Answer:
100 thousand dollars bobvieijefn iojef
Explanation:
your mom gae
Consider the following balanced reaction: 4Fe + 302 → 2Fe2O3. If 3.2
g of oxygen gas and 3.2 grams of iron are used in this reaction, which
one is the limiting reactant?
O Iron
O Oxygen gas
O Iron III oxide
O None of the above
I will give brainliest
Identify each of the following half-reactions as either an oxidation half-reaction or a reduction half-reaction.
half-reaction
identification
Br2(1)+2e- →→2Br (aq)
Zn(s) Zn2+(aq) + 2e
The half-reaction Br[tex]_2[/tex](l) + 2[tex]e^-[/tex] → 2[tex]Br^-[/tex](aq) is a reduction half-reaction, while the half-reaction Zn(s) → [tex]Zn^{2+}[/tex](aq) + 2[tex]e^-[/tex] is an oxidation half-reaction.
The given half-reactions are:
Br[tex]_2[/tex](l) + 2[tex]e^-[/tex] → 2[tex]Br^-[/tex](aq)
Zn(s) → [tex]Zn^{2+}[/tex](aq) + 2[tex]e^-[/tex]
The oxidation and reduction reactions are defined as follows:
Oxidation reaction: A half-reaction that includes the loss of electrons is referred to as an oxidation reaction. The oxidation number of the species involved in the reaction is increased in this process.
Reduction reaction: A half-reaction that involves gaining electrons is referred to as a reduction reaction. The oxidation number of the species involved in the reaction is decreased in this process.
Now let us identify which half-reaction is oxidation and which is reduction:
Br[tex]_2[/tex](l) + 2[tex]e^-[/tex] → 2[tex]Br^-[/tex](aq) (reduction reaction)
Zn(s) → [tex]Zn^{2+}[/tex](aq) + 2[tex]e^-[/tex](oxidation reaction)
Thus, the half-reaction Br[tex]_2[/tex](l) + 2[tex]e^-[/tex] → 2[tex]Br^-[/tex](aq) is an example of a reduction half-reaction, while the half-reaction Zn(s) → [tex]Zn^{2+}[/tex](aq) + 2[tex]e^-[/tex] is an example of an oxidation half-reaction.
Learn more about half reactions here:
https://brainly.com/question/18403544
#SPJ11
C-14 is an isotope of the element carbon. How does it differ from the carbon atom seen here?
A) C-14 has two more protons.
B) C-14 has two more neutrons.
C) C-14 has a larger atomic radius.
D) C-14 has two additional valence electrons.
This column of the periodic table represents the halogen family. This is a family of reactive elements. How do the members of the family differ? How are they alike?
A) The mass numbers differ; they have the same number of protons and valence electrons.
B) They have different atomic numbers and mass numbers; they have the same number of electrons.
C) They have different atomic numbers and mass numbers; they have the same number of valence electrons.
D) They have different numbers of protons, neutrons, and valence electrons; they are all gases at room temperature.
Young stars, just beginning their life in the galaxy, would contain mostly
A) carbon.
B) helium.
C) iron and nickel.
D) hydrogen and helium
C-14 is an isotope of the element carbon and it differs from the carbon atom in the fact that it has two more neutrons. The correct option is B) C-14 has two more neutrons.An isotope is referred to as the element of the same atomic number, and isotopes possess a different number of neutrons in their nucleus.
The correct option is B
For example, the carbon-14 isotope of carbon has 6 protons and 8 neutrons, whereas the carbon-12 isotope of carbon has 6 protons and 6 neutrons .This column of the periodic table represents the halogen family. This is a family of reactive elements. Members of the halogen family differ in that they have different atomic numbers and mass numbers; they have the same number of valence electrons. Hence, the correct option is C) They have different atomic numbers and mass numbers; they have the same number of valence electrons.
The halogens are a family of highly reactive non-metallic elements from Group 17 (the seventh column) of the periodic table. The halogens are fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At).Young stars, just beginning their life in the galaxy, would contain mostly hydrogen and helium. Hence, the correct option is D) hydrogen and helium. During the star formation process, these two gases are pulled together by gravity to create nuclear fusion reactions. As a result of this reaction, the hydrogen is converted into helium.
To know more about isotope visit:-
https://brainly.com/question/28039996
#SPJ11
Silver has two stable isotopes. The nucleus, 10747Ag, has atomic mass 106.905095 g/mol with an abundance of 51.83% ; whereas 10947Ag, has atomic mass 108.904754 g/ mol with an abundance of 48.17%. What is the binding energy per nucleon for each isotope?
To calculate the binding energy per nucleon for each isotope of silver, we need to determine the total binding energy of each isotope and divide it by the number of nucleons (protons and neutrons) in each isotope.
The binding energy per nucleon represents the average energy required to remove a nucleon from the nucleus. It is a measure of the stability of the nucleus. To calculate the binding energy per nucleon, we need to determine the total binding energy and the number of nucleons for each isotope. First, we calculate the total binding energy for each isotope using the mass-energy equivalence equation E = mc², where E is the energy, m is the mass, and c is the speed of light.
For the first isotope, 10747Ag, with an atomic mass of 106.905095 g/mol, we multiply the atomic mass by the Avogadro's number to obtain the mass of one mole of atoms. Then we divide the mass by the number of atoms in one mole to get the mass of one atom. The difference between the mass of one atom and the mass of the individual nucleons (protons and neutrons) gives the mass defect. Multiplying the mass defect by c² gives the binding energy of one atom. Finally, dividing the binding energy by the number of nucleons in the isotope gives the binding energy per nucleon.
We repeat the same calculations for the second isotope, 10947Ag, with an atomic mass of 108.904754 g/mol. The resulting values represent the binding energy per nucleon for each isotope of silver.
Learn more about isotope here: https://brainly.com/question/20596678
#SPJ11
From which celestial body is a star born?
A. supernova
B. nebula
C. protostar
D. black dwarf
Answer: B. nebula
Explanation:
Answer:
B. nebula
Explanation:
Birth takes place inside hydrogen-based dust clouds called nebulae.
-TheUnknownScientist
when was the element copper discovered? Who discovered the element copper?
The Mesopotamians discovered copper (Cu) in 9000 BC.
How does this equation show that transmutation has taken place? 238 U – 334 Th + He 92 O A. The numbers of neither nucleons nor atoms are conserved. B. One element changes into another. O C. Atoms of different elements are present. O D. The number of nucleons is not conserved.
Answer:
B. One element changes into another.
Explanation:
We can see from the equation that uranium is changed to thorium and helium. Transmutation is the process by which one element is changed to another through radioactive decay, nuclear bombardment, or other similar processes.
Answer:b
Explanation:
Calculate ΔHrxn for
Ca(s) + 1/2 O2(g) + CO2(g) → CaCO3(s)
given the following set of reactions:
Ca(s) + 1/2 O2(g) →CaO(s) ΔH = −635.1 kJ
CaCO3(s) → CaO(s) + CO2(g) ΔH = 178.3 kJ
_____ kJ
The enthalpy change of the reaction is -456.8 kJ.
The balanced chemical equation of the reaction is as follows:
Ca(s) + 1/2O2(g) + CO2(g) → CaCO3(s)
Given reactions:
Ca(s) + 1/2O2(g) → CaO(s) ΔH = -635.1 kJ/mol
CaCO3(s) → CaO(s) + CO2(g) ΔH = 178.3 kJ/mol
The target reaction is a combination of the two given reactions, hence the enthalpy change of the target reaction is the sum of the enthalpies of the two given reactions. It means that:
ΔHrxn = ΔH1 + ΔH2
We have:ΔH1 = -635.1 kJ/mol
ΔH2 = 178.3 kJ/mol
Therefore,ΔHrxn = ΔH1 + ΔH2= (-635.1 kJ/mol) + (178.3 kJ/mol)= -456.8 kJ/mol
Therefore, the enthalpy change of the reaction is -456.8 kJ.
Learn more about enthalpy here:
https://brainly.com/question/29145818
#SPJ11
What type pf asexual reproduction produces the most offspring?
Binary Fission
Budding
Sporulation
thats kinda hot not even gon'
A chemist wants to make a gas-liquid solution. However, the gas will not dissolve readily into the liquid solvent. Which step would MOST likely increase the solubility of the gas in the liquid solvent?
A) Expand the volume of the liquid.
B) Increase the temperature of the gas and liquid.
C) Lower the pressure of the gas above the liquid.
D) Increase the pressure of the gas above the liquid.
Answer:
B
Explanation:
Can't really explain it sorry buy heating the solvent tends to increase the solubility
The step that would increase the solubility of the gas in the liquid solvent is to increase the temperature of the gas and liquid.
What is solubility?Solubility is the mixing of any substance into another substance and the fully mixing of the ions of the substance to another substance's ions.
Solubility depends upon temperature, increasing temperature increase the solubility.
In the mixing of gas and liquid, the liquid is solvent and gas is solute, always.
Thus, the correct option is B.
Learn more about solubility
https://brainly.com/question/13620168
A common characteristic of killers who choose poison as their weapon. This way they can avoid having to confront their victim me directly.
Answer:
The killers who choose poison for killing the victim are the one who does not want to confront the victim. When a knife or a bullet is used to kill a person he may struggle and can cause harm to killer also.
Explanation:
Poison is the most easiest way to kill a person without any struggle. The poison can be given to a person in a juice or through an injection. The poison entered in the body of victim will cause his heart to cease gradually and he will not have energy to struggle with the killer to save his life.
Write a question here it’s simple.
Answer:
what type of question?
Explanation:
whats your favorite color???
Explain Newton's 2nd Law of motion
Answer:
Newtons second law says that acceleration (gaining speed) happens when a force acts on a mass (object)
Explanation:
For example riding your bicycle, your bicycle is the mass and your leg muscles pushing on the pedals of your bicycle is the force.
A set of aqueous solution s are prepared containing different acids at the same concentration: acid, and hydrobromic acid. Which solution(s) are the most electrically acetic acid, chloric conductive? (a) chloric acid (b) hydrobromic acid (c) acetic acid (d) both chloric acid and hydrobromic acid (e) all three solutions have the same electrical conductivity
The most electrically conductive solution among the three given solutions is hydrobromic acid, which ionizes completely in the solution and produces a high amount of ions. Therefore, option (b) hydrobromic acid is the correct answer to this question.
Acids produce ions in solution, which leads to the solution being more conductive. The more ions an acid produces, the higher the electrical conductivity of the solution. Hence, to determine the electrical conductivity of the acid, we need to know the number of ions generated by the acid in the solution. Here, three acids: hydrobromic acid, acetic acid, and chloric acid have been taken at the same concentration. So, let's check the number of ions produced by each of the acids: Hydrobromic acid: It is a strong acid that dissociates completely in the aqueous solution.
The dissociation reaction is: HBr → H+ + Br−Since it ionizes completely in the solution, the electrical conductivity of the solution would be high. Acetic acid: It is a weak acid that dissociates partially in the aqueous solution. The dissociation reaction is: CH3COOH ↔ H+ + CH3COO−Since it does not ionize completely in the solution, the electrical conductivity of the solution would be low compared to hydrobromic acid. Chloric acid: It is a strong acid that dissociates completely in the aqueous solution. The dissociation reaction is: HClO3 → H+ + ClO3−Since it ionizes completely in the solution, the electrical conductivity of the solution would be high. So, the most electrically conductive solution among the three given solutions is hydrobromic acid, which ionizes completely in the solution and produces a high amount of ions. Therefore, option (b) hydrobromic acid is the correct answer to this question.
know more about hydrobromic acid,
https://brainly.com/question/30459979
#SPJ11
Just as all the organs in a system work together, the various body
systems work together in a healthy person. Can you think of an
example of two systems and how they work together? Explain
your ideas.
Answer:
the lungs and heart give oxygen to the cells and the sensory system gives messages to the brain
Explanation:
does anyone wanna help me with my question for chemistry [i'll comment the question to you lol someone keeps sending links into my questions]
Answer:
same I was looking for a question like this I was asking question and someone kept commenting this bitly thing i dont kno I though it was just weird and frustrating lol
Calculate the value of the equilibrium constant, kp, at 298k. N2(g) + 2NO2(g) ↹ 2NO2(g) from the following Kp values at 298 K
N2(g) + O2(g) ↹ 2NO(g), Kp = 4,0 x 10^-31 2NO(g) + O2(g) ↹ 2 NO2(g), Kp = 2.4 x 10^12
After considering the given data we conclude that the value of the equilibrium constant, Kp, for the reaction [tex]N_2(g) + 2NO_2(g)--- > 2NO_2(g)[/tex] at 298 K is [tex]4.8*10^{-17}[/tex].
To evaluate the value of the equilibrium constant, Kp, for the reaction [tex]N_2(g) + 2NO_2(g)--- > 2NO_2(g)[/tex] at 298 K, we can apply the following steps:
Write the balanced chemical equation for the reaction.
[tex]N_2(g) + 2NO_2(g) - - - > 2NO_2(g)[/tex]
Write the expression for Kp for each of the two reactions given.
[tex]Kp_1 = [NO]^2/[N_2][O_2][/tex]
[tex]Kp_2 = [NO_2]^2/[NO]^2[O_2][/tex]
Here,[tex][NO], [N_2], [O_2], and [NO_2][/tex]are the partial pressures of the respective species at equilibrium.
Stage the given values of [tex]Kp_1[/tex] and [tex]Kp_2[/tex] into the expression for Kp for the desired reaction.
[tex]Kp = Kp_2/Kp_1 = ([NO_2]^2/[NO]^2[O_2])/([NO]^2/[N_2][O_2]) = ([NO_2]^2[N_2])/[NO]^4[/tex]
Restructure the expression for Kp to solve for the unknown partial pressure of [tex]NO_2[/tex].
[tex][NO_2]^2 = Kp[NO]^4/[N_2][/tex]
Stage the given values of [tex]Kp_1[/tex] and [tex]Kp_2[/tex], and the given partial pressures of N2 and O2, into the expression for [NO].
[tex][NO] = \sqrt(Kp_1[N_2][O_2])[/tex]
Stage the calculated value of [NO] into the expression for[tex][NO_2][/tex] to obtain the equilibrium partial pressure of [tex]NO_2[/tex].
[tex][NO_2]^2 = Kp[NO]^4/[N_2][/tex]
[tex][NO_2]^2 = (2.4*10^{12} )(4.0*10^{-31} )([N_2][O_2])^2/[N_2][/tex]
[tex][NO_2]^2 = 9.6*10^{-19} [N_2][O_2]^2[/tex]
[tex][NO_2] = \sqrt(9.6*10^{-19} [N_2][O_2]^2)[/tex]
[tex][NO_2] = 3.1*10^{-10} atm[/tex]
Stage the evaluated values of [NO] and[tex][NO_2][/tex] into the expression for Kp to obtain the equilibrium constant.
[tex]Kp = ([NO_2]^2[N_2])/[NO]^4[/tex]
[tex]Kp = (9.6*10^{-19} )(3.1*10^{-10} )^2/[/\sqrt(4.0*10^{-31*1} atm)]^4[/tex]
[tex]Kp = 4.8*10^{-17}[/tex]
To learn more about equilibrium constant
https://brainly.com/question/13414142
#SPJ4
what hazard is most common from exposure to non-ionizing radiation?
The most common hazard from exposure to non-ionizing radiation is tissue heating.
What are the hazard common to exposure to non-ionizing radiation?The primary risk associated with exposure to non-ionizing radiation lies in the potential for tissue heating. Non-ionizing radiation lacks the necessary energy to dislodge electrons from atoms or molecules, yet it can still transfer energy to matter by inducing molecular vibration.
This vibration, in turn, can elevate the temperature of the exposed tissue, consequently giving rise to a spectrum of health concerns, including:
Skin burnsEye damageNerve damageCancerLearn about non-ionizing radiation here https://brainly.com/question/9621276
#SPJ4
What would be the most effective way for a scientist to get an idea of the actual age of a rock?
Answer:
Radiometric dating
Explanation:
Radiometric dating would be the most effective way since it is a technique that can establish the age of objects older than a few thousand years.
Use the drop-down menu to complete the statement. This is why they have similar Atoms of elements in the same group have the same number of chemical properties.
Answer:
valence electrons
Explanation:
i just took the test
Select all that apply.
Which of the following are density labels?
Okg
L
09
m
og
mL
g
What type of reaction does this model represent?
1. single replacement
2. double replacement
3. Decomposition
4. double displacement
Answer:
1. single replacement
Explanation:
Single replacement can be represented by AB+C ⇄B+AC, which matches the picture
Double replacement and double displacement are the same kind of reaction and can be represented by AB+CD ⇄BD+AC
Decomposition reaction can be represented by AB ⇄A+B
why was there no reaction seen between barium nitrate and sodium chloride?
Barium nitrate and sodium chloride do not react with each other because both of them are soluble in water. The chemical equation for the reaction between barium nitrate and sodium chloride is given below.
Ba(NO₃)₂ + 2NaCl → BaCl₂ + 2NaNO₃
The reaction between barium nitrate and sodium chloride is a double displacement reaction, where barium cation is exchanged with sodium cation and nitrate anion is exchanged with chloride anion. But the reaction does not occur due to the solubility of barium nitrate and sodium chloride in water.The solution of barium nitrate and sodium chloride will remain clear and colorless with no precipitation forming. In fact, it is a method of testing the presence of sulfate ions in a solution. A small amount of barium nitrate is added to the solution to form barium sulfate. Since barium sulfate is insoluble, it forms a white precipitate.
To know more about soluble visit:
https://brainly.com/question/31493083
#SPJ11
a 20.-milliliter sample of 0.60 m hcl is diluted with water to a volume of 40. milliliters. what is the new concentration of the solution?
The new concentration of the solution is 0.30 M.
To calculate the new concentration of the solution, we need to consider the dilution process.
Given information:
Initial volume of the HCl solution = 20 mL
Initial concentration of the HCl solution = 0.60 M
Final volume of the diluted solution = 40 mL
The number of moles of HCl in the initial solution can be calculated using the formula:
Moles = Concentration × Volume (in liters)
Initial moles of HCl = 0.60 M × (20 mL / 1000 mL/L) = 0.012 moles
During dilution, the moles of solute remain constant. Therefore, the moles of HCl in the diluted solution will also be 0.012 moles.
The final concentration of the solution can be calculated using the formula:
Final Concentration = Moles / Volume (in liters)
Final concentration = 0.012 moles / (40 mL / 1000 mL/L) = 0.30 M
Therefore, the new concentration of the solution after dilution is 0.30 M.
Learn more about dilution process: https://brainly.com/question/27097060
#SPJ11
Which of the following chemical reactions is most likely to have the largest equilibrium constant K?
A. CH3COOH(aq) + H2O(l) CH3COO- (aq) + H3O+(aq)
B. HCl(aq) + H2O(l) H3O+(aq) + Cl-(aq)
C. H3PO4(aq) + NH3(aq) H2PO4-(aq) + NH4+(aq)
D. CH3COO- (aq) + H2O(l) CH3COOH(aq) + OH-(aq)
Answer:
The answer to this question is HCl(aq) + H2O(l) = H3O+(aq) + Cl-(aq). HCl is considered a strong acid meaning it is 100% ionized in solution. The equilibrium constant is therefore very large.
What do you divide the mass by to get the concentration of a solute?
You divide by the mass of the solution.
Percent by mass is the mass of the solute divided by the mass of the solution, multiplied by 100.
Example:
You dissolve a 4.00 g sugar cube in 350 mL of tea at 80 °C. The density of water at 80 °C is 0.975 g/mL. What is the percent by mass of sugar in the solution?
Solution
Step 1 — Determine mass of the solute.
The solute is the sugar cube. Mass of solute = 4.00 g.
Step 2 — Determine mass of solvent.
The solvent is the 80 °C water. Use the density of the water to find the mass.
mass of solvent = 350 mL ×
0.975
g
1
mL
= 341 g
Step 3— Determine the total mass of the solution
mass of solution = mass of solute + mass of solvent = 4.00 g + 341 g = 345 g
Step 4 — Determine percent composition by mass of the sugar solution.
% by mass =
mass of solute
mass of solution
× 100 % =
4.00
g
345
g
× 100 % = 1.159 %
The percent composition by mass of the sugar solution is 1.159 %.
What is the hybridization of bromine in each of thefollowing:
a)BrF3
b)BrO2-
c)BrF5
The bromine atom in BrF3 is sp3d hybridized, in BrO2- it is sp3 hybridized, and in BrF5 it is sp3d2 hybridized.
The hybridization of bromine in each of the following compounds is as follows:
a) BrF3:
The central atom, bromine (Br), in BrF3 undergoes sp3d hybridization. It forms three sigma bonds with three fluorine atoms and has two lone pairs of electrons. The three sigma bonds are formed by overlapping of the sp3d hybrid orbitals of bromine with the 2p orbitals of the fluorine atoms.
b) BrO2-:
The central atom, bromine (Br), in BrO2- undergoes sp3 hybridization. It forms two sigma bonds with two oxygen atoms and has two lone pairs of electrons. The two sigma bonds are formed by overlapping of the sp3 hybrid orbitals of bromine with the 2p orbitals of the oxygen atoms.
c) BrF5:
The central atom, bromine (Br), in BrF5 undergoes sp3d2 hybridization. It forms five sigma bonds with five fluorine atoms and has one lone pair of electrons. The five sigma bonds are formed by overlapping of the sp3d2 hybrid orbitals of bromine with the 2p orbitals of the fluorine atoms.
Hybridization is a concept used to describe the mixing of atomic orbitals to form new hybrid orbitals in a molecule. It helps to explain the molecular geometry and bonding in the molecule. The hybridization of an atom depends on the number of sigma bonds it forms and the number of lone pairs of electrons it possesses.
In summary, the bromine atom in BrF3 is sp3d hybridized, in BrO2- it is sp3 hybridized, and in BrF5 it is sp3d2 hybridized. The hybridization of bromine determines the shape and geometry of the molecules and provides insights into the nature of their chemical bonding.
To know more about hybridisation visit:
brainly.com/question/29290058
#SPJ11
Step 1: Consider 0.10 M solutions of acetic acid, ammonia, hydrochloric acid, and sodium hydroxide. Rank these solutions in order of increasing pH (starting from the lowest, and ending with the highest pH value). Please also make a statement, whether each solution is an acidic or a basic one, and provide an explanation why.
Step 2: How many carbon atoms are there in a molecule of each of the following:
a. ethane b. 1-butyne c. propene d. cyclooctane
Please provide molecular formula for each of the four above mentioned compounds.
Example: 2-pentene - contains 5 atoms of C, molecular formula is C5H10
The order of the increasing pH of the solution is Hydrochloric acid, Acetic acid, Ammonia, and Sodium hydroxide.
Molecular formula of compounds: Ethane: C2H6, 1-Butyne: C4H6, Propene: C3H6 and Cyclooctane: C8H16
Rank of solutions in order of increasing pH:
Hydrochloric acid (HCl) is a strong acid that dissociates completely in water. Its pH is very low (less than 1) and it is strongly acidic. It is an acidic solution. It's a 1.0 M solution of hydrochloric acid.
Ammonia (NH3) is a weak base that does not completely dissociate in water. It is a weak base with a pH greater than 7 but less than 10. It is a basic solution. It's a 1.0 M solution of ammonia.
Acetic acid (CH3COOH) is a weak acid that does not completely dissociate in water. It has a pH of around 3.5-4.0, making it a weakly acidic solution. It is an acidic solution. It's a 1.0 M solution of acetic acid.
Sodium hydroxide (NaOH) is a strong base that dissociates completely in water. It has a very high pH (greater than 14), making it a strongly basic solution. It is a basic solution. It's a 1.0 M solution of sodium hydroxide.
So, from the above explanation, the order of the increasing pH of the solution is
Hydrochloric acid, Acetic acid, Ammonia, and Sodium hydroxide.
Step 2: Molecular formula of compounds:
Ethane: C2H6, contains 2 carbon atoms
1-Butyne: C4H6, contains 4 carbon atoms
Propene: C3H6, contains 3 carbon atoms
Cyclooctane: C8H16, contains 8 carbon atoms
To know more about Molecular formula visit:
https://brainly.com/question/29435366
#SPJ11
Consider the reaction of (CH3)3CO- with iodomethane or 1-chlorobutane. Will the reaction rate increase, decrease, or remain the same if the concentration of iodomethane is increase? Explain
The reaction of (CH₃)₃CO- with iodomethane or 1-chlorobutane will increase the reaction rate due to an increased frequency of collisions and an increased concentration of electrophiles.
The reaction between (CH₃)₃CO- (tert-butoxide ion) and iodomethane or 1-chlorobutane is an example of an SN₂ nucleophilic substitution reaction. In SN₂ reactions, the rate-determining step involves the simultaneous attack of the nucleophile (tert-butoxide ion) on the electrophile (iodomethane or 1-chlorobutane) with the inversion of configuration.
When the concentration of iodomethane is increased in the reaction mixture, it will lead to an increase in the reaction rate. This increase occurs due to the collision theory and the effect of concentration on the reaction kinetics.
According to the collision theory, for a reaction to occur, the reactant molecules must collide with sufficient energy and proper orientation. By increasing the concentration of iodomethane, there are more iodomethane molecules available in the reaction mixture. Consequently, there will be an increased frequency of collisions between the nucleophile (tert-butoxide ion) and the electrophile (iodomethane), increasing the likelihood of successful collisions leading to a reaction.
Additionally, the rate of an SN₂ reaction is dependent on the concentration of both the nucleophile and the electrophile. In this case, as the concentration of iodomethane increases, the concentration of the electrophile increases. This increase in electrophile concentration will result in a higher reaction rate, as more electrophiles are available for reaction with the nucleophile.
Therefore, increasing the concentration of iodomethane or 1-chlorobutane in the reaction mixture will increase the reaction rate due to an increased frequency of collisions and an increased concentration of electrophiles.
To know more about (CH₃)₃CO- here
https://brainly.com/question/30191400
#SPJ4
1. Which graph represents the endothermic reaction?
2. Which graph represents the exothermic reaction?