We want to conduct a hypothesis test of the claim that the population mean germination time of strawberry seeds is different from 17.2 days. So, we choose a random sample of strawberries. The sample has a mean of 17 days and a standard deviation of 1.1 days. For each of the following sampling scenarios, choose an appropriate test statistic for our hypothesis test on the population mean. Then calculate that statistic. Round your answers to two decimal places. (a) The sample has size 105, and it is from a non-normally distributed population with a known standard deviation of 1.1. 1 I Z = It is unclear which test statistic to use. (b) The sample has size 17, and it is from a normally distributed population with an unknown standard deviation. 1 t = 0 Z = It is unclear which test statistic to use.

Answers

Answer 1

(a)  For a sample size of 105 with a known standard deviation (1.1), Z = -1.87

(b) For a sample size of 17 with an unknown standard deviation, t = -0.75

For scenario (a), since the population is not normally distributed but the standard deviation is known, we should use a one-sample z-test. The formula for the test statistic is:

Z = (sample mean - hypothesized population mean) / (standard deviation / square root of sample size)

Plugging in the given values, we get:

Z = (17 - 17.2) / (1.1 / sqrt(105)) = -1.64

For scenario (b), since the population is normally distributed but the standard deviation is unknown, we should use a one-sample t-test. The formula for the test statistic is:

t = (sample mean - hypothesized population mean) / (sample standard deviation / square root of sample size)

Plugging in the given values, we get:

t = (17 - 17.2) / (1.1 / sqrt(17)) = -1.46

(a) For a sample size of 105 with a known standard deviation (1.1), you should use the Z-test statistic. To calculate the Z-test statistic, use the formula:

Z = (sample mean - population mean) / (standard deviation / sqrt(sample size))

Z = (17 - 17.2) / (1.1 / sqrt(105))
Z = -0.2 / (1.1 / 10.25)
Z = -0.2 / 0.107
Z = -1.87

Your answer for (a): Z = -1.87

(b) For a sample size of 17 with an unknown standard deviation, you should use the t-test statistic. To calculate the t-test statistic, use the formula:

t = (sample mean - population mean) / (sample standard deviation / sqrt(sample size))

t = (17 - 17.2) / (1.1 / sqrt(17))
t = -0.2 / (1.1 / 4.12)
t = -0.2 / 0.267
t = -0.75

Your answer for (b): t = -0.75

Visit here to learn more about Standard Deviation:

brainly.com/question/24298037

#SPJ11


Related Questions

Calculate 95% confidence limits on m1 – m2 and d for the data in Exercise.ExerciseMuch has been made of the concept of experimenter bias, which refers to the fact that even the most conscientious experimenters tend to collect data that come out in the desired direction (they see what they want to see). Suppose we use students as experimenters. All the experimenters are told that subjects will be given caffeine before the experiment, but one-half of the experimenters are told that we expect caffeine to lead to good performance and one-half are told that we expect it to lead to poor performance. The dependent variable is the number of simple arithmetic problems the subjects can solve in 2 minutes. The data obtained are:Expectation good:19 15 22 13 18 15 20 25 22Expectation poor:14 18 17 12 21 21 24 14What can you conclude?

Answers

The 95% confidence interval for the difference in means is [-0.98, 10.98], which includes 0.

To calculate the 95% confidence limits on the difference between the means (m₁ - m₂) and the difference between the standard deviations (d), we can use the following formulas:

SE(m₁ - m₂) = √[(s₁²/n₁) + (s₂²/n₂)]

where s₁ and s₂ are the sample standard deviations, n₁ and n₂ are the sample sizes, and SE represents the standard error.

95% confidence interval for (m₁ - m₂) = (x₁ - x₂) ± (t(α/2) * SE(m₁ - m₂))

where x₁ and x₂ are the sample means, t(α/2) is the t-value for the appropriate degrees of freedom and alpha level, and SE(m₁ - m₂) is the standard error.

SE(d) = √[((n₁ - 1)s₁² + (n₂ - 1)s₂²)/(n₁ + n₂ - 2)] * √[1/n₁ + 1/n₂]

where s₁ and s₂ are the sample standard deviations, n₁ and n₂ are the sample sizes, and SE represents the standard error.

95% confidence interval for d = (s₁²/s₂²) * [(n₁ + n₂ - 2)/(n₁ - 1)] * F(α/2)

where F(α/2) is the F-value for the appropriate degrees of freedom and alpha level.

Using the given data, we have:

Expectation good: n₁ = 9, x₁ = 18, s₁ = 4.38

Expectation poor: n₂ = 8, x₂ = 17.125, s₂ = 4.373

SE(m₁ - m₂) = √[(s₁²/n₁) + (s₂²/n₂)] = √[(4.38²/9) + (4.373²/8)] = 1.913

Degrees of freedom = n₁ + n₂ - 2 = 15

t(α/2) = t(0.025) = 2.131

95% confidence interval for (m₁ - m₂) = (18 - 17.125) ± (2.131 * 1.913) = (0.546, 1.429)

SE(d) = √[((n₁ - 1)s₁² + (n₂ - 1)s₂²)/(n₁ + n₂ - 2)] * √[1/n₁ + 1/n₂] = √[((8)(4.373²) + (9)(4.38²))/(17)] * √[1/8 + 1/9] = 1.322

Degrees of freedom numerator = n₁ - 1 = 8

Degrees of freedom denominator = n₂ - 1 = 7

F(α/2) = F(0.025) = 4.256

95% confidence interval for d = (4.38²/4.373²) * [(9 + 8 - 2)/(8)] * 4.256 = (0.754, 3.880)

To know more about confidence limits, here

brainly.com/question/29048041

#SPJ4

A sweet seller has 48 Kaju burfies and 72 badam becafio. He
wants to stack them in such a way
that each stack has the
same
number and they take
the least area of the train, What
is the numbers of burfies in each stack.

Answers

In the given problem, we can stack the sweets in six stacks, each with 24 sweets. So, there will be 24 Kaju burfies in each stack.

How to Solve the Problem?

To stack the sweets in the least area, we want to minimize the number of stacks. To do this, we need to find the greatest common divisor (GCD) of 48 and 72, which is 24.

Therefore, we need to stack the sweets in groups of 24.

We have a total of 48 Kaju burfies, so we need to divide them into groups of 24.

48 / 24 = 2

So, we can stack the Kaju burfies in two stacks of 24 each.

We also have 72 badam becafio, which we need to stack in groups of 24.

72 / 24 = 3

So, we can stack the badam becafio in three stacks of 24 each.

Thus, we can stack the sweets in six stacks, each with 24 sweets.

So, there will be 24 Kaju burfies in each stack.

Learn more about greatest common divisor  here: https://brainly.com/question/29399179

#SPJ1

In the given problem, we can stack the sweets in six stacks, each with 24 sweets. So, there will be 24 Kaju burfies in each stack.

How to Solve the Problem?

To stack the sweets in the least area, we want to minimize the number of stacks. To do this, we need to find the greatest common divisor (GCD) of 48 and 72, which is 24.

Therefore, we need to stack the sweets in groups of 24.

We have a total of 48 Kaju burfies, so we need to divide them into groups of 24.

48 / 24 = 2

So, we can stack the Kaju burfies in two stacks of 24 each.

We also have 72 badam becafio, which we need to stack in groups of 24.

72 / 24 = 3

So, we can stack the badam becafio in three stacks of 24 each.

Thus, we can stack the sweets in six stacks, each with 24 sweets.

So, there will be 24 Kaju burfies in each stack.

Learn more about greatest common divisor  here: https://brainly.com/question/29399179

#SPJ1

State the trigonometric substitution you would use to find the indefinite integral. Do not integrate. x^2(x^2 - 64)^3/2 dxx(θ)=

Answers

The trigonometric substitution to find the indefinite integral is x = 8sec(θ).

Explanation:

To find the trigonometric substitution for the given integral, follow these steps:

Step 1: we first notice that the expression inside the square root can be written as a difference of squares:

x^2 - 64 = (x^2 - 8^2)

Step 2: substitute x = 8sec(θ), which leads to the following substitutions:

x^2 = 64sec^2(θ)
x^2 - 64 = 64 tan^2(θ)

And
dx = 8sec(θ)tan(θ) dθ

Step 3: With these substitutions, the given integral can be rewritten as:

∫ x^2(x^2 - 64)^3/2 dx = ∫ (64sec^2(θ))(64tan^2(θ))^3/2 (8sec(θ)tan(θ)) dθ

Step 4: Simplifying this expression, we get:

∫ 2^18sec^3(θ)tan^4(θ) dθ

Therefore, the trigonometric substitution to find the indefinite integral is x = 8sec(θ).

Know more about the indefinite integral click here:

https://brainly.com/question/31326046

#SPJ11

PQ is tangent to the circle at C. Arc AD = 81 and angle D is 88. Find angle DCQ

103
95.5
191
51.5

Answers

The required measure of the angle is m∠DCQ = 51.5° for tangent to the circle. The correct answer is option D.

Firstly, find the measure of arc ABC

As we know that the inscribed angle is half the length of the arc.

So, m∠D=(1/2)[arc ABC]

Here, m∠D=88°

Substitute and solve for arc ABC:

88°=(1/2)[arc ABC]

176° = [arc ABC]

arc ABC=176°

Now, finding the measure of arc DC:

As per the property of the complete circle,

arc ABC + arc AD + arc DC = 360°

Substitute the given values,

176° + 81° + arc DC = 360°

arc DC = 360°- 257°

arc DC = 103°

Now, Find the measure of the angle DCQ:

As we know that the inscribed angle is half the length of the arc.

So, m∠DCQ=(1/2)[arc DC]

Substitute the value of arc DC = 103°,

m∠DCQ=(1/2)[103°] = 51.5°

Thus, the required measure of the angle is m∠DCQ = 51.5°.

Learn more about the tangent to the circle here:

https://brainly.com/question/13080930

#SPJ1

Write a quadratic function for the graph that contains (–4, 0), (–2, –2), and (2, 0).

Answers

Step-by-step explanation:

a quadratic equation has 2 zeros.

luckily we got 2 points with y = 0, so these define the zero points.

a quadratic function is usually looking like

ax² + bx + c = 0

and with the zeros being the factors, we get

y = a(x - z1)(x - z2) = a(x + 4)(x - 2) =

= a(x² - 2x + 4x - 8) = a(x² + 2x - 8)

to get "a" we use the third point.

-2 = a((-2)² + 2×-2 - 8) = a(4 - 4 - 8) = -8a

a = -2/-8 = 1/4

and the equation is

y = (1/4)x² + (1/2)x - 8/4 = (1/4)x² + (1/2)x - 2

Complete the square to re-write the quadratic function in vertex form

Answers

Answer:

y(x)=7x^2+56x+115

y(x)=7(x^2+8x+115/7) ( Factor out )

y(x)=7(x^2+8x+(4)^2-1(4)^2+115/7) ( Complete the square )

y(x)=7((x+4)^2-1(4)^2+115/7) ( Use the binomial formula )

y(x)=7((x+4)^2+3/7) ( simplify )

y(x)=7*(x+4)^2+3 done!

Step-by-step explanation:

hope helps:)

Estimate the least number of terms needed in a Taylor polynomial to guarantee the value of In(1.08)has accuracy of 10-10, 10 b 5 d. 11

Answers

The least number of terms needed in a Taylor polynomial to guarantee the value of ln(1.08) has an accuracy of 10⁻¹⁰ is 30. Option a is correct.

The Taylor series expansion of ln(1+x) is given by:

ln(1+x) = x - x²/2 + x³/3 - x⁴/4 + ...

For ln(1.08), we have x = 0.08. Therefore, the nth term of the series is given by:

(-1)ⁿ⁺¹ * (0.08)ⁿ / n

To guarantee the accuracy of ln(1.08) to 10⁻¹⁰, we need to ensure that the absolute value of the remainder term (i.e., the difference between the actual value and the value obtained using the Taylor polynomial approximation) is less than 10⁻¹⁰.

The remainder term can be bounded by the absolute value of the (n+1)th term of the series, which is:

(0.08)ⁿ⁺¹ / (n+1)

Therefore, we need to find the smallest value of n such that:

(0.08)ⁿ⁺¹ / (n+1) < 10⁻¹⁰

Solving this inequality numerically, we get n > 29.82. Therefore, we need at least 30 terms in the Taylor polynomial to guarantee the accuracy of ln(1.08) to 10⁻¹⁰. Hence Option a is correct.

To learn more about Taylor polynomial, here

https://brainly.com/question/31419648

#SPJ4

The complete question is:

Estimate the least number of terms needed in a Taylor polynomial to guarantee the value of In(1.08)has accuracy of 10⁻¹⁰.

a. 30b. 5c. 20d. 11

1. The One Way Repeated Measures ANOVA is used when you have a quantitative DV and an IV with three or more levels that is within subjects in nature.
A. True
B. False

Answers

ANOVA is used when you have quantitative DV and IV with 3 or more levels, which means the correct answer is option A. True.


The One Way Repeated Measures ANOVA is a statistical test used to analyze the effects of an independent variable (IV) that has three or more levels on a dependent variable (DV) that is measured repeatedly on the same subjects over time. This test is appropriate when the IV is within-subjects in nature, meaning that each participant is exposed to all levels of the IV. Therefore, the statement is true as it accurately describes the use of this statistical test in relation to the IV and DV.
A. True

The One-Way Repeated Measures ANOVA is indeed used when you have a quantitative Dependent Variable (DV) and an Independent Variable (IV) with three or more levels that is within subjects in nature. In this case, the same subjects are exposed to different conditions or levels of the IV, allowing for the analysis of differences in the DV across those conditions.

Learn more about ANOVA here:

https://brainly.com/question/23638404

#SPJ11

Which of the following illustrates the product rule for logarithmic equations?
log₂ (4x)= log₂4+log₂x
O log₂ (4x)= log₂4.log2x
log₂ (4x)= log₂4-log₂x
O log₂ (4x)= log₂4+ log₂x

Answers

Answer:

log₂ (4x)= log₂4 + log₂x

Step-by-step explanation:

log₂ (4x)= log₂4 + log₂x illustrates the product rule for logarithmic equations.

The product rule states that logb (mn) = logb m + logb n. In this case, b is 2, m is 4, and n is x. So,

log₂ (4x) = log₂ 4 + log₂ x.

Option A is correct, the product rule  for logarithmic equations is log₂ (4x) = log₂ 4 + log₂ x

What is Equation?

Two or more expressions with an Equal sign is called as Equation.

The logarithm is the inverse function to exponentiation.

The product rule for logarithmic equations states that the logarithm of a product of two numbers is equal to the sum of the logarithms of the individual numbers.

logab=loga + logb

log₂ (4x) = log₂ 4 + log₂ x

Therefore, the correct illustration of the product rule  for logarithmic equations is log₂ (4x) = log₂ 4 + log₂ x

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ5

Consider the function f(x)=x^2+3. is the average rate of change increasing or decreasing from x=0 to x=4?Explain

Answers

The average rate of change is increasing over this interval.

Calculating the average rate of change

To find the average rate of change of the function f(x) = x^2 + 3 from x = 0 to x = 4, we can use the formula:

average rate of change = [f(4) - f(0)] / [4 - 0]

Substituting the values of x = 0 and x = 4 into the function f(x), we get:

f(0) = 0^2 + 3 = 3

f(4) = 4^2 + 3 = 19

So, the average rate of change of the function from x = 0 to x = 4 is:

average rate of change = [f(4) - f(0)] / [4 - 0] = (19 - 3) / 4 = 4

This means that the function increases at an average rate of 4 units per unit change in x from x = 0 to x = 4.

Since the average rate of change is a constant value, the function f(x) = x^2 + 3 has a constant rate of increase from x = 0 to x = 4.

Read more about average rate of change at

https://brainly.com/question/17131025

#SPJ1

Is (-10,10) a solution for the inequality y≤x+7

Answers

Answer: no

Step-by-step explanation: if we'd substitute the numbers, it'd look like this 10≤-10+7  which isn't true  as "≤" this symbol means more than or equals to but -10 plus 7 is equal to 3 so it doesn't fit the inequality

consider the following geometric series. [infinity] (−3)n − 1 7n n = 1 Find the common ratio. |r| = Determine whether the geometric series is convergent or divergent. convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

Answers

The common ratio, |r|, is 3/7, and the geometric series is convergent with a sum of 49/4.

The given geometric series is Σ(−3)ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity. To find the common ratio, |r|, let's simplify the series.



1. Rewrite the series: Σ(−3ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity.
2. Combine the terms with the same base: Σ(−3/7)ⁿ⁻¹ * 7ⁿ⁻¹, for n = 1 to infinity.
3. Now, the common ratio, |r| = |-3/7| = 3/7.

Since |r| < 1, the geometric series is convergent.

To find the sum of the convergent series, use the formula for the sum of an infinite geometric series:

S = a / (1 - r), where 'a' is the first term and 'r' is the common ratio.

4. Find the first term (n=1): a = (−3)¹⁻¹ * 7^1 = 1 * 7 = 7.
5. Use the formula: S = 7 / (1 - (3/7)) = 7 / (4/7) = 7 * (7/4) = 49/4.

To know more about convergent series click on below link:

https://brainly.com/question/15415793#

#SPJ11

Complete question:

consider the following geometric series. [infinity] Σ(−3)ⁿ⁻¹ * 7ⁿ = 1 Find the common ratio. |r| = Determine whether the geometric series is convergent or divergent. convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

The common ratio, |r|, is 3/7, and the geometric series is convergent with a sum of 49/4.

The given geometric series is Σ(−3)ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity. To find the common ratio, |r|, let's simplify the series.



1. Rewrite the series: Σ(−3ⁿ⁻¹ * 7ⁿ, for n = 1 to infinity.
2. Combine the terms with the same base: Σ(−3/7)ⁿ⁻¹ * 7ⁿ⁻¹, for n = 1 to infinity.
3. Now, the common ratio, |r| = |-3/7| = 3/7.

Since |r| < 1, the geometric series is convergent.

To find the sum of the convergent series, use the formula for the sum of an infinite geometric series:

S = a / (1 - r), where 'a' is the first term and 'r' is the common ratio.

4. Find the first term (n=1): a = (−3)¹⁻¹ * 7^1 = 1 * 7 = 7.
5. Use the formula: S = 7 / (1 - (3/7)) = 7 / (4/7) = 7 * (7/4) = 49/4.

To know more about convergent series click on below link:

https://brainly.com/question/15415793#

#SPJ11

Complete question:

consider the following geometric series. [infinity] Σ(−3)ⁿ⁻¹ * 7ⁿ = 1 Find the common ratio. |r| = Determine whether the geometric series is convergent or divergent. convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

[tex]f(x) = 2x^{3} - 5x^{2} - 14x + 8[/tex] synthetic division

possible zeros:
Zeros:
Linear Factors:

Answers

The value of the function is dy/dx = f(x) = 6x²-10x-14

What is differentiation?

Differentiation is an element of personalized learning which involves changing the instructional approach to meet the diverse needs of students. It can involve designing and delivering instruction using an assortment of teaching styles and giving students options for taking in information and making sense of ideas.

the given function f(x) 2x³ -5x² -14x + 8

F(x) =dy/dx = 2*3(x)³⁻¹ -5*2(x²⁻¹) -14(x¹⁻¹)

Therefore the derivative of the function is f(x) = 6x²-10x-14

Learn more about derivative of a function  on https://brainly.com/question/25752367

#SPJ1

Consider using a z test to test
H0: p = 0.4.
Determine the P-value in each of the following situations. (Round your answers to four decimal places.)
a) Ha : p > 0.4, z= 1.49

Answers

The P-value for a one-tailed z-test with Ha: p > 0.4 and z = 1.49 is 0.0675, indicating insufficient evidence to reject the null hypothesis at the 0.05 level of significance.

How to find P-value for any situation?

To find the P-value for a z-test with Ha: p > 0.4 and z = 1.49, we first calculate the corresponding area under the standard normal distribution curve.

Using a standard normal table or a calculator, we find that the area to the right of z = 1.49 is 0.0675.

Since the alternative hypothesis is one-tailed, the P-value is equal to the area in the tail to the right of z = 1.49.

Therefore, the P-value for this test is 0.0675 or 6.75% (rounded to four decimal places).

This means that if the null hypothesis is true, there is a 6.75% chance of observing a sample proportion as extreme as or more extreme than the one we obtained.

Since the P-value (6.75%) is greater than the significance level (α), we fail to reject the null hypothesis at the α = 0.05 level of significance. We do not have sufficient

Learn more about P-value

brainly.com/question/30461126

#SPJ11

Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) an = ln(3n2 + 4) − ln(n2 + 4) lim n→[infinity] an = ?

Answers

The sequence converges to: lim n→[infinity] an = ln(3) = 1.0986. So the sequence converges to 1.0986.

To determine whether the sequence converges or diverges and find the limit, we'll use the properties of logarithms and the concept of limits at infinity.

Given sequence: a_n = ln(3n² + 4) - ln(n² + 4)

Using the logarithm property, ln(a) - ln(b) = ln(a/b), we can rewrite the sequence as:

a_n = ln[(3n² + 4)/(n² + 4)]

Now, we'll find the limit as n approaches infinity:

lim (n→∞) a_n = lim (n→∞) ln[(3n² + 4)/(n² + 4)]

To evaluate this limit, we can divide both the numerator and the denominator by the highest power of n, which is n^2 in this case:

lim (n→∞) ln[(3 + 4/n²)/(1 + 4/n²)]

As n approaches infinity, the terms with n² in the denominator will approach 0:

lim (n→∞) ln[(3 + 0)/(1 + 0)] = ln(3)

So, the sequence converges, and the limit is ln(3).

Learn more about convergence here: brainly.com/question/15415793

#SPJ11

Men Women
μ μ1 μ2
n 11 59
x 97.72 97.34
s 0.83 0.63
A study was done on the body temperatures of men and women. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed? populations, and do not assume that the population standard deviations are equal. Complete parts? (a) and? (b) below.
Use a 0.05 significance level to test the claim that men have a higher mean body temperature than women.
a. What are the null and alternative hypotheses?
The test​ statistic, t, is
The​ P-value is
State the conclusion for the test.
b. Construct a confidence interval suitable for testing the claim that the two samples are from populations with the same mean.

Answers

The null hypothesis (H0) states that there is no significant difference in the mean body temperature between men and women. The alternative hypothesis (H1) states that men have a higher mean body temperature than women.

Step 1: Null and Alternative Hypotheses

The null hypothesis (H0): μ1 ≤ μ2 (There is no significant difference in the mean body temperature between men and women)

The alternative hypothesis (H1): μ1 > μ2 (Men have a higher mean body temperature than women)

Step 2: Test Statistic

The test statistic for comparing the means of two independent samples with unequal variances is the t-statistic. The formula for calculating the t-statistic is:

t = (x1 - x2) / √(s1² / n1 + s2² / n2)

where x1 and x2 are the sample means, s1 and s2 are the sample standard deviations, and n1 and n2 are the sample sizes.

Step 3: P-Value

Using the given data:

x1 = 97.72, x2 = 97.34, s1 = 0.83, s2 = 0.63, n1 = 11, n2 = 59

Plugging these values into the t-statistic formula, we get:

t = (97.72 - 97.34) / √(0.83² / 11 + 0.63² / 59)

t = 0.38 / √(0.062 + 0.0066)

t = 0.38 / √(0.0686)

Step 4: Conclusion

At a significance level of 0.05, we compare the calculated t-statistic to the critical value from the t-distribution with (n1 + n2 - 2) degrees of freedom. If the calculated t-statistic is greater than the critical value, we reject the null hypothesis in favor of the alternative hypothesis. Otherwise, we fail to reject the null hypothesis.

Step 5: Confidence Interval

A confidence interval can be constructed to estimate the difference between the two population means. Using the given data and assuming a 95% confidence level, the confidence interval can be calculated using the formula:

CI = (x1 - x2) ± tα/2 × √(s1² / n1 + s2² / n²)

where CI is the confidence interval, tα/2 is the critical value from the t-distribution corresponding to a 95% confidence level, and all other variables are as defined above.

Therefore, the are:

The null hypothesis states that there is no significant difference in the mean body temperature between men and women, while the alternative hypothesis states that men have a higher mean body temperature than women.

To learn more about null hypothesis here:

brainly.com/question/17151545#

#SPJ11

3. The perimeter of a circular sector with an angle 1.8
rad is 64cm. Determine the radius of the Circle. Round to
the nearst hundredth.

Answers

The radius of the circle is 17.78 cm.

The formula for calculating the perimeter of a circular sector with angle θ is given by

P = 2rθ

r = P / (2θ)

Substituting in the given values, we have:

r = 64 / (2 x 1.8)

r = 17.78

Therefore, the radius of the circle is 17.78 cm.

To learn more about the circumference visit:

https://brainly.com/question/4268218.

#SPJ1

identify the line of discontinuity:f(x,y)=ln|x y|

Answers

The line of discontinuity is x = 0 or y = 0.

We have,

To identify the line of discontinuity in the function f(x, y) = ln|x y|, we need to determine the values of x and y for which the function becomes undefined or exhibits a discontinuity.

In this case, the natural logarithm function, ln, is undefined for non-positive values.

Therefore, we need to find the values of x and y that make the expression |x y| non-positive.

The absolute value of a real number is non-positive when the number itself is zero or negative.

So, we set the expression inside the absolute value, x y, to be zero or negative:

x y ≤ 0

This inequality indicates that either x ≤ 0 and y ≥ 0, or x ≥ 0 and y ≤ 0, for the expression to be non-positive.

Hence, the line of discontinuity occurs along the line where either x ≤ 0 and y ≥ 0, or x ≥ 0 and y ≤ 0.

The equation of this line can be written as:

x ≤ 0, y ≥ 0 or x ≥ 0, y ≤ 0

This line divides the plane into two regions:

one where x ≤ 0 and y ≥ 0, and the other where x ≥ 0 and y ≤ 0.

Along this line, the function f(x, y) = ln|x y| becomes undefined or discontinuous.

Note that when x = 0 or y = 0, the function f(x, y) = ln|x y| is also undefined, but these points do not form a continuous line.

Thus,

The line of discontinuity is x = 0 or y = 0.

Learn more about functions here:

https://brainly.com/question/28533782

#SPJ12

Percent Unit Review Worksheet

A store buys water bottles from the manufacturer for
and marks them up by
75% How much do they charge for the water bottles (what is the retail price)?

Answers

How much do they buy them for?

A $52 item Ms marked up 10% and then marked down 10%. What is the final price?


Help pls

Answers

the final price will stay as $52

Please Help! ∆ ABC is an isosceles right triangle. 1. A = ___ . 2. B = ____ . 3. If AC = 3, then BC = __ and AB =__. 4. If AC = 4, then BC = __ and AB = ___. 5. If BC = 9, then AB = ____. 6. If AB = 7V2, then BC =___ .
7. If AB = 2√2, then AC = _____.​

Answers

The missing sides and angles of the triangle are

1. . A = 45 degrees.

2. B = 45 degrees.

3. BC = 3 and AB = 3 sqrt (2).

4. BC = 4 and AB = 4 sqrt (2).

5. BC = 9, then AB = 9 sqrt (2).

6. AB = 7V2, then BC = 7 .

7. If AB = 2√2, then AC = 2.​

What is isosceles right triangle?

An Isosceles Right Triangle is an angular design in the shape of a right triangle comprising two equal sides - forming congruent legs, and additionally, the third side (also known as the hypotenuse = c) being longer in length.

In this particular angle, the two legs are congruent to each other as well as proportional to the square root of two times one leg's length.

Mathematically, using Pythagoras' theorem

c^2 = a^2 + a^2

c^2 = 2a^2

Eventually, by taking the square root of both expressions, we obtain:

c = sqrt (2a^2)

c = a * sqrt (2)

Learn more about isosceles right triangle at

https://brainly.com/question/29793403

#SPJ1

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.If f(x)≤g(x) and ∫[infinity]0g(x) dx diverges, then ∫[infinity]0f(x) dx also diverges.

Answers

The statement "If f(x)≤g(x) and [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] diverges, then [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex]

also diverges" is true.

If f(x)≤g(x) for all x and [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] diverges, then we can conclude that

[tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] also diverges.

To see why, consider the integral [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex]. Since f(x) ≤ g(x) for all x,

we have:

[tex]\int\limits^{infinity}_0 {f(x)} \, dx[/tex] ≤ [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex]

If [tex]\int\limits^{infinity}_0 {g(x)} \, dx[/tex] diverges, then the integral on the right-hand side is

infinite. Since [tex]\int\limits^{infinity}_0 {f(x)} \, dx[/tex] is less than or equal to an infinite integral, it

must also be infinite. Therefore, [tex]\int\limits^{infinity}_0 {f(x)} \, dx[/tex] also diverges.

This can be intuitively understood by considering the fact that if g(x) is bigger than f(x), then the integral of g(x) over the same interval will also be bigger than the integral of f(x). Since the integral of g(x) is infinite, the integral of f(x) must also be infinite or else it would be possible to have an integral of g(x) that is infinite while the integral of f(x) is finite, which contradicts the given condition that f(x)≤g(x) for all x.

Therefore, the statement is true.

Learn more about integral at: https://brainly.com/question/30094386

#SPJ11

Given lines l,m,and n are parallel and cut by two transversal lines, find the value of x. Round your answer to the nearest tenth if necessary.

Answers

The requried value of x between lines m and n is 59.5.

What are the ratio and proportion of intersecting lines?

When two lines intersect at a point, they form four angles around the intersection point. The pairs of opposite angles and sides are similar, meaning they have the proportionate measure.

As shown in the figure,
lines l,m, and n are parallel and cut by two transversal lines,
following the property of proportion of transversal line on a parallel line,
12/51 = 14/x

Simplifying the above expression,
x = 51 * [14/12]
x = 59.5

Thus, the requried value of x between lines m and n is 59.5.

Learn more about intersecting lines here:

https://brainly.com/question/11297403

#SPJ1

1/9 ÷ 7

I need help with this

Answers

Answer: 1/63

Step-by-step explanation:

1/9 ÷ 7 can be rewritten as 1/9 x 1/7

= 1/63

Answer:

To divide a fraction by a whole number, we can flip the whole number upside down and multiply. So, 1/9 ÷ 7 is the same as 1/9 * (1/7).

To multiply fractions, we multiply the numerators and the denominators. So, 1/9 * (1/7) = (1 * 1) / (9 * 7) = 1/63.

Therefore, 1/9 ÷ 7 = 1/63.

Step-by-step explanation:

Two joggers run 6 miles south and then 5 miles east. What is the shortestdistance they must travel to return to their starting point?

Answers

Answer:

7.81 miles

Step-by-step explanation:

pythagorean theorem, 6 units downwards, and 5 east, so we have to calculate the hypotenuse, or sqrt( 6^2 + 5^2) which is sqrt61 or 7.81 miles

If f(2)=25 and f' (2) = -2.5, then f(2.5) is approximately: A. 2 B. 2.5 C. - 2.5 D. 1.25 E. -2

Answers

If the function f(2)=25 and f' (2) = -2.5, then f(2.5) is approximately 23.75

The first-order Taylor's approximation formula, also known as the linear approximation formula, is a mathematical formula that provides an approximate value of a differentiable function f(x) near a point a. The formula is given as

f(x) ≈ f(a) + f'(a)(x - a)

where f'(a) is the derivative of f(x) at the point a. This formula is based on the tangent line to the graph of f(x) at the point (a, f(a)). The approximation becomes more accurate as x gets closer to a.

We can use the first-order Taylor's approximation formula to estimate the value of f(2.5) based on the information given

f(x) ≈ f(a) + f'(a)(x - a)

where a = 2 and x = 2.5. Plugging in the values, we get

f(2.5) ≈ f(2) + f'(2)(2.5 - 2)

f(2.5) ≈ 25 + (-2.5)(0.5)

f(2.5) ≈ 23.75

Learn more about first-order Taylor's approximation formula here

brainly.com/question/14787721

#SPJ4

What are the leading coefficient and degree of the polynomial?
-10v-18+v²-23v²
Leading coefficient:
Degree:

Answers

Answer:

Leading coefficient: -22

Degree: 2

Step-by-step explanation:

The given polynomial is:

-10v-18+v²-23v²

solving like terms, we get

-22v² - 10v - 18

The leading coefficient is the coefficient of the term with the highest degree. In this case, the term with the highest degree is -22v² and its coefficient is -22. Therefore, the leading coefficient is -22.

The degree of a polynomial is the highest power of the variable in the polynomial. In this case, the highest power of v is 2, which is the degree of the polynomial. Therefore, the degree of the polynomial is 2.

help finding coordinates

Answers

The coordinates of N by the 270 degree rotation clockwise rule is (-7, 3)

Finding the coordinates of N

From the question, we have the following parameters that can be used in our computation:

N = (-3, 7)

The transfomation rule is given as

270 degree rotation rule clockwise

Mathematically, this is represented as

(x, y) = (-y, x)

Substitute the known values in the above equation, so, we have the following representation

N' = (-7, 3)

Hence, the coordinates of N after the rotation is (-7, 3)

Read more about transformation at

https://brainly.com/question/27224272

#SPJ1

Consider a partial output from a cost minimization problem that has been solved to optimality. Final Shadow Constraint Allowable Allowable Name Value Price R.H. Side Increase Decrease Labor Time 700 700 100 200 The Labor Time constraint is a resource availability constraint. What will happen to the dual value (shadow price) if the right-hand-side for this constraint decreases to 400? A. It will remain at -6. B. It will become a less negative number, such as -4. C. It will become zero. D. It will become a more negative number, such as -8. E. It will become zero or less negative.

Answers

B. If the right-hand-side for the Labor Time constraint decreases to 400, the dual value (shadow price) will become a less negative number, such as -4.

This is because a decrease in the available resource (Labor Time) will generally cause the shadow price to move toward a less negative value, reflecting the increased scarcity of that resource in the cost minimization problem. The correct answer is D. If the right-hand-side for the Labor Time constraint decreases to 400, it means that there is less availability of labor time, which will increase the cost of the problem. As a result, the dual value (shadow price) will become more negative, such as -8, indicating that an additional unit of labor time constraint would now cost more to relax. The allowable increase in the Labor Time constraint will decrease, while the allowable decrease will increase.

Learn more about programming and optimization here: brainly.com/question/23798761

#SPJ11

Many situations in business require the use of an "average" function. One example might be the determination of a function that models the average cost of producing an item. In this activity, you will build and use an "average" function. When the iPhone was brand new, one could buy a 8-gigabyte model for roughly $600. There was an additional $70-per month service fee to actually use the iPhone as intended. We will assume for this activity that the monthly service fee does not change. A. Determine the total cost of owning an iPhone after: i. 2 months ii. 4 months iii. 6 months iv. 8 months

Answers

The average cost per month of owning an iPhone decreases as the number of months of ownership increases. After 8 months, the average cost per month is $145.

Assuming a constant monthly service fee of $70, the total cost (C) of owning an iPhone for n months can be calculated as:

C = 600 + 70n

where n is the number of months of ownership.

Using this formula, we can calculate the total cost of owning an iPhone after:

i. 2 months:

C = 600 + 70(2) = 740

ii. 4 months:

C = 600 + 70(4) = 880

iii. 6 months:

C = 600 + 70(6) = 1020

iv. 8 months:

C = 600 + 70(8) = 1160

To find the average cost per month, we can divide the total cost by the number of months:

i. Average cost per month after 2 months: 740 / 2 = 370

ii. Average cost per month after 4 months: 880 / 4 = 220

iii. Average cost per month after 6 months: 1020 / 6 = 170

iv. Average cost per month after 8 months: 1160 / 8 = 145

Therefore, the average cost per month of owning an iPhone decreases as the number of months of ownership increases. After 8 months, the average cost per month is $145.

Learn more about “ average cost “ visit here;

https://brainly.com/question/31116213

#SPJ4

Other Questions
which statement is true about DNA You notice that Excel is running slowly while you are working with data models. What does this tell you?Select an answer:You should end the session, and then return to your work.You should close other workbooks and applications.You are not saving your work frequently enough.You have not set up a backup version of your files.You remove a conditional column in Query Editor from your data set. However, now you see that the Close and Load To button is grayed out. Why is this?Select an answer:The query was already loaded to the data model, as you wanted, and not to a worksheet.You have to select Save before you can use Close and Load To for your change.The query was already loaded to a worksheet, which is where you set it up to load.Query Editor is not the right place to make the change that you made. Which of these best describe the space between the team and its external forces, stakeholders, and pressures? O Ground rules O Structiral interventions O Paradox O Team's boundries O Mining Joann's grandparents set up an investment account for her when she was born. They put $3000 in it when she was born and then add $300 to it twice a year. The money is invested in mostly bonds and earns an average of 4% each year. Her interest compounds semiannually. How much will she have when she turns 18? or this project, you will put yourself in the role of director for an early childhood center. Your goal is to create a child guidance policy for your center that meets the needs of the population enrolled. The child guidance policy must include in detail explanations with examples for the following:(SLO1,2,3)Guidance vs discipline or punishment approaches. You might approach this as if a parent does not understand why you have chosen a guidance policy rather than a behavior management plan. How the plan is Developmentally appropriate (DAP) for ALL ages enrolled at the center (birth school age) Relationship-based approaches with children and families Strengths-based approaches with children and families Reflective practice Childrens behaviors the relevance of motivation self-regulation temperament Inclusion Cultural awareness/sensitivity for the population at your center for example strategies for English Language learners Assessment and evaluation defining the German nation in eugenics laws Births in a hospital occur randomly at an average rate of 1.8 births per hour and follow the Poisson distribution What is the probability of observing no birth in a given hour at the hospital? Please round your answer to 3 decimal places. A random sample of 500 connecting rod pins con- tains 65 nonconforming units. Estimate the process fraction nonconforming. a.Test the hypothesis that the true fraction defective in this process is 0.08. Use = 0.05 b.Find the P-value for this test. c.Construct a 95% upper confidence interval on the true process fraction nonconforming. A student found the solution below for the given inequality. |x-9|4 and x-9 and x>13 and x Smaller companies that have relatively few employees tend to be organized in the same way as large corporations. True or False the outer edge of a rotating frisbee with a diameter of 28 cm has a linear speed of 3.8 m/s. what is the angular speed of the frisbee? when 0.764 mol of a weak acid, hx, is dissolved in 2.00 l of aqueous solution, the ph of the resultant solution is 2.56. calculate ka for hx. you strike two tuning forks of frequencies 430 hz and 436 hz at the same time. What average frequency will you hear, and what will the beat frequency be? During the Progressive Era, nongovernmental organizations such as the NAACP and the ADL worked to gain rights and end discrimination for minority groups. Explain how you think these groups worked to correct injustices in American life. indicates how it personal view cyber security how they maintain implement and audit ongoing basis 1. direct materials purchases totaled $586,000. coronado corp tracks its direct materials separately from its indirect materials. purchases were made on account. When an activity has two precedent activities, its early start time is equal to:a)The later of the two precedent activities "Early Start" timesb)The activitys start time minus its durationc)The earlier of the two precedent activities "Early Finish" timesd)The later of the two precedent activities "Early Finish" times Which of the following is true of respiratory pigments?(A) They are designed specifically to carry carbon dioxide, but can carry some oxygen.(B) They are designed specifically to carry only carbon dioxide and no oxygen.(C) They are designed specifically to carry oxygen, but can carry some carbon dioxide.(D) They are designed specifically to carry only oxygen and no carbon dioxide.(E) They are designed to carry oxygen and carbon dioxide equally well. as their concentration in the sarcoplasm increases, calcium ions bind to ____________, changing its shape and liberating tropomyosin from actin binding sites. HELPPPPPPPHow many solutions does this equation have Y=-2x+22y+4x=4