what increments of time are used to break up the timeline? (hint: look at the x-axis [horizontal])

Answers

Answer 1

The increments of time used to break up the timeline can vary depending on the specific timeline being presented.

The increments of time used to break up the timeline can vary depending on the context and purpose.

However, common time increments include years, months, weeks, or days, which are displayed on the x-axis (horizontal) to divide the timeline into easily understandable segments.

For example, in a historical timeline, the increments might be years, decades, or centuries. In a project timeline, the increments might be weeks or months.

The x-axis (horizontal) is typically where these increments are marked and can help to visualize the timeline more clearly.

Ultimately, the increments chosen should be appropriate for the task at hand and allow for effective planning and tracking of progress.

Visit here to learn more about Line Segments:

brainly.com/question/280216

#SPJ11


Related Questions

An item is regularly priced at $55 . It is on sale for $40 off the regular price. What is the sale price?

Answers

Answer:22

Step-by-step explanation:

First you put

40/100

and that makes

11/22

In Problems 9–26, find a particular solution to the differential equation. 9. y" + 3y = -9 10. y" + 2y' - y = 10 11. y"(x) + y(x) = 2 12. 2x' + x = 312

Answers

For Problem 9, the characteristic equation is r² + 3 = 0, which has roots r = +/- i*sqrt(3).

Since this is a nonhomogeneous equation with a constant on the right-hand side, we guess a particular solution of the form y_p = A, where A is a constant. Plugging this into the differential equation, we get A = -3, so our particular solution is y_p = -3.

For Problem 10, the characteristic equation is r² + 2r - 1 = 0, which has roots r = (-2 +/- sqrt(8))/2 = -1 +/- sqrt(2).

Again, this is a nonhomogeneous equation with a constant on the right-hand side, so we guess a particular solution of the form y_p = B, where B is a constant. Plugging this into the differential equation, we get B = 10/3, so our particular solution is y_p = 10/3.

For Problem 11, the characteristic equation is r^2 + 1 = 0, which has roots r = +/- i.

This is a nonhomogeneous equation with a constant on the right-hand side, so we guess a particular solution of the form y_p = C, where C is a constant. Plugging this into the differential equation, we get C = 2, so our particular solution is y_p = 2.

For Problem 12, this is a first-order differential equation, so we can use the method of integrating factors.

The integrating factor is e^int(1/2, dx) = e^(x^2/4), so we multiply both sides of the equation by e^(x^2/4) to get (e^(x^2/4) x)' = 312 e^(x^2/4). Integrating both sides with respect to x, we get e^(x^2/4) x = 312/2 int(e^(x^2/4), dx) = 156 e^(x^2/4) + C, where C is a constant of integration. Solving for x, we get x = 156 e^(-x^2/4) + Ce^(-x^2/4). This is our particular solution.

To know more about differential equation click on below link :

https://brainly.com/question/31385688

#SPJ11

find the derivative of the function. f(x) = (9x6 8x3)4

Answers

The derivative of the function f(x) = (9[tex]x^{6}[/tex] + 8x³)³ is f'(x) = 4(9[tex]x^{6}[/tex] + 8x³)³(54x³ + 24x²).

To find the derivative of the function f(x) = (9x² + 8x³)³, you need to apply the Chain Rule. The Chain Rule states that the derivative of a composite function is the derivative of the outer function times the derivative of the inner function. In this case, let u = 9x + 8x.

First, find the derivative of the outer function with respect to u: d( u³ )/du = 4u³.
Next, find the derivative of the inner function with respect to x: d(9x² + 8x³)/dx = 54x³ + 24x².

Know more about derivative of the function here:

https://brainly.com/question/25752367

#SPJ11

how to find AX? help for III) and II) too​

Answers

The length of line AX is 3p/4q.

The length of side AY is  9p²/4q + 3p/4.

What is the length of AX?

The length of line AX is calculated as follows;

From the given figure, we can apply the principle of congruent sides of the parallellogram.

AD/DC = CX/AX

8q/6p = 1/AX

AX = 6p/8q

AX = 3p/4q

The length of side AY is calculated by applying the following formula as shown below.

Apply similar principle of congruent sides;

AX/CX = AY/CY

3p/4q / 1 = AY/(3p + q)

AY = 3p/4q(3p + q)

AY = 9p²/4q + 3p/4

Learn more about side lengths of parallelogram here: https://brainly.com/question/14386432

#SPJ1

Sam is competing in a diving event at a swim meet. When it's his turn, he jumps upward off
the diving board at a height of 10 meters above the water with a velocity of 4 meters per
second.
Which equation can you use to find how many seconds Sam is in the air before entering the
water?
If an object travels upward at a velocity of v meters per second from s meters above the
ground, the object's height in meters, h, after t seconds can be modeled by the formula
h = -4.9t² vt + s.
0 -4.9t² + 4t + 10
10 = -4.9t² + 4t
To the nearest tenth of a second, how long is Sam in the air before entering the water?

Answers

The time is 4.6 seconds when Sam enters the water again

How to solve the equation

So, we have the equation:

0 = -4.9t² + 4t + 10

Now, we can solve this quadratic equation for t using the quadratic formula:

t = (-b ± √(b² - 4ac)) / 2a

In our equation, a = -4.9, b = 4, and c = 10.

t = (-4 ± √(4² - 4(-4.9)(10))) / 2(-4.9)

t = (-4 ± √(16 + 196)) / (-9.8)

t = (-4 ± √212) / (-9.8)

The two possible values for t are:

t ≈ 0.444 (when Sam is at the surface of the water, just after jumping)

t ≈ 4.597 (when Sam enters the water again)

Read more on quadratic equation here:https://brainly.com/question/1214333

#SPJ1

Answer: The time is 4.6 seconds when Sam enters the water again

How to solve the equation

So, we have the equation:

0 = -4.9t² + 4t + 10

Now, we can solve this quadratic equation for t using the quadratic  formula:

t = (-b ± √(b² - 4ac)) / 2a

In our equation, a = -4.9, b = 4, and c = 10.

t = (-4 ± √(4² - 4(-4.9)(10))) / 2(-4.9)t = (-4 ± √(16 + 196)) / (-9.8)t = (-4 ± √212) / (-9.8)

The two possible values for t are:

t ≈ 0.444 (when Sam is at the surface of the water, just after jumping)

t ≈ 4.597 (when Sam enters the water again)


Read more on quadratic equation here:

brainly.com/question/1214333#SPJ1

HELP ITS DUE IN 3MIN :(
Bisecting Bakery sells cylindrical round cakes. The most popular cake at the bakery is the red velvet cake. It has a radius of 15 centimeters and a height of 12 centimeters.

If everything but the circular bottom of the cake was iced, how many square centimeters of icing is needed for one cake? Use 3.14 for π and round to the nearest square centimeter.

810 cm2
585 cm2
2,543 cm2
1,837 cm2

Answers

Answer:

1,837

Step-by-step explanation:

Bus stops A, B, C, and D are on a straight road. The distance from A to D is exactly 1 km. The distance from B to C is 2 km. The distance from B to D is 3 km, the distance from A to B is 4 km, and the distance from C to D is 5 km. What is the distance between stops A and C?

Answers

Okay, let's think this through step-by-step:

* A to D is 1 km

* B to C is 2 km

* B to D is 3 km

* A to B is 4 km

* C to D is 5 km

So we have:

A -> B = 4 km

B -> C = 2 km

C -> D = 5 km

We want to find A -> C.

A -> B is 4 km

B -> C is 2 km

So A -> C = 4 + 2 = 6 km

Therefore, the distance between stops A and C is 6 km.

HURRY UP Please answer this question

Answers

Answer:

[tex] {6}^{2} + {b}^{2} = {10}^{2} [/tex]

[tex]36 + {b}^{2} = 100[/tex]

[tex] {b}^{2} = 64[/tex]

[tex]b = 8[/tex]

Solve for missing angle. round to the nearest degree

Answers

Answer:

Set your calculator to degree mode.

[tex] { \sin }^{ - 1} \frac{18}{20} = 64 [/tex]

So theta measures approximately 64 degrees.

find y' and y'' for x2 4xy − 3y2 = 8.

Answers

The derivatives are:

[tex]y' = (2x + 4y) / (4x - 6y)[/tex]

[tex]y'' = [(4x - 6y)(2 + 4((2x + 4y) / (4x - 6y))) - (2x + 4y)(4 - 6((2x + 4y) / (4x - 6y)))] / (4x - 6y)^2[/tex]

To find y' and y'' for the given equation x^2 + 4xy - 3y^2 = 8, follow these steps:

Step 1: Differentiate both sides of the equation with respect to x.
For the left side, use the product rule for 4xy and the chain rule for -3y^2.
[tex]d(x^2)/dx + d(4xy)/dx - d(3y^2)/dx = d(8)/dx[/tex]

Step 2: Calculate the derivatives.
[tex]2x + 4(dy/dx * x + y) - 6y(dy/dx) = 0[/tex]

Step 3: Solve for y'.
Rearrange the equation to isolate dy/dx (y'):
[tex]y' = (2x + 4y) / (4x - 6y)[/tex]

Step 4: Differentiate y' with respect to x to find y''.
Use the quotient rule: [tex](v * du/dx - u * dv/dx) / v^2[/tex],

where u = (2x + 4y) and v = (4x - 6y).
[tex]y'' = [(4x - 6y)(2 + 4(dy/dx)) - (2x + 4y)(4 - 6(dy/dx))] / (4x - 6y)^2[/tex]

Step 5: Substitute y' back into the equation for y''.
[tex]y'' = [(4x - 6y)(2 + 4((2x + 4y) / (4x - 6y))) - (2x + 4y)(4 - 6((2x + 4y) / (4x - 6y)))] / (4x - 6y)^2[/tex]

This is the expression for y'' in terms of x and y.

Learn more about differentiation:https://brainly.com/question/25081524

#SPJ11

change f(x) = 40(0.96)x to an exponential function with base e. and approximate the decay rate of f.

Answers

The decay rate of f is approximately 4.0822% per unit of x.

How to change [tex]f(x) = 40(0.96)^x[/tex] to an exponential function?

To change [tex]f(x) = 40(0.96)^x[/tex] to an exponential function with base e, we can use the fact that:

[tex]e^{ln(a)} = a[/tex], where a is a positive real number.

First, we can rewrite 0.96 as[tex]e^{ln(0.96)}[/tex]:

[tex]f(x) = 40(e^{ln(0.96)})^x[/tex]

Then, we can use the property of exponents to simplify this expression:

[tex]f(x) = 40e^{(x*ln(0.96))}[/tex]

This is an exponential function with base e.

To approximate the decay rate of f, we can look at the exponent x*ln(0.96).

The coefficient of x represents the rate of decay. In this case, the coefficient is ln(0.96).

Using a calculator, we can approximate ln(0.96) as -0.040822. This means that the decay rate of f is approximately 4.0822% per unit of x.

Learn more about exponential function

brainly.com/question/14355665

#SPJ11

In the sequence of numbers: 2/3, 4/7, x, 11/21, 16/31. the missing number x is:- 5/10 6/10 7/13 8/10

Answers

The missing number is 7/13.

We have the Sequence,

2/3, 4/7, x, 11/21, 16/31

As, the sequence in Numerator are +2, +3, +4, +5,

and, the sequence of denominator are 4, 6, 8 and 10.

Then, the numerator of missing fraction is

= 4 +3 = 7

and, denominator = 7 + 6 =13

Thus, the required number is 7/13.

Learn more about sequence here:

https://brainly.com/question/10049072

#SPJ1

For the hypothesis test H0: µ = 11 against H1: µ < 11 and variance known, calculate the P-value for the following test statistic:
z0 = - 2.33

Answers

The P-value for the given test statistic, z0 = -2.33, in a one-tailed hypothesis test with H0: µ = 11 and H1: µ < 11 is approximately 0.01.


1. Identify the null hypothesis (H0) and alternative hypothesis (H1). In this case, H0: µ = 11 and H1: µ < 11.


2. Determine the test statistic. Here, z0 = -2.33.


3. Since H1: µ < 11, we are performing a one-tailed test (left-tailed).


4. Look up the corresponding P-value for z0 = -2.33 using a standard normal (Z) table or an online calculator.


5. In a standard normal table, find the row and column corresponding to -2.3 and 0.03, respectively. The intersection gives the value 0.0099, which is approximately 0.01.


6. The P-value is about 0.01, which represents the probability of observing a test statistic as extreme or more extreme than z0 = -2.33 under the null hypothesis.

To know more about one-tailed hypothesis test click on below link:

https://brainly.com/question/29494642#

#SPJ11

exercise 0.2.7. let .y″ 2y′−8y=0. now try a solution of the form y=erx for some (unknown) constant .r. is this a solution for some ?r? if so, find all such .

Answers

The functions $y =[tex]e^{-4x}[/tex]$ and $y = [tex]e^{2x}[/tex] $ are solutions to the differential equation $y'' + 2y' - 8y = 0$.

Find if the function $y = e^{rx}$ is a solution to the differential equation $y'' + 2y' - 8y = 0$ can be substituted in place of $y$ and its derivatives?

To see if the function $y = e^{rx}$ is a solution to the differential equation $y'' + 2y' - 8y = 0$, we substitute it in place of $y$ and its derivatives:

y=[tex]e^{rx}[/tex]

y' = [tex]re^{rx}[/tex]

y" = [tex]r^{2} e^{rx}[/tex]

Substituting these expressions into the differential equation, we get:

[tex]r^{2} e^{rx} + 2re^{rx} - 8e^{rx} = 0[/tex]

Dividing both sides by $ [tex]$e^{rx}$[/tex] $, we get:

[tex]r^{2} + 2r - 8 = 0[/tex]

This is a quadratic equation in $r$. Solving for $r$, we get:

r = -4,2

Therefore, the functions $y =[tex]e^{-4x}[/tex]$ and $y = [tex]e^{2x}[/tex] $ are solutions to the differential equation $y'' + 2y' - 8y = 0$.

Learn more about differential equations

brainly.com/question/14620493

#SPJ11

Algebra 2, logs! Please help!

Answers

log₂(7) + log₂(8) is equal to log₂(56).

Describe logarithmic ?

Logarithmic is a mathematical concept that is used to describe the relationship between a number and its exponent. In particular, a logarithm is the power to which a base must be raised to produce a given number. For example, if we have a base of 2 and a number of 8, the logarithm (base 2) of 8 is 3, since 2 raised to the power of 3 equals 8.

Logarithmic functions are commonly used in mathematics, science, and engineering to describe exponential growth and decay, as well as to solve various types of equations. They are particularly useful in dealing with large numbers, as logarithms allow us to express very large or very small numbers in a more manageable way.

The logarithmic function is typically denoted as log(base a) x, where a is the base and x is the number whose logarithm is being taken. There are several different bases that are commonly used, including base 10 (common logarithm), base e (natural logarithm), and base 2 (binary logarithm). The properties of logarithmic functions, including rules for combining and simplifying logarithmic expressions, are well-defined and widely used in mathematics and other fields.

We can use the logarithmic rule that states that the sum of the logarithms of two numbers is equal to the logarithm of the product of the two numbers. That is,

log₂(7) + log₂(8) = log₂(7 × 8)

Now we can simplify the product of 7 and 8 to get:

log₂(7) + log₂(8) = log₂(56)

Therefore, log₂(7) + log₂(8) is equal to log₂(56).

To know more about function visit:

https://brainly.com/question/4952651

#SPJ1

Julie is using the set {7,8,9,10,11} to solve the inequality shown. 2h-3>15 Select all of the solutions to the inequality.

Answers

Answer:

10,11

Step-by-step explanation:

Solving inequality:

Givne set: {7, 8 , 9 , 10 , 11}

To solve the inequality, isolate 'h'.

        2h - 3 > 15

Add 3 to both sides,

     2h - 3 + 3 > 15 + 3

               2h  > 18

Divide both sides by 2,

                [tex]\sf \dfrac{2h}{2} > \dfrac{18}{2}[/tex]

                 h > 9

h = {10 , 11}

The enrollment at high school R has been increasing by 20 students per year. Currently high school R has 200 students attending. High School T currently has 400 students, but it's enrollment is decreasing in size by an average of 30 students per year. If the two schools continue their current enrollment trends over the next few years, how many years will it take the schools to have the same enrollment?

Answers

The number of years it will  take the schools to have the same enrollment is 4 years.

We are given that;

The enrollment at high school R has been increasing by 20 students per year.

Currently high school R has 200 students attending.

High school T currently has 400 students, but it’s enrollment is decreasing in size by an average of 30 students per year.

Let x be the number of years from now, and y be the enrollment of the schools. Then we have:

y=200+20x

for high school R, and

y=400−30x

for high school T. To find when the schools have the same enrollment, we set the two equations equal to each other and solve for x:

200+20x=400−30x

Adding 30x to both sides, we get:

50x=200

Dividing both sides by 50, we get:

x=4

At that time, they will both have y = 200 + 20(4) = 280 students.

Therefore, by the linear equation the answer will be 4 years.

Learn more about linear equations;

https://brainly.com/question/10413253

#SPJ1

consider the function (x)=3−6x2 f ( x ) = 3 − 6 x 2 on the interval [−6,4] [ − 6 , 4 ] . Find the average or mean slope of the function on this interval, i.e. (4)−(−6)4−(−6) f ( 4 ) − f ( − 6 ) 4 − ( − 6 ) Answer: By the Mean Value Theorem, we know there exists a c c in the open interval (−6,4) ( − 6 , 4 ) such that ′(c) f ′ ( c ) is equal to this mean slope. For this problem, there is only one c c that works. c= c = Note: You can earn partial credit on this problem

Answers

The average slope of f(x) on the interval [-6,4] is equal to f'(3.5) = -12(3.5) = -42.

How to find the average or mean slope of the function on given interval?

The Mean Value Theorem (MVT) for a function f(x) on the interval [a,b] states that there exists a point c in (a,b) such that f'(c) = (f(b) - f(a))/(b - a).

In this problem, we are asked to find the average slope of the function f(x) = 3 - 6x² on the interval [-6,4]. The average slope is:

(f(4) - f(-6))/(4 - (-6)) = (3 - 6(4)² - (3 - 6(-6)²))/(4 + 6) = -42

So, we need to find a point c in (-6,4) such that f'(c) = -42. The derivative of f(x) is:

f'(x) = -12x

Setting f'(c) = -42, we get:

-12c = -42

c = 3.5

Therefore, the point c = 3.5 satisfies the conditions of the Mean Value Theorem, and the average slope of f(x) on the interval [-6,4] is equal to f'(3.5) = -12(3.5) = -42.

Learn more about average slope.

brainly.com/question/31376837

#SPJ11

to determine the entropy change for an irreversible process between states 1 and 2, should the integral ∫1 2 δq/t be performed along the actual process path or an imaginary reversible path? explain.

Answers

The integral along the actual process path will not accurately represent the maximum possible entropy change for the system.

To determine the entropy change for an irreversible process between states 1 and 2, the integral ∫1 2 δq/t should be performed along an imaginary reversible path. This is because entropy is a state function and is independent of the path taken to reach a particular state. Therefore, the entropy change between two states will be the same regardless of whether the process is reversible or irreversible.

However, performing the integral along an imaginary reversible path will give a more accurate measure of the entropy change as it represents the maximum possible work that could have been obtained from the system. In contrast, an irreversible process will always result in a lower amount of work being obtained due to losses from friction, heat transfer to the surroundings, and other factors.

Therefore, performing the integral along the actual process path will not accurately represent the maximum possible entropy change for the system.

To learn more about entropy here:

brainly.com/question/13135498#

#SPJ11

URGENT PLS HELP!! Will give brainiest :)

Answers

you should put the question, there is not question to be answered?

how many partitions of 2 parts can be amde of {1,2,...100}

Answers

There are [tex](1/2) * (2^{100} - 2)[/tex] partitions of {1, 2, ..., 100} into two parts.

How to find the number of partitions of {1, 2, ..., 100} into two parts?

We can use the following formula:

Number of partitions = (n choose k)/2, where n is the total number of elements, and k is the number of elements in one of the two parts.

In this case, we want to divide the set {1, 2, ..., 100} into two parts, each with k elements.

Since we are not distinguishing between the two parts, we divide the total number of partitions by 2.

The number of ways to choose k elements from a set of n elements is given by the binomial coefficient (n choose k).

So the number of partitions of {1, 2, ..., 100} into two parts is:

(100 choose k)/2

where k is any integer between 1 and 99 (inclusive).

To find the total number of partitions, we need to sum this expression for all values of k between 1 and 99:

Number of partitions = (100 choose 1)/2 + (100 choose 2)/2 + ... + (100 choose 99)/2

This is equivalent to:

Number of partitions = (1/2) * ([tex]2^{100}[/tex] - 2)

Therefore, there are (1/2) * ([tex]2^{100][/tex] - 2) partitions of {1, 2, ..., 100} into two parts.

Learn more about partitions of a set into two parts

brainly.com/question/18651359

#SPJ11

given n(l) = 750, n(m) = 230 and n(l ∩ m) = 30, find n(l ∪ m).

Answers

The n(l ∪ m) = 950. This can also be said as the size of the union of sets l and m is 950.

In the question, we have

n(l) = 750, n(m) = 230 and n(l ∩ m) = 30,

To find n(l ∪ m), we need to add the number of elements in both sets, but since they have some overlap n(l ∩ m), we need to subtract that overlap to avoid counting those elements twice.

n(l ∪ m) = n(l) + n(m) - n(l ∩ m)

Substituting the given values, we get:


n(l ∪ m) = 750 + 230 - 30
n(l ∪ m) = 950

Learn more about n(l ∪ m) here:

https://brainly.com/question/20416466

#SPJ11

Suppose a binary tree has leaves l1, l2, . . . , lMat depths d1, d2, . . . , dM, respectively.
Prove that Σ 2^-di <= 1.

Answers

In a binary tree with leaves l1, l2, ..., lM at depths d1, d2, ..., dM respectively, the sum of [tex]2^-^d^_i[/tex] for all leaves is always less than or equal to 1: Σ  [tex]2^-^d^_i[/tex] <= 1.

In a binary tree, each leaf node is reached by following a unique path from the root. Since it is a binary tree, each internal node has two child nodes.

Consider a full binary tree, where all leaves have the maximum number of nodes at each depth. For a full binary tree, the total number of leaves is  [tex]2^d[/tex] , where d is the depth.

Each leaf node contributes [tex]2^-^d[/tex] to the sum. Thus, the sum for a full binary tree is Σ  [tex]2^-^d[/tex] = (2⁰ + 2⁰ + ... + 2⁰) = [tex]2^d[/tex] * [tex]2^-^d[/tex]  = 1. Now, if we remove any node from the full binary tree, the sum can only decrease, as we are reducing the number of terms in the sum. Hence, for any binary tree, the sum Σ [tex]2^-^d^_i[/tex]  will always be less than or equal to 1.

To know more about binary tree click on below link:

https://brainly.com/question/13152677#

#SPJ11

To find the length of the curve defined by y=3x^5 + 15x from the point (-2,-126) to the point (3,774), you'd have to compute∫^b_a f(x)dx where a = ______, b=______and f(x) =____>

Answers

The length of the curve L is [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex] where a = -2, b= 3 and f'(x) =  [tex]15x^4[/tex] + 15.

To find the length of the curve defined by y = [tex]3x^5[/tex] + 15x from the point (-2, -126) to the point (3, 774), you'd actually need to compute the arc length using the formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(f'(x)^2)} } \, dx[/tex]
First, find the derivative of the function, f'(x):
f'(x) = d([tex]3x^5[/tex] + 15x)/dx = [tex]15x^4[/tex] + 15
Now, substitute f'(x) into the arc length formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(15x^4+15)^2)} } \, dx[/tex]
Here, the points given are (-2, -126) and (3, 774). Therefore, the limits of integration are:
a = -2
b = 3
So the final integral to compute the length of the curve is:
L = [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex]

To learn more about function, refer:-

https://brainly.com/question/12431044

#SPJ11

The length of the curve L is [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex] where a = -2, b= 3 and f'(x) =  [tex]15x^4[/tex] + 15.

To find the length of the curve defined by y = [tex]3x^5[/tex] + 15x from the point (-2, -126) to the point (3, 774), you'd actually need to compute the arc length using the formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(f'(x)^2)} } \, dx[/tex]
First, find the derivative of the function, f'(x):
f'(x) = d([tex]3x^5[/tex] + 15x)/dx = [tex]15x^4[/tex] + 15
Now, substitute f'(x) into the arc length formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(15x^4+15)^2)} } \, dx[/tex]
Here, the points given are (-2, -126) and (3, 774). Therefore, the limits of integration are:
a = -2
b = 3
So the final integral to compute the length of the curve is:
L = [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex]

To learn more about function, refer:-

https://brainly.com/question/12431044

#SPJ11

Any help please?
I need to find the area and perimeter of the sheep pin, fill in the blanks to get the area and perimeter

Answers

Answer:

perimeter= 96feet

area= 470 feet ^2

Step-by-step explanation:

to find the perimeter u add all the sides together

top missing side= 10feet

right missing side= 19feet

perimeter= 28+20+10+9+10+19

perimeter= 96 feet

area= 20×19=380

9×10=90

area=380+90

area=470 feet^2

Answer: Top box : 10 Ft. , Side box: 21 Ft. , Area: 510 Ft^2, Perimeter: 98 Ft.

Step-by-step explanation:

- Think about it as two shapes. A smaller rectangle that the sheep is in and a larger one with the rest of the pen. Doing this visually will help.

Top box:

20-10 = 10

- We minus 10 feet from 200 because we are dealing with the 'smaller' shape first, to find the length of its missing side we must subtract the known lengths; we removed the excess.

Side box:

28-9=21

- We do this because 28 Ft was a whole length from end to end when we only need the bigger shape, hence we remove the excess which is 9 Ft.

Area:

-Now we know all our lengths, deal with the two self-allocated 'shapes' as you would normally.

10 x 9 = 90. (Smaller shape.)

20 x 21 = 420. (Larger shape.)

- Then we add them to find the area of the WHOLE shape combined.

90 + 420 = 410 FT²

Perimeter:

- Once again, we know all our lengths and simply add them all together.

10 + 28 + 20 + 21 + 10 + 9 = 98 FT

If this helped, consider dropping a thanks ! Have a good day !

Suppose that {an}n-1 is a sequence of positive terms and set sn= m_, ak. Suppose it is known that: 1 lim an+1 11-00 Select all of the following that must be true. 1 ak must converge. 1 ak must converge to 1 must converge. {sn} must be bounded. {sn) is monotonic. lim, + 8. does not exist. ? Check work Exercise.

Answers

From the given information, we know that {an} is a sequence of positive terms, so all of its terms are greater than 0. We also know that sn = m∑ ak, which means that sn is a sum of a finite number of positive terms.

Now, let's look at the given limit: lim an+1 = 0 as n approaches infinity. This tells us that the terms of {an} must approach 0 as n approaches infinity since the limit of an+1 is dependent on the limit of an. Therefore, we can conclude that {an} is a decreasing sequence of positive terms. Using this information, we can determine the following:- ak must converge: Since {an} is decreasing and positive, we know that the terms of {ak} are also decreasing and positive. Therefore, {ak} must converge by the Monotone Convergence Theorem. - ak must converge to 0: Since {an} approaches 0 as n approaches infinity, we know that the terms of {ak} must also approach 0. Therefore, {ak} must converge to 0.
- {sn} must be bounded: Since {ak} converges to 0, we know that there exists some N such that ak < 1 for all n > N. Therefore, sn < m(N-1) + m for all n > N. This shows that {sn} is bounded above by some constant.
- {sn} is monotonic: Since {an} is decreasing and positive, we know that {ak} is also decreasing and positive. Therefore, sn+1 = sn + ak+1 < sn, which shows that {sn} is a decreasing sequence. - limn→∞ sn does not exist: Since {an} approaches 0 as n approaches infinity, we know that {sn} approaches a finite limit if and only if {ak} approaches a nonzero limit. However, we know that {ak} approaches 0, so {sn} does not approach a finite
Therefore, the correct answers
- ak must converge
- ak must converge to 0
- {sn} must be bounded
- {sn} is monotonic
- limn→∞ sn does not exist

Learn more about finite number here:brainly.com/question/1622435

#sPJ11

in each of the problems 7 through 9 find the inverse laplace transform of the given function by using the convolution theoremf(s)=1/(s +1)^2 (s^2+ 4)

Answers

The inverse Laplace transform of f(s) is: f(t) = -2t*u(t)[tex]e^{-t}[/tex] - 4u(t)[tex]e^{-t}[/tex]+ 4u(t)

What is convolution theorem?

The convolution theorem is a fundamental result in mathematics and signal processing that relates the convolution operation in the time domain to multiplication in the frequency domain.

To find the inverse Laplace transform of the given function, we will use the convolution theorem, which states that the inverse Laplace transform of the product of two functions is the convolution of their inverse Laplace transforms.

We can rewrite the given function as:

f(s) = 1/(s+1)² * (s² + 4)

Taking the inverse Laplace transform of both sides, we get:

[tex]L^{-1}[/tex]{f(s)} = [tex]L^{-1}[/tex]{1/(s+1)²} *[tex]L^{-1}[/tex]{s² + 4}

We can use partial fraction decomposition to find the inverse Laplace transform of 1/(s+1)²:[tex]e^{-t}[/tex]

1/(s+1)² = d/ds(-1/(s+1))

Thus, [tex]L^{-1}[/tex]{1/(s+1)²} = -t*[tex]e^{-t}[/tex]

To find the inverse Laplace transform of s²+4, we can use the table of Laplace transforms and the property of linearity of the Laplace transform:

L{[tex]t^{n}[/tex]} = n!/[tex]s^{(n+1)}[/tex]

L{4} = 4/[tex]s^{0}[/tex]

[tex]L^{-1}[/tex]{s² + 4} = L^-1{s²} + [tex]L^{-1}[/tex]{4} = 2*d²/dt²δ(t) + 4δ(t)

Now, we can use the convolution theorem to find the inverse Laplace transform of f(s):

[tex]L^{-1}[/tex]{f(s)} = [tex]L^{-1}[/tex]{1/(s+1)²} * [tex]L^{-1}[/tex]{s² + 4} = (-te^(-t)) * (2d²/dt²δ(t) + 4δ(t))

Simplifying this expression, we get:

[tex]L^{-1}[/tex]{f(s)} = -2[tex]te^{-t}[/tex]δ''(t) - 4[tex]te^{-t}[/tex]δ'(t) + 4[tex]e^{-t}[/tex]δ(t)

Therefore, the inverse Laplace transform of f(s) is:

f(t) = -2t*u(t)[tex]e^{-t}[/tex] - 4u(t)[tex]e^{-t}[/tex]+ 4u(t).

To learn more about convolution theorem  from the given link:

https://brainly.com/question/29673703

#SPJ1

A regular octagon has an area of 48 inches squared. If the scale factor of this octagon to a similar octagon is 4:5, then what is the area of the other pentagon?

Answers

The area of the other octagon is 75 square inches.

To find the area of the other octagon, we can use the concept of scale factors. The scale factor of 4:5 tells us that corresponding lengths of the two similar octagons are in a ratio of 4:5.

Since the scale factor applies to the lengths, it will also apply to the areas of the two octagons. The area of a shape is proportional to the square of its corresponding side length.

Let's assume the area of the other octagon (with the scale factor of 4:5) is A.

The ratio of the areas of the two octagons can be expressed as:

(Area of the given octagon) : A = (Side length of the given octagon)^2 : (Side length of the other octagon)^2

48 : A = (4/5)^2

48 : A = 16/25

Cross-multiplying:

25 * 48 = 16A

1200 = 16A

Dividing both sides by 16:

75 = A

Therefore, the area of the other octagon is 75 square inches.

For more such questions on area, click on:

https://brainly.com/question/22972014

#SPJ8

calculate the volume percent of 357 ml of ethylene glycol in enough water to give 1.18×103 ml of solution.

Answers

the volume percent of ethylene glycol in the solution is 30.25%.

Why is it?

To calculate the volume percent of ethylene glycol in the solution, we need to know the volume of ethylene glycol and the total volume of the solution.

Given:

Volume of ethylene glycol = 357 ml

Total volume of solution = 1.18 × 10²3 ml

The volume percent of ethylene glycol is calculated as:

Volume percent = (volume of ethylene glycol / total volume of solution) x 100%

Volume percent = (357 ml / 1.18 × 10²3 ml) x 100%

Volume percent = 30.25%

Therefore, the volume percent of ethylene glycol in the solution is 30.25%.

To know more about Percentage related question visit:

https://brainly.com/question/29306119

#SPJ1

Use the Chain Rule to find the indicated partial derivatives.
u =
r2 + s2
, r = y + x cos t, s = x + y sin t
∂u
∂x
∂u
∂y
∂u
∂t
when x = 4, y = 5, t = 0
∂u
∂x
= ∂u
∂y
= ∂u
∂t
=

Answers

The partial derivatives of u with respect to x, y, and t are, [tex]\dfrac{\partial u}{\partial x}[/tex] = 22, [tex]\dfrac{\partial u}{\partial y}[/tex] = 18 and [tex]\dfrac{\partial u}{\partial t}[/tex] = 40.

We can use the chain rule to find the partial derivatives of u with respect to x, y, and t.

First, we will find the partial derivative of u with respect to r and s:

u = r² + s²

[tex]\dfrac{\partial u}{\partial r}[/tex] = 2r

[tex]\dfrac{\partial u}{\partial s}[/tex] = 2s

Next, we will find the partial derivatives of r with respect to x, y, and t:

r = y + xcos(t)

[tex]\dfrac{\partial r}{\partial x}[/tex] = cos(t)

[tex]\dfrac{\partial r}{\partial y}[/tex] = 1

[tex]\dfrac{\partial r}{\partial t}[/tex] = -xsin(t)

Similarly, we will find the partial derivatives of s with respect to x, y, and t:

s = x + ysin(t)

[tex]\dfrac{\partial s}{\partial x}[/tex] = 1

[tex]\dfrac{\partial s}{\partial y}[/tex] = sin(t)

[tex]\dfrac{\partial s}{\partial t}[/tex] = ycos(t)

Now, we can use the chain rule to find the partial derivatives of u with respect to x, y, and t:

[tex]\dfrac{\partial u}{\partial x} = \dfrac{\partial u}{\partial r} \times \dfrac{\partial r}{\partial x} + \dfrac{\partial u}{\partial s} \times \dfrac{\partial s}{\partial x}[/tex]

[tex]\dfrac{\partial u}{\partial x}[/tex] = 2r * cos(t) + 2s * 1

At x = 4, y = 5, t = 0, we have:

r = 5 + 4cos(0) = 9

s = 4 + 5sin(0) = 4

Substituting these values into the partial derivative formula, we get:

[tex]\dfrac{\partial u}{\partial x}[/tex] = 2(9)(1) + 2(4)(1) = 22

Similarly, we can find the partial derivatives with respect to y and t:

[tex]\dfrac{\partial u}{\partial y} = \dfrac{\partial u}{\partial r} \times \dfrac{\partial r}{\partial y} + \dfrac{\partial u}{\partial s} \times \dfrac{\partial s}{\partial y}[/tex]

[tex]\dfrac{\partial u}{\partial y}[/tex] = 2r * 1 + 2s * sin(t)

[tex]\dfrac{\partial u}{\partial t}[/tex] = 2(9)(1) + 2(4)(0) = 18

[tex]\dfrac{\partial u}{\partial t} = \dfrac{\partial u}{\partial r} \times \dfrac{\partial r}{\partial t} + \dfrac{\partial u}{\partial s} \times \dfrac{\partial s}{\partial t}[/tex]

[tex]\dfrac{\partial u}{\partial t}[/tex] = 2r * (-xsin(t)) + 2s * (ycos(t))

[tex]\dfrac{\partial u}{\partial t}[/tex] = 2(9)(-4sin(0)) + 2(4)(5cos(0)) = 40

Therefore, the partial derivatives of u with respect to x, y, and t are:

[tex]\dfrac{\partial u}{\partial x}[/tex] = 22

[tex]\dfrac{\partial u}{\partial y}[/tex] = 18

[tex]\dfrac{\partial u}{\partial t}[/tex] = 40

To know more about partial derivatives, here

https://brainly.com/question/31397807

#SPJ4

Other Questions
Use the form |x-b| c to write an absolute value inequality that has the solution set 5 Joe who is 34, had AGI of $400,000 during 2019. He incurred the following expenses and losses during the year.Medical expenses before AGI floor $38,500State and local income taxes $15,200Real estate taxes $4,400Home mortgage interest $5,400Charitable contribution $14,800Unreimbursed employee expenses $8,900Gambling losses (he had $7,400 of gambling income) $9,800Compute Joe's total itemized deductions for the year. Calculate the volume percent of solute in the following solutions. 22.5 mL of methyl alcohol in enough water to give 533 mL of solution. 65.3 mL of ethylene glycol in enough water to give 249 mL of solution. Problem 15.061 - Rod BD moving in the xy plane of a piston-cylinder system NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. In the engine system shown, I = 210 mm and b= 85 mm. Know that the crank AB rotates with a constant angular velocity of 1500 rpm clockwise. All of the following are reasons which support floating exchange rates EXCEPT: A.Floating exchange rate systems support automatic trade balance adjustmentsB.Floating exchange rate systems help countries recover from financial crisesC.Floating exchange rate systems provide countries with monetary policy autonomyD.All of these support floating exchange rates Sketch the vector field F(r) = -r / ||r||^3 in the xy-plane. Select all that apply. The lengths of the vectors decrease as you move away from the origin. All the vectors point towards the origin. The length of each vector is 1. All the vectors point in the same direction. All the vectors point away from the origin. calculate by double integration the area of the bounded region determined by the given pairs of curves. x^2=8y x +4y4=0a) -9/2|b) 9/8|c) 9/2|d) 9|e) 27/2|f) none of these Read the First Inaugural Address by Franklin D. Roosevelt on March 4, 1933.Select the best sentence that reflects the central idea of Franklin D. Roosevelt's speech. "Happiness lies not in the mere possession of money; it lies in the joy of achievement, in the thrill of creative effort. The joy and moral stimulation of work no longer must be forgotten in the mad chase of evanescent profits." "More important, a host of unemployed citizens face the grim problem of existence, and an equally great number toil with little return." "Our greatest primary task is to put people to work It can be accomplished in part by direct recruiting by the Government itself, treating the task as we would treat the emergency of a war, but at the same time, through this employment, accomplishing greatly needed projects to stimulate and reorganize the use of our natural resources." "So, first of all, let me assert my firm belief that the only thing we have to fear is fear itselfnameless, unreasoning, unjustified terror which paralyzes needed efforts to convert retreat into advance." write the equation for each translation of the graph of y=|1/2x - 2| +3a) one unit upb) one unit downc) one unit to the leftd) one unit to the right need help please I need help right now and thank you Since the cloud will become the repository of most ESI needed in litigation or an investigation, cloud service providers and their clients must carefully plan how they will be able to identify all documents that pertain to a case, in order to be able to fulfill the stringent requirements imposed by ______ with regard to ESI how do i write the inequality of this? The unnormalized wave function for a negatively charged pion bound to a proton in an energy eigenstate is given by = (x + y + z)exp -x^2 + y^2 + z^2/2bo where bo is a constant for this "pionic" atom that has the dimensions of length.a. Show that the pion is in a p orbital (l=1) b. What is the magnitude of the orbital angular momentum of the pion? c. What is the probability that a measurement of Lz will yield the value 0? a ball is at rest in frame s'. what is the speed of the ball in frame s? express your answer in meters per second. A behavior that requires ____________ response effort is more likely to occur than a behavior that requires____________ response effort A sprinkler set in the middle of a lawn sprays in a circular pattern. The area of the lawn that gets sprayed by the sprinklercan be described by the equation (z+6)2 + (y-9) = 196.What is the greatest distance, in feet, that a person could be from the sprinkler and get sprayed by it? Mai poured 2.4 L into a partilly filled water now there is 10.4 25. What is the underlying principle of Confucius? What is the basic unit of all living things from bacteria to animals and plants?A) musclesB) cellsC) atomsD) water Number 12 gauge wire, commonly used in household wiring, is 2.053 mm in diameter and can safely carry currents of up to 20.0 Aa) For a wire carrying this maximum current, find the magnetic field strength 0.150 mm from the wire's axis.b) For a wire carrying this maximum current, find the magnetic field strength at the wire's surface.c) For a wire carrying this maximum current, find the magnetic field strength 0.315 mm beyond the wire's surface.