Answer:
July 29, Earth completed a full spin in about 1.59 milliseconds shorter than its standard timeframe ( 23 hours and 56 minutes).
How is thermal energy transferred during conduction? Check all that apply.
Thermal energy is transferred between particles that are not touching each other.
Thermal energy is transferred between particles that are in direct contact with each other.
Thermal energy is transferred between objects of different temperatures.
Thermal energy is transferred between objects of the same temperature.
Thermal energy is transferred from slow-moving particles to fast-moving particles.
Thermal energy is transferred from fast-moving particles to slow-moving particles.
The correct options for how thermal energy is transferred during conduction are " Thermal energy is transferred between particles that are in direct contact with each other.", "Thermal energy is transferred between objects of different temperatures.", and "Thermal energy is transferred from fast-moving particles to slow-moving particles." The correct options are B, C, and F.
During conduction, thermal energy is transferred through a material or between objects in direct contact with each other. The transfer of thermal energy occurs because of temperature differences between the two objects or regions. When two objects at different temperatures are in direct contact with each other, the hot object transfers thermal energy to the cold object through collisions between the particles of the two objects. The fast-moving particles in the hot object collide with the slow-moving particles in the cold object, transferring thermal energy from the hot object to the cold object. This process continues until the two objects reach thermal equilibrium, meaning they have the same temperature and there is no more net transfer of thermal energy between them.
Option A is not true because thermal energy is actually transferred between particles that are in direct contact with each other, not particles that are not touching each other.
Option D is not true because thermal energy does not transfer between objects that are already at the same temperature. Heat transfer only occurs when there is a temperature difference.
Option E is not true because thermal energy actually flows from hot objects to cold objects. Therefore, thermal energy is transferred from fast-moving particles to slow-moving particles, not the other way around.
Therefore, The correct answers are B, C, and F.
To learn more about the difference between conduction and convection click:
https://brainly.com/question/13104912
#SPJ1
Find the moment of inertia about the y-axis for three masses in an equilateral triangle if m = 2.00 kg and the sides are 0.500 m. (The connecting rods are massless).
Which of the following measurements is most precise?which one is the most accurate?Please explain
A
4.00 mm
B
4.00 cm
C
4.00 m
D
40.00 m
The 4.00 mm measurement is the most precise, but without knowing the true or accepted value, it is impossible to determine which measurement is the most accurate.
What is precision and accuracy?Precision refers to how close repeated measurements are to each other, while accuracy refers to how close a measured value is to the true or accepted value.
A 4.00 mm measurement has the highest level of precision, as it includes two decimal places, meaning it is accurate to 0.01 mm. However, its accuracy would depend on what the true or accepted value is, which is not provided in the question.
A 4.00 m measurement has the lowest level of precision, as it only includes two significant figures, meaning it is accurate to 0.01 m. However, it may be more accurate than the other measurements if the true or accepted value is closer to 4.00 m than to the other values.
A 40.00 m measurement has the same level of precision as the 4.00 cm measurement, but it is more accurate than the other measurements as it is closer to the true or accepted value of 40.00 m.
Learn more about measurements at
https://brainly.com/question/27233632
#SPJ1
If H0 = 70 km/s/Mpc , estimate the distance between the intervening galaxies responsible for the two sets of lines.
The spectrum of a quasar with a redshift of 0.20 contains two sets of absorption lines, redshifted by 0.17 and 0.180, respectively.
The estimated distance between the intervening galaxies responsible for the two sets of lines is between 729 and 771 Mpc.
What is the Hubble law?We can use the Hubble's law, which relates the recession velocity of a galaxy to its distance, to estimate the distance between the intervening galaxies responsible for the two sets of lines.
The Hubble's law is given by:
v = H0 × d
where v is the recession velocity of the galaxy, d is the distance to the galaxy, and H0 is the Hubble constant.
We are given that the quasar has a redshift of 0.20, which corresponds to a recession velocity of:
v = z × c
where z is the redshift and c is the speed of light. Substituting the given values, we get:
v = 0.20 × 3 × 10^5 km/s = 60,000 km/s
We are also given that the two sets of absorption lines are redshifted by 0.17 and 0.180, respectively. This means that the intervening galaxies responsible for the absorption lines are receding away from us at velocities of:
v1 = z1 × c = 0.17 × 3 × 10^5 km/s = 51,000 km/s
v2 = z2 × c = 0.180 × 3 × 10^5 km/s = 54,000 km/s
Using the Hubble's law, we can estimate the distances to the galaxies:
d1 = v1 / H0 = 51,000 km/s / 70 km/s/Mpc = 729 Mpc
d2 = v2 / H0 = 54,000 km/s / 70 km/s/Mpc = 771 Mpc
Learn more about Hubble law:https://brainly.com/question/13705068
#SPJ1
The estimated distance between the intervening galaxies responsible for the two sets of lines is between 729 and 771 Mpc.
What is the Hubble law?We can use the Hubble's law, which relates the recession velocity of a galaxy to its distance, to estimate the distance between the intervening galaxies responsible for the two sets of lines.
The Hubble's law is given by:
v = H0 × d
where v is the recession velocity of the galaxy, d is the distance to the galaxy, and H0 is the Hubble constant.
We are given that the quasar has a redshift of 0.20, which corresponds to a recession velocity of:
v = z × c
where z is the redshift and c is the speed of light. Substituting the given values, we get:
v = 0.20 × 3 × 10^5 km/s = 60,000 km/s
We are also given that the two sets of absorption lines are redshifted by 0.17 and 0.180, respectively. This means that the intervening galaxies responsible for the absorption lines are receding away from us at velocities of:
v1 = z1 × c = 0.17 × 3 × 10^5 km/s = 51,000 km/s
v2 = z2 × c = 0.180 × 3 × 10^5 km/s = 54,000 km/s
Using the Hubble's law, we can estimate the distances to the galaxies:
d1 = v1 / H0 = 51,000 km/s / 70 km/s/Mpc = 729 Mpc
d2 = v2 / H0 = 54,000 km/s / 70 km/s/Mpc = 771 Mpc
Learn more about Hubble law:https://brainly.com/question/13705068
#SPJ1
What is torque? In general terms
Torque is a measure of the force that can cause an object to rotate about an axis. (answer taken from Khan Academy).
How many volts are required to move a current of 3 A through a resistor of 1000 Ohms?
3000 volts are required to move a current of 3 A through a resistor of 1000 Ohms.
Ohm's law states that the voltage across a conductor is directly proportional to the current flowing through it, given a constant temperature and other conditions. The relationship between voltage, current, and resistance is expressed mathematically as V = IR, where V is the voltage across the conductor, I is the current flowing through it, and R is the resistance of the conductor.
Using Ohm's law, we can find the voltage required to move a current of 3 A through a resistor of 1000 Ohms:
V = I * R
where V is the voltage, I is the current, and R is the resistance.
Substituting the given values, we get:
V = 3 A * 1000 Ohms = 3000 volts
To know more about resistor, here
brainly.com/question/17390255
#SPJ1
Each of the double pulleys shown has a mass moment of inertia of 15 lb·ft·s2 and is initially at rest. The outside radius is 18 in., and the inner radius is 9 in. Consider M1 = 210 lb, M2 = 210 lb, M3 = 510 lb, M4 = 350 lb, and M5 = 130 lb.
Determine the angular acceleration of each pulley. (You must provide an answer before moving on to the next part.)
Answer:
0.163 rad/s^2
Explanation:
Let's start by calculating the gravitational potential energy of each pulley:
[tex]U = mgh[/tex]
For pulleys 1 and 2, the height difference is the same and is equal to the difference in radius:
[tex]h = R_o_u_t - R_i_n = 18in - 9in = 9in[/tex]
Using the given masses and converting to units of pounds, we can calculate the potential energy of pulleys 1 and 2:
[tex]U_1 = m_1gh = 210 lb * 9.81 m/s^2*9 in. / 12 in./ft = 144.2lb*ft[/tex]
[tex]U_2 = m_2gh = 210 lb * 9.81 m/s^2 * 9 in. / 12 in./ft = 144.2 lb*ft[/tex]
For pulleys 3, 4, and 5, the height difference is different for each pulley, and is equal to the difference in height between the top and bottom masses:
[tex]h_3 = 2 (R_o_u_t - R_i_n) = 2(18 in. - 9 in.) = 18 in.[/tex]
[tex]h_4 = 3 (R_o_u_t - R_i_n) = 3 (18 in. - 9 in.) = 27 in.[/tex]
[tex]h_5 = 4 (R_o_u_t - R_i_n) = 4 (18 in. - 9 in.) = 36 in.[/tex]
Using the given masses and converting to units of pounds, we can calculate the potential energy of pulleys 3, 4, and 5:
[tex]U_3 = m_3 g h_3 = 510 lb *9.81 m/s^2 * 18 in. / 12 in./ft = 748.5 lb*ft[/tex]
[tex]U_4 = m_4 g h_4 = 350 lb * 9.81 m/s^2 * 27 in. / 12 in./ft = 687.3 lb*ft[/tex]
[tex]U_5 = m_5 g h_5 = 130 lb * 9.81 m/s^2 * 36 in. / 12 in./ft = 382.8 lb*ft[/tex]
The total potential energy of the system is the sum of the potential energies of all pulleys:
[tex]U_t_o_t_a_l = U_1 + U_2 + U_3 + U_4 + U_5 \\= 210.0 lb*ft + 210.0 lb*ft + 748.5 lb*ft + 687.3 lb*ft + 382.8 lb*ft \\= 2238.6 lb*ft[/tex]
At the start, all pulleys are at rest, so the total kinetic energy of the system is zero. As the system moves, the potential energy is converted into kinetic energy, which is proportional to the angular velocity and the moment of inertia of each pulley:
[tex]K = \frac{1}{2} Iw^2[/tex]
The total kinetic energy of the system is the sum of the kinetic energies of all pulleys:
[tex]K_t_o_t_a_l = \frac{1}{2} I_1 w_1^2 + (1/2) I_2 w_2^2 + \frac{1}{2} I_3 w_3^2 + \frac{1}{2} I_4 w_4^2 +\frac{1}{2} I_5 w_5^2[/tex]
Since the system starts at rest, the total initial energy is equal to the total potential energy of the system:
[tex]E_i = U_t_o_t_a_l = 2238.6 lb*ft[/tex]
As the system moves, the total energy remains constant, so the final energy is also equal to the total potential energy:
[tex]E_f = U_t_o_t_a_l = 2238.6 lb*ft[/tex]
We can now use the conservation of energy principle to relate the initial and final energies to the kinetic energies of each pulley, and hence to their angular accelerations:
[tex]E_i = E_f + K_1 + K_2 + K_3 + K_4 + K_5[/tex]
Substituting the expressions for the kinetic energy and simplifying, we obtain:
[tex]w_1 = w_2 = w_3 = w_4 = w_5 = \sqrt{2g (\frac{U_t_o_t_a_l}{5I})} = 1.023 rad/s[/tex]
Finally, the angular acceleration of each pulley is given by:
[tex]\alpha_1 = \alpha _2 =\alpha _3 = \alpha_4 = \alpha_5 = \frac{w}{t} =\frac{w}{2\pi} = 0.163 rad/s^2[/tex]
Therefore, the angular acceleration of each pulley is 0.163 rad/s^2.
a parallel-plate capacitor consist of plates of area 1.5 *10^-4 m^2 and separation by 1.00mm. the capacitor is connected to a 12-V battery. What is the charge on the plates
The plates are charged to 1.593 10-9 C.
Calculation-
A parallel-plate capacitor's capacitance is determined by:
C = ∈0 A / d
where A is the area of the plates, d is the distance between them, and 0 is the electric constant, also referred to as the permittivity of empty space.
Inputting the values provided yields:
C = (8.85 × [tex]10^-12[/tex] F/m) * 1.5 × [tex]10^-4[/tex] [tex]m^2 / (1.00 × 10^-3 m) = 1.3275 × 10^-10 F[/tex]
Charges are placed on the plates by:
Q = CV
V stands for the voltage applied across the plates. Inputting the values provided yields:
[tex]Q = (1.3275 × 10^-10 F) * 12 V = 1.593 × 10^-9 C[/tex]
to know more about capacitors here:
brainly.com/question/17176550
#SPJ1
A loop of area 0.100 m² is oriented at
a 15.5 degree angle to a 0.500 T
magnetic field. It rotates until it is at a
45.0 degree angle with the field. What
is the resulting CHANGE in the
magnetic flux?
[?] Wb
Answer:
-0.0122 Wb
Explanation:
The magnetic flux through a loop of area A and with an angle θ between the magnetic field and the loop's normal is given by:
Φ = BAcos(θ)
The initial magnetic flux is:
Φ1 = BAcos(θ1) = 0.500 T * 0.100 m² * cos(15.5°) = 0.0476 Wb
The final magnetic flux is:
Φ2 = BAcos(θ2) = 0.500 T * 0.100 m² * cos(45.0°) = 0.0354 Wb
The change in magnetic flux is:
ΔΦ = Φ2 - Φ1 = 0.0354 Wb - 0.0476 Wb = -0.0122 Wb
Therefore, the resulting change in magnetic flux is -0.0122 Wb.
A young girl is riding a bicycle that has a total mass ( including the kid) of 26 kg. The girl is moving at 6.64 m/s on a flat road when she suddenly slams on the brakes and skids to a stop in 17.5 meters. How many joules of work was done on the bike+ girl?
The work done on the bike and girl is -954.67 Joules.
To find the work done on the bike and the girl, we can use the work-energy principle, which states that the work done on an object is equal to its change in kinetic energy.
The initial kinetic energy of the bike and girl is given by:
KEi = 1/2 * m * v²
where m is the mass and v is the velocity
KEi = 1/2 * 26 kg * (6.64 m/s)²
KEi = 954.67 J
The final kinetic energy of the bike and girl is zero, since they come to a stop. Therefore, the change in kinetic energy is:
ΔKE = KEf - KEi = -KEi
The work done on the bike and girl is equal to the negative of the initial kinetic energy:
W = -KEi
W = -954.67 J
To know more about work done, here
brainly.com/question/31506558
#SPJ1
A bungee cord is essentially a very long rubber band that can stretch up to four times its unstretched length. However, its spring constant varies over its stretch. Take the length of the cord to be along the x-direction and define the stretch x as the length of the cord l minus its un-stretched length [tex]l_0[/tex]; that is, [tex]x=l-l_0[/tex] (see below). Suppose a particular bungee cord has a spring constant, for 0 ≤ x ≤ 4.88m , of [tex]k_1=204 N/m[/tex] and for x ≥ 4.88m , of [tex]k_2=111N/m[/tex]. (Recall that the spring constant is the slope of the force F(x) versus its stretch x.) (a) What is the tension in the cord when the stretch is 16.7 m (the maximum desired for a given jump)? (b) How much work must be done against the elastic force of the bungee cord to stretch it 16.7 m? please explain if possible!
Answer:
(a) To find the tension in the cord when the stretch is 16.7 m, we need to first determine which spring constant applies to this stretch. Since 16.7 m is greater than 4.88 m, the spring constant for x ≥ 4.88 m applies, which is
�
2
=
111
�
/
�
k
2
=111N/m.
Next, we need to find the force exerted by the bungee cord at this stretch. The force F(x) exerted by a spring is given by:
F(x) = kx
where k is the spring constant and x is the stretch. Plugging in the values for k and x, we get:
F(16.7) = (111 N/m)(16.7 m) = 1853.7 N
Therefore, the tension in the cord when the stretch is 16.7 m is 1853.7 N.
(b) To find the work done against the elastic force of the bungee cord to stretch it 16.7 m, we need to integrate the force over the stretch. Since the spring constant changes at 4.88 m, we need to break up the integration into two parts.
For 0 ≤ x ≤ 4.88 m, the force is given by:
F(x) = k
1
x
where k
1
= 204 N/m. Integrating this expression over the stretch from 0 to 4.88 m, we get:
W
1
= ∫
4.88
0
k
1
x dx = (204 N/m) * (4.88 m)
2
/ 2 = 996.8 J
For 4.88 m ≤ x ≤ 16.7 m, the force is given by:
F(x) = k
2
x
where k
2
= 111 N/m. Integrating this expression over the stretch from 4.88 m to 16.7 m, we get:
W
2
= ∫
16.7
4.88
k
2
x dx = (111 N/m) * (16.7 m)
2
/ 2 - (111 N/m) * (4.88 m)
2
/ 2 = 1232.8 J
Therefore, the total work done against the elastic force of the bungee cord to stretch it 16.7 m is:
W = W
1
+ W
2
= 996.8 J + 1232.8 J = 2229.6 J
How long does it take a current of 5 mA to deliver 15c of charge
Answer:
50 minutes
Explanation:
Since we need to find time, Time or T = Q / I. Thus, the time taken for current of 5mA to deliver 15c of charge is 3000 seconds which is equivalent to 50 minutes.
alpha centauri is 4.2 light years away from the solar system (and jupiter) what acceleration would be needed to accelerate to the half way point and decelerate until arriving if the trip is to take 400 years.
Acceleration of approximately 0.023 m/s² would be required to reach the halfway point and then decelerate to arrive at Alpha Centauri in 400 years.
What is Acceleration?Acceleration is the amount at which the velocity of an object changes over time. An object can accelerate by changing its speed, direction of motion, or both.
Equation:The required acceleration can be calculated using the formula:
a = (2d) / (t²)
where:
d = distance to be covered (half the distance to Alpha Centauri in this case, which is 2.1 light years or 1.989 x 10¹³ km)
t = time taken to complete the trip (400 years or 1.26 x 10¹⁰ seconds)
Plugging in the values, we get:
a = (2 x 1.989 x 10¹³) / (1.26 x 10¹⁰)²
a ≈ 0.023 m/s²
Therefore, an acceleration of approximately 0.023 m/s² would be required to reach the halfway point and then decelerate to arrive at Alpha Centauri in 400 years.
To know more about acceleration, click here
https://brainly.com/question/11936480
#SPJ1
Urgent:
Let's say you wanted to make a flute from one-inch PVC pipe. If the lowest desired note is C5 on the Equal Temperament Scale (523.25 Hz), what length should it be cut?
In order to produce the C5 note, the length of the one-inch PVC pipe should be cut to approximately 12.91 inches.
Length and frequency of wave productionThe formula to calculate the length of a pipe to produce a desired frequency is:
L = (v/2f) * n
Where:
L is the length of the pipev is the speed of sound in air (approximately 343 m/s at room temperature)f is the desired frequencyn is the harmonic numberTo find the length of the pipe needed to produce the C5 note with a frequency of 523.25 Hz, we can use the formula above and assume the fundamental frequency (n = 1):
L = (v/2f) * n = (343 m/s / 2 * 523.25 Hz) * 1
L = 0.3279 meters or 12.91 inches
Therefore, the length of the one-inch PVC pipe should be cut to approximately 12.91 inches to produce the C5 note.
More on length and frequency can be found here: https://brainly.com/question/17193369
#SPJ1
What is mass? Write two differences between fundament .
Mass is a measure of the amount of matter in an object and is a fundamental property of matter. Fundamental forces refer to the interactions between particles, whereas fundamental particles are the building blocks of matter.
Mass is a measure of the amount of matter in an object, usually measured in kilograms (kg). It is a fundamental property of matter that does not change with location or gravitational forces.
Two differences between fundamental forces and fundamental particles are:
1. Fundamental forces refer to the interactions between particles, whereas fundamental particles are the building blocks of matter that makeup everything in the universe.
2. There are four fundamental forces - gravitational, electromagnetic, weak nuclear, and strong nuclear - while there are six types of fundamental particles - quarks, leptons, bosons, neutrinos, antimatter particles, and Higgs bosons.
Therefore,A fundamental characteristic of matter is mass, which is a measurement of how much matter there is in an item. Fundamental particles are the building components of matter, whereas fundamental forces relate to the interactions between particles.
To learn more about the Higgs boson click:
https://brainly.com/question/31640044
#SPJ1
Calculate the self-weight of a reinforced concrete beam of breadth Xmm; depth Ymm and length 2000mm. Take the unit weight of concrete as 24kN/mm³.
The self-weight of the reinforced concrete beam is 0.024 X Y X 2000 kN.
What is a reinforced concrete beam?A reinforced concrete beam is a structural element designed to withstand the load of a building or other construction. It is made by pouring concrete into a mold or form, and then reinforcing the concrete with steel bars or other reinforcement materials. Reinforced concrete beams are commonly used in the construction of buildings, bridges, and other infrastructure, and can be designed to support a variety of loads and spans.
To calculate the self-weight of the reinforced concrete beam, we first need to determine the volume of the beam, which can be calculated as:
Volume of beam = breadth x depth x length
Substituting the given values, we get:
Volume of beam = Xmm x Ymm x 2000mm
Next, we need to calculate the weight of this volume of concrete, which can be calculated as:
Weight of concrete = Volume of beam x Unit weight of concrete
Substituting the given value of the unit weight of concrete as 24kN/mm³, we get:
Weight of concrete = Xmm x Ymm x 2000mm x 24kN/mm³
Simplifying this expression, we get:
Weight of concrete = 0.024 X Y X 2000 kN
Therefore, the self-weight of the reinforced concrete beam is 0.024 X Y X 2000 kN.
Learn more about concrete here:
https://brainly.com/question/28903866
#SPJ9
What is currently happening with the Canis Major Dwarf galaxy?
A. It is expanding.
B. It is going supernova.
C. The Milky Way is absorbing it.
D. It is dying.
Answer:
The Canis Major Dwarf galaxy is currently being absorbed by the Milky Way galaxy. The gravitational pull of the Milky Way is slowly pulling the Canis Major Dwarf galaxy apart and incorporating its stars into the Milky Way. This process is expected to continue for several billion years until the Canis Major Dwarf galaxy is completely assimilated by the Milky Way.
A narrow white light ray is incident on a block of fused quartz at an angle of 39.1°. Find the angular width of the light ray inside the quartz. (The refraction index is 1.47 at 400nm and 1.458 at 700nm). Answer in units of °.
The angular width of the light ray inside the fused quartz is 52.4°.
What is angular width?
Angular width is the measure of the size or extent of an object or phenomenon as it appears to an observer, expressed in angular units (such as degrees). It is the angle subtended by the object or phenomenon at the observer's eye. In optics, angular width is often used to describe the apparent size of an object or image viewed through a lens or other optical instrument.
The angular width of the light ray inside the fused quartz can be found using the formula:
θ2 = [tex]Sin^{-1}(n2/n1 * sin(θ1))[/tex]
where θ1 is the angle of incidence, n1 is the refractive index of the medium outside the quartz (assumed to be air, which has a refractive index of 1), n2 is the refractive index of the quartz, and θ2 is the angle of refraction.
To find θ2, we need to first find the average refractive index of the quartz for the narrow white light ray. We can use the formula:
[tex]n_{avg}[/tex] = ([tex]n_{blue}[/tex] + [tex]n_{red}[/tex]) / 2
where n_blue is the refractive index for blue light (400 nm) and n_red is the refractive index for red light (700 nm).
[tex]n_{avg}[/tex] = (1.47 + 1.458) / 2 = 1.464
Now we can plug in the values and solve for θ2:
θ2 = [tex]Sin^{-1}(1.464/1 * sin(39.1°))[/tex] = 52.4°
Therefore, the angular width of the light ray inside the fused quartz is 52.4°.
To know more about angular width, visit:
https://brainly.com/question/28202134
#SPJ9
Assuming that H0 = 70 km/s/Mpc , calculate the mass of the parent galaxy.
A small satellite galaxy is moving in a circular orbit around a much more massive parent and just happens to be moving exactly parallel to the line of sight as seen from Earth. The recession velocities of the satellite and the parent galaxy are measured to be 6450 km/s and 6500 km/s , respectively, and the two galaxies are separated by an angle of 0.1∘ in the sky.
The mass of the parent galaxy is 3.42 x 10^12 solar masses assuming H0 = 70 km/s/Mpc.
How do we calculate?the equation for the mass of a galaxy is :
M = (v^2 * r) / G
H0 = 70 km/s/Mpc
v_satellite = 6450 km/s
v_parent = 6500 km/s
We apply the equation for the Hubble law, in order to find the distances to the galaxies:
d_satellite = v_satellite / H0 = 92.1 Mpc
d_parent = v_parent / H0 = 92.9 Mpc
θ = 0.1∘
d = d_satellite * (θ/60) = 0.026 Mpc
We have the equation for the mass of the parent galaxy as :
M = (v^2 * r) / G
M = (6500 km/s)^2 * (0.026 Mpc) / G = 3.42 x 10^12 solar masses
Learn more about the Hubble law at: https://brainly.com/question/29869676
#SPJ1
Please answer this question, I’ll give brainliest if it’s correct!
Q7. A 230 kg piano must be lifted onto a stage that is 1.7 m high.
(a) If the piano is lifted straight up by some very strong people, how much force must they apply? [2 marks]
(b) How much work have they done? [2 marks]
(c) If the stage-crew only need to apply a force of 300 N to get the piano onto the stage if they use a 15 m ramp. How much work is done using the ramp? [2 marks]
(d) What is the efficiency of the ramp? [2 marks]
(e) You should notice that the force needed to lift the piano in A is larger than the force needed to lift the piano in C. How is it possible that the piano can be raised with much less force when the incline is used? (In other words, what is the "trade-off" of using an inclined ramp?) [2 marks]
6.
How many times more intense is the sound of a motorcycle (90 dB) passing by than an automobile (70 dB) passing by?
four times.
ten times
one hundred times
twenty times
Please help answer questions
The following statement is NOT an example of a heteronormative society, Asking a heterosexual person "when did you know you were straight?" Option d is correct.
The other options all reflect the ways in which society assumes heterosexuality as the default or normal sexual orientation, thereby marginalizing those who identify as LGBTQIA+. For example, asking a homosexual person "when did you know you were gay?" assumes that being gay is a deviation from the norm and requires an explanation, while assuming a person is "straight" until they come "out" as homosexual reinforces the idea that heterosexuality is the norm.
Similarly, the portrayal of most couples in the media as heterosexual reinforces the idea that heterosexuality is the default. In contrast, asking a heterosexual person "when did you know you were straight?" does not reinforce heteronormativity, as it is a question that is less commonly asked and does not assume that being straight is the norm. Option d is correct.
To know more about heterosexual, here
https://brainly.com/question/30531204
#SPJ1
A surface at 27 °C emits radiation at a rate of 100 W. At what rate does an identical surface at 54 °C emit radiation
The rate of radiation emitted by an identical surface at 54°C is 2,170,812.96 W. This is significantly higher than the rate of radiation emitted by the surface at 27°C, which was 100 W.
What is Stefan-Boltzmann Law?The Stefan-Boltzmann Law states that the rate of radiation emitted by a blackbody is proportional to the fourth power of its absolute temperature.
The rate of radiation emitted by an identical surface at 54°C can be found using the Stefan-Boltzmann Law.
Therefore, we can calculate the rate of radiation emitted by the surface at 54°C using the following equation:
Power emitted = σ x (Temperature)⁴
Where σ is the Stefan-Boltzmann constant, which is equal to 5.67 x 10⁻⁸ Wm⁻²K⁻⁴.
Plugging in the given values, we have:
Power emitted = 5.67 x 10⁻⁸ Wm⁻²K⁻⁴ x (54 + 273)⁴
Power emitted = 2,170,812.96 W
Therefore, the rate of radiation emitted by an identical surface at 54°C is 2,170,812.96 W. This is significantly higher than the rate of radiation emitted by the surface at 27°C, which was 100 W. This is due to the fact that the fourth power of the absolute temperature of the surface is much higher at 54°C than at 27°C.
For more questions related to radiation
https://brainly.com/question/893656
#SPJ1
The rate of radiation emitted by an identical surface at 54°C is 2,170,812.96 W. This is significantly higher than the rate of radiation emitted by the surface at 27°C, which was 100 W.
What is Stefan-Boltzmann Law?The Stefan-Boltzmann Law states that the rate of radiation emitted by a blackbody is proportional to the fourth power of its absolute temperature.
The rate of radiation emitted by an identical surface at 54°C can be found using the Stefan-Boltzmann Law.
Therefore, we can calculate the rate of radiation emitted by the surface at 54°C using the following equation:
Power emitted = σ x (Temperature)⁴
Where σ is the Stefan-Boltzmann constant, which is equal to 5.67 x 10⁻⁸ Wm⁻²K⁻⁴.
Plugging in the given values, we have:
Power emitted = 5.67 x 10⁻⁸ Wm⁻²K⁻⁴ x (54 + 273)⁴
Power emitted = 2,170,812.96 W
Therefore, the rate of radiation emitted by an identical surface at 54°C is 2,170,812.96 W. This is significantly higher than the rate of radiation emitted by the surface at 27°C, which was 100 W. This is due to the fact that the fourth power of the absolute temperature of the surface is much higher at 54°C than at 27°C.
For more questions related to radiation
https://brainly.com/question/893656
#SPJ1
The electrical signals sent to the brain indicate the
loudness, pitch, and quality
pitch
of a sound wave.
loudness
quality
The electrical signals sent to the brain indicate the loudness, pitch, and quality of a sound wave.
Option A is correct
What are electrical signals?An electrical signal is described as a voltage or current which conveys information, usually it means a voltage. It is the term can be used for any voltage or current in a circuit.
The apparent strength of a sound wave is referred to as loudness, and it is commonly expressed in decibels. (dB). The perceived sound is louder the larger the amplitude of the sound wave.
The apparent highness or lowness of a sound is known as pitch, and it is based on the sound wave's frequency. When compared to lower frequency sound waves, higher frequency sound waves are perceived as having a higher pitch.
Learn more about electrical signal at: https://brainly.com/question/16783396
#SPJ1
In mirror 1 of two 110° superimposed mirrors
If the rays of the sun fall at an angle of a = 60°, 2nd
What is the difference between thinking in the mirror?
In the case of two superimposed mirrors, the virtual image will be a reflection of the original object, with the angle between the object and its virtual image depending on the angle between the mirrors.
How to solveIf you are referring to two superimposed mirrors with an angle of 110° between them, and sunlight is striking the first mirror at an angle of 60°, then you might be looking to calculate the angle of reflection.
The angle of incidence is equal to the angle of reflection. In this case, the angle of incidence, a, is 60°, so the angle of reflection will also be 60°. However, this angle is measured with respect to the normal (a perpendicular line to the mirror's surface), not with respect to the mirror itself.
The difference between thinking in the mirror might refer to the virtual image created by the mirror. In the case of two superimposed mirrors, the virtual image will be a reflection of the original object, with the angle between the object and its virtual image depending on the angle between the mirrors.
Read more about mirrors here:
https://brainly.com/question/1126858
#SPJ1
1. An object, constrained to move along the x-axis is acted upon by a force F(x) where = a = 5 N/m, b = -2N/m F(x) = ax + bx² The object is observed to proceed directly from x = 1m to x = 3.0m. How much work was done by the object by the force? Does the process of integration take into account the fact that the force F(x) changes sign in the interval.
What speed must you toss a baseball straight upwards so that it takes 5 seconds to return to you?
The velocity of tossing the baseball is 24.5 m/s.
Time taken by the ball, t = 5 s
Displacement of the ball, s = 0
An object can be kept moving without the application of force. The only time a force is needed is to keep an acceleration going. Additionally, there is a downward force as well as a downward acceleration in the case of an upwardly moving projectile.
Applying the second equation of motion,
s = ut + 1/at²
s = ut + 1/2 (-g)t²
0 = ut - 1/2 gt²
ut = 1/2 gt²
Therefore, the velocity of toss,
u = 1/2 gt
u = 1/2 x 9.8 x 5
u = 24.5 m/s
To learn more about velocity, click:
https://brainly.com/question/19979064
#SPJ1
Two parallel plates of area 5.68∙10-³ m²
have equal and opposite charges of
4.38 10-11 C placed on them. What is
the electric field between the plates?
[?] N/C
the electric field between the plates is 436.7 N/C.
How do we calculate?The electric field between the plates of a parallel plate capacitor is given by:
E = σ/ε₀
where σ is the surface charge density and ε₀ is the permittivity of free space.
surface charge density =
σ = Q/A
σ = Q/A = (2 × 4.38 × 10^-11 C) / (2 × 5.68 × 10^-3 m²) = 3.861 × 10^-6 C/m²
We substitute this value of σ and the value of
ε₀ = 8.85 × 10^-12 F/m, we get:
E = σ/ε₀
E = (3.861 × 10^-6 C/m²) / (8.85 × 10^-12 F/m)
E = 436.7 N/C
Learn more about electric field at:
https://brainly.com/question/14372859
#SPJ1
One particular lightbulb has a 0.22-meter length of the tungsten wire used as its filament. This tungsten wire filament has a resistance of 19 ohms at a temperature of 20°C. The tungsten wire filament has a resistance of 240 ohms when this bulb is operated at a potential difference of 120 volts.
Calculate the cross-sectional area of this tungsten wire filament. [Show all work, including the equation and substitution with units.]
Calculate the power of this lightbulb when it is being operated at a potential difference of 120 volts. [Show all work, including the equation and substitution with units.]
The cross-sectional area of this tungsten wire filament is 6.544 x 10⁻⁹m² and the power of this lightbulb when it is being operated at a potential difference of 120 volts is 60 watts.
What is resistance?The amount that a substance or a device obstructs the passage of an electric current is known as its resistance. It is described as the proportion of the voltage across a conductor to the current flowing through it.
How do you determine it?The resistance formula may be used to get the tungsten wire filament's cross-sectional area:
R = (ρ * L) / A
where R is the resistance, is the tungsten's resistivity, L is the wire's length, and A is its cross-sectional area.
The resistance of the wire is 19 ohms at 20 °C. To find A, we can rearrange the equations as follows:
A = (ρ * L) / R
Inputting the values results in:
A = (5.6 x 10^-8 Ωm * 0.22 m) / 19 Ω
A = 6.544 x 10^-9 m^2
The tungsten wire filament's cross-sectional area is 6.544 x 10^-9 m^2, as a result.
The power formula may be used to determine the lightbulb's power:
P = V^2 / R
where P denotes power, V denotes potential difference, and R denotes resistance of the tungsten wire filament at 120 volts.
The wire's resistance at 120 volts is 240 ohms. Inputting the values results in:
P = (120 V)^2 / 240 Ω
P = 60 W
Therefore, while the lightbulb is operating at a 120 volt potential difference, its output is 60 watts.
To know more about resistance, visit:
https://brainly.com/question/29427458
#SPJ9
v=√gr tan 31.0 grados
This is an equation that can be used to calculate the velocity (V) required to launch an object from a ramp at an angle of 31.0 degrees with the horizontal, neglecting air resistance.
In the equation, g is the acceleration due to gravity (approximately 9.8 m/s^2) and r is the radius of curvature of the ramp. Since the radius is not given, we can assume it to be constant or ignore it altogether if it is not necessary.
The expression tan 31.0 degrees represents the slope of the ramp. By taking the tangent of the angle, we can determine the vertical component of the slope. This is important because it affects the force of gravity acting on the object. By taking the square root of the product of g and tan 31.0 degrees, we can determine the velocity needed to launch the object at the given angle.
To know more about velocity, here
brainly.com/question/17127206
#SPJ1
--The complete question is, What does this equation describes, V=√gr tan 31.0 grados?--