/Sn is -0.14 V. Combined with Cu2+/Cu, the cell potential would be -0.14 V - 0.34 V = -0.48 V. This is negative, so Sn2+/Sn will not result in a positive cell potential.

In summary, the half-cells that will work with Cu2+/Cu to give a positive overall cell potential are:

1. Fe2+/Fe3+

2. Ag/Ag+

Sn2+/Sn will give a negative potential and cannot be used.

Does this make sense? Let me know if you have any other questions!

4. Give balanced equations for the following reactions. a) Combustion of cyclopentene C.Hg + 7 0, --> 5 CO, +4 H,O b) Addition of bromine to l-butene c) Reaction of nitric acid with benzene d) Addition of sulfuric acid to ethyl benzene.

Answers

a) C5H8 + 7O2 --> 5CO2 + 4H2O
b) CH3CH=CHCH3 + Br2 --> CH3CHBrCHBrCH3
c) 6HNO3 + C6H6 --> 6NO2 + 2H2O + C6H3(NO2)3
d) C6H5CH2CH3 + H2SO4 --> C6H5CH2CH2HSO4 + H2O

With the molecular formula C6H6, benzene is an aromatic hydrocarbon that is colorless, extremely flammable, and volatile. It is a naturally occurring substance that is present in both natural gas and crude oil. Plastics, synthetic fibers, rubber, and colours are just a few examples of the many compounds that can be made from benzene. Long-term exposure to benzene, a highly poisonous and carcinogenic material, can result in major health issues, such as leukaemia and other types of cancer. It can contribute to the creation of ground-level ozone and smog, both of which have detrimental effects on both human health and the environment. It is also a volatile organic compound (VOC).

Learn more about benzene here:

https://brainly.com/question/24835328

#SPJ11

In a small test tube, combine about 1 drop of sodium hydroxide, NaOH(aq), and about 6 ops of lead(II) nitrate solution, Pb(NO3)2 (aq). What are your cheervatione?

Answers

Adding sodium hydroxide to lead(II) nitrate results in the formation of white lead(II) hydroxide precipitate; Safety precautions should be taken due to the corrosive and toxic nature of the substances involved.

How to find cheervatione?

When sodium hydroxide (NaOH) is added to lead(II) nitrate (Pb(NO₃)₂), a precipitation reaction occurs. The balanced chemical equation for the reaction is:

2 NaOH(aq) + Pb(NO₃)₂(aq) → Pb(OH)₂(s) + 2 NaNO₃(aq)

This reaction shows that two moles of sodium hydroxide react with one mole of lead(II) nitrate to form one mole of lead(II) hydroxide (Pb(OH)₂) and two moles of sodium nitrate (NaNO₃).

The formation of a precipitate of lead(II) hydroxide (Pb(OH)₂) indicates that the reaction has occurred. The white solid of lead(II) hydroxide should be visible in the test tube.

It is important to note that both sodium hydroxide and lead(II) nitrate are corrosive and toxic substances, so proper safety precautions should be taken when handling them. Gloves and eye protection should be worn, and the experiment should be performed in a well-ventilated area.

Learn more about Balanced chemical equation

brainly.com/question/28294176

#SPJ11

A real gas .......a. does not completely obey the predictions of the kinetic-molecular theory b. consists of particles that do not occupy space c. cannot be condensed d. does not diffuse Оа Ob Od Ob

Answers

A real gas does not completely obey the predictions of the kinetic-molecular theory. This is because the kinetic-molecular theory assumes that gas particles have negligible volume and no intermolecular forces.

which is not always the case for real gases. Real gases also exhibit molecular interactions and can be condensed under certain conditions. However, real gases still exhibit diffusion, as gas particles are able to move and spread out through space.


As a result, real gases may deviate from the ideal gas behavior, which assumes no intermolecular forces and negligible volume of gas particles. Real gases can also diffuse, but their rate of diffusion may be influenced by the gas's molecular properties.

To know more about diffusion click here

brainly.com/question/10532944

#SPJ11

Calculate the pH of a solution that is 0.20 M HOCl and 0.90 M KOCl. In order for this buffer to have pH=pKa, would you add HCl or NaOH? What quantity (moles) of which reagent would you add to 1.0 L of the original buffer so that the resulting solution has pH=pKa?

Answers

The pH of a solution that is 0.20 M HOCl and 0.90 M KOCl can be determined using the Henderson-Hasselbalch equation.

The pKa of HOCl is 3.1, which means that the pH of the solution should be around 3.1.

In order for the buffer to have pH=pKa, HCl needs to be added. The quantity of HCl required to reach the desired pH can be determined using the Henderson-Hasselbalch equation.

In this case, the quantity of HCl needed to be added to 1.0L of the original buffer to reach pH=pKa would be 0.05 moles of HCl. Adding HCl to the buffer will shift the equilibrium to the left, resulting in increased concentration of HOCl and decreased concentration of KOCl.

This will decrease the pH of the buffer and bring it closer to the desired pH=pKa.

Know more about Henderson-Hasselbalch here

https://brainly.com/question/13423434#

#SPJ11

Here are your data for the titration of the commercial aspirin CA1 sample solutions. Mass of commercial aspirin CA1 sample Volume of NaOHTrial #1 0.215 g 16.37 mLTrial #2 0.206 g 16.08 mL Determine the number of moles of acid (total) in your commercial aspirin ca1 sample for both trials

Answers

The number of moles of acid (total) in the commercial aspirin sample is 0.003245 mol, calculated by adding the moles of NaOH used in two trials, where the molarity of NaOH was assumed to be 0.100 M.

How to determine the number of moles of acid?

To determine the number of moles of acid in the commercial aspirin CA1 sample, we need to first calculate the number of moles of NaOH used in the titration. We can use the following equation:

moles of NaOH = Molarity of NaOH x volume of NaOH used (in L)

Assuming the molarity of NaOH is 0.100 M, we can calculate the moles of NaOH used in each trial as follows:

Trial #1:

moles of NaOH = 0.100 mol/L x 0.01637 L = 0.001637 mol

Trial #2:

moles of NaOH = 0.100 mol/L x 0.01608 L = 0.001608 mol

Since the reaction between NaOH and aspirin is a 1:1 stoichiometric ratio, the number of moles of acid (aspirin) in each trial is equal to the number of moles of NaOH used. Therefore, the number of moles of acid in each trial is:

Trial #1:

moles of acid = 0.001637 mol

Trial #2:

moles of acid = 0.001608 mol

So the number of moles of acid (total) in the commercial aspirin CA1 sample for both trials is 0.001637 mol + 0.001608 mol = 0.003245 mol.

Learn more about Number of moles

brainly.com/question/21085277

#SPJ11

The _____ effect is the phenomenon responsible for a decrease in solubility of a salt when one of the salt's ions is already present in solution.

Answers

The common ion effect is the phenomenon responsible for a decrease in solubility of a salt when one of the salt's ions is already present in solution.

The common ion effect occurs when a salt's solubility decreases because one of the ions in the salt is already present in the solution. This effect is due to the Le Chatelier's principle, which states that if a system at equilibrium is disturbed, it will try to counteract the disturbance to re-establish equilibrium. In this case, the addition of a common ion shifts the equilibrium towards the solid state, reducing the concentration of ions in solution and decreasing the solubility of the salt. This effect is particularly important in precipitation reactions, where the addition of a common ion can cause a solid to form, and in buffer solutions, where the common ion can affect the pH of the solution. In physiological processes, the common ion effect can affect the absorption and excretion of ions in the body.

Know more about common ion effect here:

https://brainly.com/question/28202991

#SPJ11

what is the ph of a 0.750 m solution of nacn (ka of hcn is 4.9 × 10⁻¹⁰)?

Answers

Finally, we can use the following relationship to determine the solution's pH: pH + pOH = 14 pH = 14 - pOH = 14 - 2.41 ≈ 11.59 The 0.750 M NaCN solution therefore has a pH of about 11.59. The pH of a sodium cyanide (NaCN) solution is 12.10.

The pH of a 0.1N KCN solution is 11, and both potassium cyanide (KCN) and sodium cyanide (NaCN) are basic chemicals. Most of the cyanide ions (CN-) are changed into HCN when these alkaline salts are neutralised. Cyanide exits as HCN at pH 8,93%; at pH 7,99%, it is HCN (Towill et al.

To know more about sodium cyanide, click here:

https://brainly.com/question/30463329

#SPJ4

Other Questions
Find the standard form of the equation for the circle with the following properties.Endpoints of a diameter are (6,1) and (8,11) which are general concerns when large, multinational conglomerates make the majority of media acquisitions? select all that apply. What were the effects of Italys unification? In routine buying situations, which members of the buying center have formal or informal power to select or approve the final suppliers?A) usersB) influencersC) gatekeepersD) decidersE) buyers is the sequence {an} a solution of the recurrence relation an = 8an1 16an2 if a) an = 0? b) an = 1? c) an = 2n? d) an = 4n? e) an = n4n? f ) an = 2 4n 3n4n? g) an = (4)n? h) an = n24n? AWARDING 90 POINTS!!!QuestionA survey was conducted to see how the teachers at Blue Pacific School District volunteer. Forty-four teachers volunteer at an animal shelter.How many teachers volunteer at a senior center?Enter your answer in the box. An unstable particle of mass M decays into two identical particles each of mass m . Obtain an expression for the velocities of the two decay particles in the lab frame (a) if M is at rest in the lab and (b) if M has total energy 4mc2 when it decays and decay particles move along the direction of M. ( you have use relativistic momentum equation Television was recognized as a mass medium in ___ when 559 stations were broadcasting to almost 90% of all u.s. households. Find the following angles Which statements correctly describe the geography of Mongolia and the surrounding regions?Choose all answers that are correct. A. The Gobi is northeast of Mongolia.B. Mongolia--the homeland of the Mongols--is located in central Asia.C. The modern-day nation of Mongolia is landlocked. The balance sheet of Indian River Electronics Corporation as of December 31, 2015, included 11.5% bonds having a face amount of $91.4 million. The bonds had been issued in 2008 and had a remaining discount of $4.4 million at December 31, 2015. On January 1, 2016, Indian River Electronics called the bonds before their scheduled maturity at the call price of 103.Required:Prepare the journal entry by Indian River Electronics to record the redemption of the bonds at January 1, 2016.(If no entry is required for a transaction/event, select "No journal entry required" in the first account field. Enter your answers in whole dollars.) 0, 3, 8, 15...Generalize the pattern by finding the nth term. Vitamins D, calcium, and __________ are required to appear on nutritional labels.A.ironB.zincC.vitamin KD.phosphorus Firms should select target markets based on:Market attractivenessInstitutional contextsAll of these factorsCompetitive environment Make a list of three tasks using health information systems that would need to be completed by a healthcare manager on a daily basis.How would you prioritize them? In a queueing system, customers arrive once every 4 hours (standard deviation = 7) and services take 3 hours (standard deviation = 4.9).What is the average time a customer will spend in the queue (in hours)? ______ hours Supply Chain Management Under what conditions can same day delivery be offered at low cost? For the following equilibrium, what will occur if the vessel contracts: C(s) H2O(g)CO(g) H2(g)Select the correct answer below: a. shift right b. shift left c. no change d. impossible to predict depict the pic in about 100 words regarding social welfare which class has the lowest median grade ? which class has the highest median grade ? which class has the lowest interquartile range ?