Which of the following was one of Hubble's conclusions due to red shift?
A. There are millions of galaxies in the universe, not just ours.
B. The universe is contracting.
C. Background radiation shows the Big Bang occurring.
D. The universe is expanding.

Answers

Answer 1

D. The universe is expanding. Hubble's observation of red shift in the light from distant galaxies led him to conclude that these galaxies were moving away from us and that the universe was expanding.

What was Hubble's observation?

Hubble's most famous observation was his discovery of the relationship between the redshift of light from distant galaxies and their distance from Earth. He observed that the light from distant galaxies was shifted toward longer, redder wavelengths, which indicated that the galaxies were moving away from us. By analyzing the degree of redshift, Hubble was able to calculate the distance of these galaxies from Earth and found that they were much farther away than previously thought. This led him to conclude that the universe was expanding and laid the foundation for the Big Bang theory.

To know more about wavelengths, visit:

https://brainly.com/question/31143857

#SPJ1


Related Questions

phet circuit lab pls help

Answers

Series (ckt II) will have greater resistor voltage equal to 20v as the voltage will add in series.

What is Battery Current?

Battery current refers to the flow of electric charge in a circuit that is provided by a battery. In simpler terms, it is the amount of electric current that is being drawn from or supplied to a battery. Battery current is measured in amperes (A) and can be either positive or negative, depending on whether the battery is being charged or discharged.

When a battery is being discharged, the current flows from the battery's positive terminal through the external circuit and back to the negative terminal. This is referred to as the discharge current, and its magnitude is determined by the resistance of the circuit and the voltage of the battery.

Read more about resistor voltage here:

https://brainly.com/question/24858512

#SPJ1

Equal volumes of two fluids are added to the U-shaped pipe as shown in the figure below. The pipe is open at both ends and the fluids come to equilibrium without mixing. What is the ratio B/A of the fluid densities? (Assume the ratio air/fluid for fluids A and B is small enough to be neglected. Use the following as necessary: h.)?

Answers

The ratio of density of fluid A to that of fluid B is 1/3.

From the figure,

The distance of the fluid A to the line B from the top of the fluid, d₁ = 3h

The distance of the fluid B to the line B from the top of the fluid, d₂ = h

According to Pascal's law, pressure of A is equal to that of B, along the same horizontal line.

P(A) = P(B)

ρ₁gd₁ = ρ₂gd₂

Therefore, the ratio of density of fluid A to that of fluid B,

ρ₁/ρ₂ = d₂/d₁

ρ₁/ρ₂ = h/3h

ρ₁/ρ₂ = 1/3

To learn more about density of fluids, click:

https://brainly.com/question/24280763

#SPJ1

Your question was incomplete. Attaching the image file here.

The chains of a swing on a playground swing set are 4.0 m
long. What is the period of this swing?
Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

2.54 seconds

Explanation:

The period of a swing on a playground swing set can be calculated using the formula:

T = 2π√(L/g)

where T is the period, L is the length of the swing's chain, and g is the acceleration due to gravity, which is approximately 9.81 m/s².

Substituting the given values, we get:

T = 2π√(4.0 m/9.81 m/s²)

T = 2π√0.407

T = 2.54 s (rounded to two significant figures)

Therefore, the period of the swing is 2.54 seconds.

Hope this helps!

1. It is important to make your own decisions. At the same time, it is good to ask for help. Identify a
situation where you absolutely need to be thinking for yourself and one in which turning to others
is best when it comes to making decisions about your health.

Answers

Answer:

Explanation:

Decision making is the process of making choices and it is important for a person to make their own decisions in life as it makes them accountable for the choices they made.

What is decision making?

Decision making is the process of making your own choices by identifying a decision, gathering the information, and assessing alternative resolutions for the decision.

Each person has the right to make their own decisions and have choices about how they live their life in their own way. Each person has different ideas about what is important and what makes them feel best in life. Making own choices about things in life is very important because it gives the life meaning.

Being responsible in making own decisions means being accountable, taking charge of the course of the actions and the consequences of choices, however it is also important to turn to others in cases of making decisions about health as this helps in making the best decision by understanding things from other perspectives.

A loop of area 0.100 m² is oriented at
a 15.5 degree angle to a 0.500 T
magnetic field. It rotates until it is at a
45.0 degree angle with the field. What
is the resulting CHANGE in the
magnetic flux?
[?] Wb

Answers

Answer:

Flux = Area * Field

A1 = .1 m^3 * cos 64.5     since we need perpendicular area

A1 = .043  m^2          perpendicular to field

A2 = .1 m^3 * cos 45 = .071 m^2

A = (.071 - .043) m^2 = .028 m^2     change in area

Change in flux = .028 m^2 ^ .5 T = .014 T m^2

After coming down a slope, a 60-kg skier is coasting northward on a level, snowy surface at a constant 15 m>s. Her 5.0-kg cat, initially running southward at 3.8 m>s, leaps into her arms, and she catches it. (a) Determine the amount of kinetic energy converted to internal energy in the Earth reference frame. (b) What is the velocity, measured in the Earth reference frame, of an inertial reference frame in which the cat’s kinetic energy does not change?

Answers

The velocity, measured in the Earth reference frame, of an inertial reference frame in which the cat's kinetic energy does not change is equal to the velocity of the skier before the collision. The velocity of the skier before the collision is 15 m/s.

What is law of conservation of momentum?

According to the law of conservation of momentum, the total momentum before the collision must be equal to the total momentum after the collision. This can be expressed as m1*v1 + m2*v2 = (m1 + m2)*vf, where m1 and m2 are the masses of the skier and the cat respectively, v1 is the velocity of the skier, and vf is the velocity of the skier and the cat after the collision.

The kinetic energy converted to internal energy in the Earth reference frame can be determined by applying the law of conservation of momentum.

The amount of kinetic energy converted to internal energy can be calculated as follows:

m1*v1 = (m1 + m2)*vf

vf = (m1*v1)/(m1 + m2)

KE = (1/2)*m2*v2²

KE converted = KE initial - KE final

KE converted = (1/2)*m2*v2² - (1/2)*m2*((m1*v1)/(m1 + m2))²

KE converted = (1/2)*m2*v2² - (1/2)*m2*((60*15)/(60 + 5))²

KE converted = (1/2)*5*3.8² - (1/2)*5*(15²/65)

KE converted = 28.8 - 22.15

KE converted = 6.65 J

The velocity, measured in the Earth reference frame, of an inertial reference frame in which the cat's kinetic energy does not change is equal to the velocity of the skier before the collision.

For more questions related to kinetic energy

https://brainly.com/question/8101588

#SPJ1

A team of students conducts a series of experiments to investigate collisions. In the first experiment, the two carts collide with each other on a smooth surface. The carts stick together and continue to move forward. In the second experiment, the two carts collide with each other on a rough surface. The carts stick together and quickly come to rest. In both experiments, the initial speeds of the carts are identical. Is there a difference in the total energy of the two experiments?

A.
No, because the kinetic energy of the two-cart system after the collision is the same in both the experiments.
B.
No, because the sum of the kinetic energy and thermal energy of the two-cart system after the collision is the same in both experiments.
C.
Yes, because the kinetic energy of the two-cart system in the second experiment after the collision is less than that of the first experiment.
D.
Yes, because the sum of the kinetic energy and thermal energy of the two cart system in the second experiment after the collision is less than that of the first experiment.

Answers

If a team of students conducts a series of experiments to investigate collisions. C. Yes, because the kinetic energy of the two-cart system in the second experiment after the collision is less than that of the first experiment.

What is difference in the total energy of the two experiments?

In the first experiment, the two carts collide on a smooth surface and stick together, so the kinetic energy of the system after the collision is entirely in the form of translational kinetic energy of the combined carts.

In the second experiment, the two carts collide on a rough surface and stick together, so some of the kinetic energy is converted into thermal energy due to friction between the carts and the surface. This means that the kinetic energy of the system after the collision is less than in the first experiment.

Option A is incorrect because the kinetic energy is not necessarily the same in both experiments.

Option B is incorrect because the thermal energy is not necessarily the same in both experiments.

Option D is incorrect because the thermal energy is not considered in the calculation of the total energy of the system after the collision.

Learn more about total energy  here:https://brainly.com/question/29581211

#SPJ1

A ball has a mass 0f 2Kg and a diameter of 50cm calculate the buoyant force and water displaces...​

Answers

The buoyant force acting on the ball is 5134.7 N and the water displaced by the ball is 0.5236 [tex]m^{3}[/tex] (or 523.6 L).

We use the following formula:

Weight of displaced water = Buoyant force

Volume of water displaced times water's density equals the weight of the water.

The first step is to calculate the volume of the ball:

Volume of ball = ([tex]\frac{4}{3}[/tex]) × π × [tex]\frac{diameter}{2}^3[/tex]

Volume of ball = ([tex]\frac{4}{3}[/tex]) × π × [tex](\frac{50 cm}{2})^3[/tex]

Volume of ball = 0.5236 [tex]m^{3}[/tex]

Next, calculate water displaced:

Density of water = 1000 [tex]\frac{kg}{m^3}[/tex](at standard conditions)

Weight of water displaced = 1000 [tex]\frac{kg}{m^3}[/tex] × 0.5236 [tex]m^{3}[/tex]

Weight of water displaced = 523.6 kg

Finally, we can calculate the buoyant force:

Buoyant force = weight of water displaced

Buoyant force = 523.6 kg x 9.81 [tex]\frac{m}{s^2}[/tex]

Buoyant force = 5134.7 N

To know more about buoyant force, visit:

https://brainly.com/question/15706301

A single resistor is connected to a 1.5V battery. The resistor emits 10W of power. What is the resistance of the resistor?

Answers

Answer:

[tex]0.225\; {\rm \Omega}[/tex] (assuming that internal resistance in the battery is negligible.)

Explanation:

Let [tex]R[/tex] denote the resistance of this resistor.

Let [tex]V[/tex] denote the voltage across this resistor. In this question, it is given that [tex]V = 1.5\; {\rm V}[/tex].

By Ohm's Law, the current [tex]I[/tex] going through this resistor would be equal to:

[tex]\displaystyle I = \frac{V}{R}[/tex].

The power [tex]P[/tex] consumed in an electric circuit is equal to the product of voltage and current:

[tex]P = V\, I[/tex].

Substitute [tex]I = (V / R)[/tex] into this equation:

[tex]\displaystyle P = \frac{V^{2}}{R}[/tex].

Rearrange to find resistance [tex]R[/tex]:

[tex]\begin{aligned} R &= \frac{V^{2}}{P} \\ &= \frac{(1.5\; {\rm V})^{2}}{(10\; {\rm W})} \\ &=0.225\; {\rm \Omega}\end{aligned}[/tex].

that we odels, we 2. his type entists base tand somet of the real ents, we five elect period nd at particles a) Copy the table below into your books. b) In the first column, write down the names of the first 20 elements. c) Use the Periodic Table at the back of this book to complete the table. Element Symbol Number of Number of Number of protons electrons protons and neutrons Na V Number of neutrons The diagrams below show models of certain elements. a) Write down the number of protons, electrons and neutrons for each element. b) Identify each element. ents have number. Symbol for the Figure 11 Atomic information a Mass number and neutrons​

Answers

The difference between an atom's mass number (A) and atomic number (Z) is equal to the number of neutrons.

1) H – Hydrogen - 1 proton, 1 electron, 0 neutrons

2) He – Helium - 2 protons, 2 electrons, 2 neutrons

3) Li – Lithium - 3 protons, 3 electrons, 4 neutrons

4) Be – Beryllium - 4 protons, 4 electrons, 5 neutrons

5) B – Boron - 5 protons, 5 electrons, 6 neutrons

6) C – Carbon - 6 protons, 6 electrons, 6 neutrons

7) N – Nitrogen - 7 protons, 7 electrons, 8 neutrons

8) O – Oxygen - 8 protons, 8 electrons, 8 neutrons

9) F – Fluorine - 9 protons, 9 electrons, 10 neutrons

10)Ne – Neon - 10 protons, 10 electrons, 10 neutrons

11) Na – Sodium - 11 protons, 11 electrons, 12 neutrons

12) Mg – Magnesium - 12 protons, 12 electrons, 12 neutrons

13) Al – Aluminium - 13 protons, 13 electrons, 14 neutrons

14) Si – Silicon - 14 protons, 14 electrons, 14 neutrons

15) P – Phosphorus - 15 protons, 15 electrons, 17 neutrons

16) S – Sulphur - 16 protons, 16 electrons, 16 neutrons

17) Cl – Chlorine - 17 protons, 17 electrons, 18 neutrons

18) Ar – Argon - 18 protons, 18 electrons, 22 neutrons

19) K – Potassium - 19 protons, 19 electrons, 20 neutrons

20) Ca – Calcium - 20 protons, 20 electrons, 28 neutrons

To learn more about atomic number, click:

https://brainly.com/question/8834373

#SPJ1

How many amperes of current are flowing through a circuit if the battery provides 7.0 V and the light bulb has a resistance of 39 Ω?

Answers

Using Ohm's Law, we can calculate the current as I = V/R, where I is the current in amperes, V is the voltage in volts, and R is the resistance in ohms.

So, in this case, the current flowing through the circuit can be calculated as:

I = 7.0 V / 39 Ω

I ≈ 0.179 A

Therefore, approximately 0.179 amperes of current are flowing through the circuit.

The amount of current flowing through the given circuit is 0.179 Amperes.

We can use Ohm's Law, which says that current (I) is equal to the voltage (V) divided by resistance (R), to figure out how much current is passing through the circuit. This can be shown mathematically as:

I = V / R

I = the amount of electricity in amperes

V = voltage in volts

R  = resistance measured in ohms.

Given that the battery gives off 7.0 V and the light bulb has a resistance of 39, we can plug these numbers into the formula:

I = 7.0 V / 39 Ω

I = 0.1795 A (to four places after the decimal)

So, about 0.1795 amperes of current are moving through the circuit.

To know more about Ohm's Law:

https://brainly.com/question/231741

The 0.100 kg
sphere in (Figure 1) is released from rest at the position shown in the sketch, with its center 0.400 m
from the center of the 5.00 kg
mass. Assume that the only forces on the 0.100 kg
sphere are the gravitational forces exerted by the other two spheres and that the 5.00 kg
and 10.0 kg
spheres are held in place at their initial positions.

What is the speed of the 0.100 kg sphere when it has moved 0.150 m to the left from its initial position?

Answers

As per the given data, the speed of the 0.100 kg sphere when it has moved 0.150 m to the left from its initial position is 0.736 m/s.

Since only the gravitational forces are acting on the 0.100 kg sphere, we can use the conservation of energy principle to find its speed at any position.

We can use the initial position of the sphere as the reference point for potential energy and write the initial total energy as the sum of the potential energy and kinetic energy.

At any other position, the total energy will still be the sum of the potential energy and kinetic energy, but their values will be different.

The initial total energy of the system is:

E_i = m_0gh

Where m_0 is the mass of the 0.100 kg sphere, g is the acceleration due to gravity, and h is the height of the sphere above the reference position. In this case, h = 0.4 m.

The final total energy of the system is:

[tex]E_f = m_0v^2/2 + m_0gh_f[/tex]

Where v is the speed of the sphere, and h_f is the height of the sphere above the reference position at the final position.

Since the system is isolated, the initial and final energies must be equal:

E_i = E_f

[tex]m_0gh = m_0v^2/2 + m_0gh_f[/tex]

Solving for v, we get:

v = sqrt(2gh - 2gh_f)

To find the final height h_f, we can use the fact that the center of mass of the system remains fixed throughout the motion.

The initial center of mass is at a distance of 0.4 m from the center of the 5.00 kg sphere, and the masses of the 5.00 kg and 10.0 kg spheres are 5.00 kg and 10.0 kg, respectively.

Therefore, the initial center of mass is at:

x_cm,i = (0.4*0.1 + 5*0 + 10*0)/(0.1 + 5 + 10) = 0.032 m

where we have taken the x-axis to be horizontal and passing through the centers of the 5.00 kg and 10.0 kg spheres.

At the final position, the center of mass must still be at the same horizontal position:

x_cm,f = (5*0.1*(-0.15) + 10*0)/(0.1 + 5 + 10) = -0.011 m

where we have taken the leftward direction as positive.

The final height of the sphere is then:

h_f = 0.4 - x_cm,f = 0.4 + 0.011 = 0.411 m

Substituting the values of g, h, and h_f in the equation for v, we get:

v = sqrt(2*9.81*0.4 - 2*9.81*0.411) = 0.736 m/s (rounded to three significant figures)

Therefore, the speed of the 0.100 kg sphere when it has moved 0.150 m to the left from its initial position is 0.736 m/s.

For more details regarding sphere, visit:

https://brainly.com/question/11374994

#SPJ1

A 11.50 kg object has the given and acceleration components.
=(0.67ms2)+(0.81ms3)
=(11.7ms2)−(0.63ms3)
What is the magnitude net of the net force acting on the object at time =4.47 s ?

Answers

Answer:

To find the net force acting on the object, we need to add the force components along each axis. We are given the acceleration components, which we can use to find the force components using Newton's second law:

F = ma

Along the x-axis:

F_x = ma_x = (11.7 kg)(0.67 m/s^2) = 7.839 N

Along the y-axis:

F_y = ma_y = (11.7 kg)(-0.63 m/s^2) = -7.371 N

The net force is the vector sum of the x and y components of force:

F_net = sqrt(F_x^2 + F_y^2) = sqrt((7.839 N)^2 + (-7.371 N)^2) = 10.925 N

Therefore, the magnitude of the net force acting on the object at time t = 4.47 s is 10.925 N.

Can anyone explain how to tackle this problem please:
Figure 15.5 shows a 50 kg lead cylindrical piston which floats on 0.37 mol of compressed ideal air at 30°C. How far does the piston move if the temperature is increased to 300°C?
A. 65 cm
B. 140 cm
C. 73 cm
D. 730 cm

Answers

Answer:

P V = N R T   ideal gas equation

V2 / V1 = T2 / T1      since P, N, R are constant

V2 = 573 / 303 * V1 = 1.89 V1

V = π R^2 h     volume of cylinder

V1 = 3.14 * .05^2 * h1 = .00785 h1

V2 = .0148 h1

A (h1 + h)  = A * h2

h = h2 - h1 = (.0148 - .00785) h1 = .00695 h1     distance moved by piston

Use V1 = N R T1 / P1 = A h1     to calculate h1

h1 = N R T1 / (A * P1)      A * F/A = F        to simplify denominater

h1 = .37 * 8.31 * 303 / (50 * 9.8) = 1.90 m     P = F / A

Δh = .00695 h1 = .0132 m = 1.32 cm

Math should be checked!

A radioactive sample consists of a mixture of a S-35 and P-32 .initially 5% of the activity is due to the S-35 and 95% due to the P-32 .At what subsequent time will the activities of the two nucleide be equal

Answers

The time at which the activities of the two nuclides be equal is 2.7 s.

Radioactivity is the process of an unstable atomic nucleus spontaneously splitting or disintegrating and emitting radiation in the form of α-rays, β-rays, or γ-rays.

λ₁ = 0.05

λ₂ = .95

According to the law of radioactive decay, the total number of nuclei in a sample material is directly proportional to the number of nuclei that are undergoing the decaying process in that sample material per unit time.

λ₁N₁ = λ₂N₂

λ₁N₀e⁻(λ₁t) = λ₂N₀e⁻(λ₂t)

λ₁/λ₂ = e⁻(λ₁ - λ₂)t

ln(λ₁/λ₂) = (λ₁ - λ₂)t

Therefore time,

t = ln(λ₁/λ₂)/(λ₁ - λ₂)

t = ln(0.05/.95)/(0.95 - 0.05)

t = -2.94 x -0.9

t = 2.7 s

To learn more about radioactivity, click:

https://brainly.com/question/30026438

#SPJ1

The angle of reflection is 15°, and the incident ray is bent 15° below the normal
What will be the difference in thinking when you turn it?

Answers

The angle of reflection is the angle between the reflected ray and the normal to the surface

What is the difference in thinking?

The angle of reflection is the angle made by the reflected ray with the surface, measured relative to the normal, and is equal to the angle of incidence, which is the angle between the incident ray and the normal.

The angle of reflection can be determined using the law of reflection, which states that the angle of incidence is equal to the angle of reflection. This law applies to the reflection of light, sound, and other waves from a smooth, flat surface, such as a mirror or a still body of water.

Learn more about reflected ray:https://brainly.com/question/3764651

#SPJ1

which of the following is a form of potential energy

Answers

here are some forms:
Elastic Potential Energy
Electrical Potential Energy
Gravitational Potential Energy
Nuclear Potential Energy

A man is standing away from the School
Building at a distance of
300m . He claps his hands and hears an echo calculate the time interval of him hearing his echo

Answers

The time interval between the man clapping and hearing his echo is approximately 1.75 seconds.

What do you mean by echo?

An echo is a repetition or reflection of a sound or signal. It can be caused by sound waves bouncing off a surface, signal interference, or the repetition of a message in communication.

The speed of sound in air at room temperature is approximately 343 meters per second. When a person claps, the sound waves propagate outward in all directions and reach the school building, where they bounce off and return to the person as an echo. The time it takes for the sound to travel the distance to the building and back to the person is the time interval between the clap and the echo.

To calculate the time interval, we can use the following formula:

time = distance / speed

where distance is the total distance traveled by the sound (twice the distance from the person to the school building), and speed is the speed of sound in air.

distance = 2 x 300m = 600m

speed = 343 m/s

time = 600m / 343 m/s = 1.75 seconds (rounded to two decimal places)

Therefore, the time interval between the man clapping and hearing his echo is approximately 1.75 seconds.

Learn more about echo here:

https://brainly.com/question/9527413

#SPJ9

describe the energy changes in a mass spring system that is oscillating horizontally explain how this changes of the system is vibrating vertically​

Answers

Answer:

Below

Explanation:

In a mass-spring system that is oscillating horizontally, the energy changes between potential energy and kinetic energy. When the mass is at its maximum displacement from the equilibrium position, it has maximum potential energy and zero kinetic energy. As the mass starts to move towards the equilibrium position, its potential energy decreases while its kinetic energy increases. At the equilibrium position, the mass has zero potential energy and maximum kinetic energy. As the mass moves away from the equilibrium position, its kinetic energy decreases while its potential energy increases. This cycle repeats as long as the system is oscillating.

Now, if the support of the system is vibrating vertically, the energy changes that occur during horizontal oscillations cause the mass to move vertically as well. As the mass moves to its maximum displacement from the equilibrium position horizontally, it also moves upwards, gaining potential energy due to its increased height from the ground. As the mass moves towards the equilibrium position horizontally, it also moves downwards, losing potential energy and gaining kinetic energy due to its increased speed towards the ground. At the equilibrium position, the mass has zero potential energy but maximum kinetic energy, which is all in the vertical direction. As the mass moves away from the equilibrium position horizontally, it also moves upwards, gaining potential energy again. The cycle repeats, causing the mass to oscillate vertically as well.

Therefore, the energy changes that occur during horizontal oscillations in a mass-spring system can cause the system to vibrate vertically if the support is vibrating vertically.

9. A brick weighs 21 N. Measured underwater, it weighs 12 N. What is the
size of the buoyant force exerted by the water on the brick?
33 N
21 N
12 N
9N
1

Answers

Answer:

9N

Explanation:

The difference between the weight of the brick in air and the weight of the brick underwater is equal to the buoyant force exerted by the water on the brick.

Weight of the brick in air = 21 N

Weight of the brick underwater = 12 N

Therefore, the buoyant force exerted by the water on the brick is:

Buoyant force = Weight of the brick in air - Weight of the brick underwater

Buoyant force = 21 N - 12 N

Buoyant force = 9 N

So the size of the buoyant force exerted by the water on the brick is 9 N. Answer: 9N.

Hope this helps!

When the hydrogen in a star's core is used up, what occurs?
A. The core collapses causing a huge explosion called a supernova.
B. The nitrogen core collapses and the outer layer expands into a red giant.
C. The helium core collapses and the outer layer expands into a red giant.
D. The outer layer drifts away leaving a hot dense white dwarf core.

Answers

The core will collapse under its own gravity, leading to a supernova explosion that expels the outer layers of the star into space, leaving behind either a neutron star or a black hole, depending on the mass of the core.

What happens when the Helium in the core gets used up?

As the helium in the core is used up, the core will contract and heat up once again until it is hot enough to fuse heavier elements. This process will continue until the core is made up of iron, which cannot be fused further. At this point, the core will collapse under its own gravity, leading to a supernova explosion that expels the outer layers of the star into space, leaving behind either a neutron star or a black hole, depending on the mass of the core.

For high-mass stars, the process is similar, but the fusion reactions proceed more rapidly, leading to a shorter lifespan and a more violent supernova explosion. In both cases, the ultimate fate of the star depends on its mass and the resulting conditions in its core.

When the hydrogen in a star's core is used up, a series of events can occur depending on the mass of the star. For low to medium-mass stars, such as our Sun, the core will contract and heat up until it is hot enough to initiate the fusion of helium into carbon and oxygen. This process, known as the helium-burning phase, will cause the outer layers of the star to expand into a red giant.

To know more about neutron star, visit:

https://brainly.com/question/31087562

#SPJ1

String 1 in the figure has linear density 2.60 g/m and string 2 has linear density 3.30 g/m. A student sends pulses in both directions by quickly pulling up on the knot, then releasing it. She wants both pulses to reach the ends of the strings simultaneously.

What should the string length L1 be?

What should the string length L2 be?

Answers

Explanation:

We can use the formula for the speed of waves on a string:

v = sqrt(T/μ)

where v is the speed of the wave, T is the tension in the string, and μ is the linear mass density (mass per unit length) of the string.

Let's denote the tension in both strings by T. Since the pulses must reach the ends of both strings simultaneously, we must have:

L1/v1 = L2/v2

where L1 and L2 are the lengths of the strings, v1 is the speed of the wave on string 1, and v2 is the speed of the wave on string 2.

Using the formula above and solving for T, we can eliminate T from this equation to get:

sqrt(μ1/ T)/ L1 = sqrt(μ2/T)/ L2

Squaring both sides and rearranging, we obtain:

L2/L1 = sqrt(μ2/μ1)

Substituting the given values for μ1 and μ2, we get:

L2/L1 = sqrt(3.30/2.60) = 1.126

Solving for one of the lengths, say L1, in terms of the other, we get:

L1 = L2/1.126

Now we need to find the values of L1 and L2 that satisfy the condition that both pulses reach the ends of the strings simultaneously. To do this, we can use the fact that the time it takes for a wave to travel a distance L on a string is given by:

t = L/v

where v is the speed of the wave on the string.

Therefore, if the pulses are to arrive at the ends of the strings simultaneously, we must have:

L1/v1 + L2/v2 = 2L1/v1

Simplifying this equation using the relation L1 = L2/1.126 and the formula for v, we get:

sqrt(T/μ1)L2/1.126/2.60 + sqrt(T/μ2)L2/3.30 = 2L2/1.126sqrt(T/μ1)

Simplifying further and eliminating T, we obtain:

L2 = (2.60/3.30)^2(1.126) L1

Substituting the expression for L1 in terms of L2 that we found earlier, we get:

L2 = (2.60/3.30)^2(1.126) L2/1.126

Solving for L2, we find:

L2 = 2.196 L1

Finally, using the relation L1 = L2/1.126, we get:

L1 = 1.91 m

L2 = 4.20 m

Therefore, the length of string 1 should be 1.91 m and the length of string 2 should be 4.20 m in order for both pulses to reach the ends of the strings simultaneously.

What current flows through a 2.54-cm-diameter rod of pure silicon that is 20.0 cm long, when 1.00 x 10ᵌ V is appled to it? (Such a rod may be used to make nuclear-particle detectors, for example.)

Answers

Answer: 1.68 A (Amperes)

Explanation:

To calculate the current flowing through the silicon rod, we need to use Ohm's law, which states that the current (I) flowing through a conductor is equal to the voltage (V) applied across it divided by the resistance (R) of the conductor:

I = V/R

The resistance (R) of the silicon rod can be calculated using the formula:

R = ρL/A

where ρ is the resistivity of silicon, L is the length of the rod, and A is the cross-sectional area of the rod.

The resistivity of pure silicon at room temperature is approximately 2.3 x 10^-3 Ω m. The cross-sectional area of the rod can be calculated using the formula for the area of a circle:

A = πr^2

where r is the radius of the rod, which is half of its diameter. Substituting the given values, we get:

r = 2.54/2 = 1.27 cm = 0.0127 m

A = π(0.0127)^2 = 5.083 x 10^-4 m^2

Now we can calculate the resistance of the rod:

R = (2.3 x 10^-3 Ω m)(20.0 cm/100 cm)/5.083 x 10^-4 m^2 = 9.035 Ω

Finally, we can use Ohm's law to calculate the current flowing through the rod:

I = V/R = (1.00 x 10^3 V)/9.035 Ω = 1.68 A

Therefore, the current flowing through the silicon rod is 1.68 Amperes.

US President Biden will sign an agreement to end the national emergency of COVID-19 in advance, which is strongly opposed by the White House spokesman

Answers

US President Biden signed an agreement to end the national emergency of COVID-19 in advance, but it was strongly opposed by the White House spokesman.

What is COVID-19?

The new coronavirus SARS-CoV-2 is the cause of the extremely contagious disease COVID-19. The virus was discovered for the first time in Wuhan, China, in December 2019, and it spread fast over the world, causing a pandemic. When an infected person coughs, sneezes, or talks, respiratory droplets from their mouth or nose are the main means of disease transmission.

On April 10, 2023, President Biden approved legislation written by Republicans that put an end to the COVID-19 pandemic's state of emergency. Notwithstanding the fact that the White House intended to stop making emergency declarations on May 11, the GOP's proposed legislation received some bipartisan support in Congress. The measure, according to the White House, "would generate widespread turmoil and uncertainty throughout the health care system – for states, for hospitals and doctor's offices, and, most crucially, for tens of millions of Americans," A White House representative, however, downplayed the significance of the law, stating that the end of the emergency "does not affect our ability to wind down authorities in an orderly manner."

A White House representative later minimized the bill's effects, saying they would not have an impact on the scheduled wind-down of authority on May 11.

To know more about COVID-19, visit:

brainly.com/question/30975256

#SPJ1

If Ja Morant has a vertical leap of 1.35m, then what speed does he leave the ground and what is his
total hang time?

Answers

Ja Morant's total hang time is 0.53 seconds.

The initial vertical velocity, Vi, is 0 since he starts from rest. The final vertical displacement, Δy, is 1.35m. We can assume that air resistance is negligible, so we can use the acceleration due to gravity, g, which is -9.81 m/s².

To find the speed he leaves the ground, we can use the equation:

Vf² = Vi² + 2gΔy

Vf² = 0 + 2(-9.81)(1.35)

Vf = 5.89 m/s

Therefore, Ja Morant leaves the ground at a speed of 5.89 m/s.

To find the total hang time, we can use the equation:

Δy = ViT + 1/2 gT²

1.35 = 0T + 1/2(-9.81)T²

[tex]T = \sqrt{(2(1.35)/9.81)[/tex]

T = 0.53 seconds

To know more about initial vertical velocity, here

brainly.com/question/18965435

#SPJ1

2/10
If two forces act on an object in the same direction, the net
force is equal to the
of the two forces.

Answers

Answer:

The net force on an object when two forces act on it in the same direction is equal to the sum of the two forces.

When adding or subtracting two given data with uncertainties,we add the uncertainties and when multiplying and dividing,we add their percentage uncertainties.However,using the error propagation formulas none of the above rules work.Which one should I use?

Answers

You should use the error propagation formulas to calculate the uncertainties of the final result for any given mathematical operation.

How are the error propagation formulas most effective to use for final result?

When propagating uncertainties using the error propagation formulas, the rules for adding, subtracting, multiplying, and dividing depend on the specific mathematical function being applied. It's essential to use the appropriate formula for each function to obtain accurate results.

Therefore, you should use the error propagation formulas to calculate the uncertainties of the final result for any given mathematical operation. These formulas take into account the uncertainties of the individual components and the functional relationship between them, and provide a more accurate way to estimate the overall uncertainty of the final result.

Read more about Uncertainty

brainly.com/question/1970053

#SPJ1

A horizontal pipe has a cross-sectional area of 0.025m2 at the entrance and 0.010m2 at the exit. If water enters the pipe at a speed of 2.5 m/s and a gauge pressure of 46kPa, what is the gauge pressure of the water at the exit end? The density of water is 1000 kg/m3.

Answer: ______kPa

Answers

The gauge pressure of the water at the exit end of the pipe is -1281.125 kPa. Note that the negative sign indicates that the pressure is below atmospheric pressure, as gauge pressure is measured relative to atmospheric pressure.

What is Atmospheric Pressure?

Atmospheric pressure, also known as air pressure, is the force per unit area exerted by the weight of the Earth's atmosphere on a surface. It is the pressure exerted by the air molecules in the Earth's atmosphere due to their gravitational attraction towards the center of the Earth. Atmospheric pressure is caused by the weight of the air above a given surface pressing down on it.

To solve this problem, we can apply Bernoulli's equation, which relates the pressure, velocity, and height of a fluid flowing through a pipe.

We can start by calculating the velocity at the exit using the equation of continuity, which states that the mass flow rate of an incompressible fluid remains constant along a streamline:

Substituting the given values:

[tex]V^{2}[/tex] = (0.025[tex]m^{2}[/tex] * 2.5 m/s) / 0.010 [tex]m^{2}[/tex]

[tex]V^{2}[/tex] = 62.5 m/s

Now, we can substitute the known values into Bernoulli's equation to find the gauge pressure at the exit:

[tex]P^{2}[/tex]= P1 + (1/2)ρ([tex]v1^{2}[/tex] - [tex]v2^{2}[/tex])

[tex]P^{2}[/tex]= 46 kPa + (1/2) * 1000 kg/m^3 *[tex](2.5 m/s)^{2}[/tex] - [tex](62.5 m/s)^{2}[/tex]

[tex]P^{2}[/tex] = 46 kPa + 625 kPa - 1953.125 kPa

[tex]P^{2}[/tex] = -1281.125 kPa

Learn more about Atmospheric Pressure from the given link

https://brainly.com/question/19587559

#SPJ1

Spin-offs from the aerospace industry have contributed to Floridas economy and the economy of the United States what is a spinoff

Answers

A spinoff, in the context of the aerospace industry, refers to the transfer of technology or knowledge developed for a specific space or aviation program to other fields or industries.

The technology and knowledge developed for aerospace programs often have applications beyond the aerospace industry, and these applications can lead to the creation of new products, services, and industries.

For example, the development of lightweight, high-strength materials for use in spacecraft can also be applied to other industries such as the automotive, sporting goods, and construction industries. Similarly, the development of advanced computer systems and software for use in spacecraft can be applied to other industries such as healthcare, finance, and telecommunications.

Spinoffs from the aerospace industry have contributed to the economy of Florida and the United States by creating new jobs, new products, and new industries. The transfer of technology and knowledge from the aerospace industry to other fields has also led to advancements in a wide range of areas, from medicine to transportation to telecommunications, that have improved the quality of life for people around the world.

To know more about aerospace industry, here

brainly.com/question/969035

#SPJ1

Question
A 1.50 kg copper pipe at 800.0° C is immersed into a 20.0°C bucket of water with a mass of 5.00 kg. What is the final
temperature of the copper-water mixture if the specific heat of copper is 0.386- and the specific heat of water is
8°C
4.184?

Answers

To solve this problem, we need to use the principle of conservation of energy, which states that the total energy in a system is constant. In this case, the energy lost by the copper pipe as it cools down will be gained by the water as it heats up. We can use the equation:

Q_copper = -Q_water

where Q_copper is the heat lost by the copper pipe, and Q_water is the heat gained by the water. The negative sign indicates that the energy flows from the copper to the water.

The heat lost by the copper pipe can be calculated using the formula:

Q_copper = mcΔT

where m is the mass of the copper pipe, c is the specific heat of copper, and ΔT is the change in temperature. We can assume that the final temperature of the copper-water mixture is the same, so we can write:

Q_copper = mc(800.0 - T)

where T is the final temperature of the mixture.

The heat gained by the water can be calculated using the formula:

Q_water = mwCΔT

where mw is the mass of the water, C is the specific heat of water, and ΔT is the change in temperature. We can assume that the initial temperature of the water is 20.0°C, so we can write:

Q_water = mwC(T - 20.0)

Now we can substitute these equations into the conservation of energy equation:

mc(800.0 - T) = -mwC(T - 20.0)

Solving for T:

mc(800.0 - T) = mwC(T - 20.0)

1500.0 * 0.386 * (800.0 - T) = 5.00 * 4.184 * (T - 20.0)

231480 - 579.6T = 20.92T - 418.4

600.52T = 231898.4

T = 386.6°C

Therefore, the final temperature of the copper-water mixture is 386.6°C.

[tex]\huge{\colorbox{black}{\textcolor{lime}{\textsf{\textbf{I\:hope\:this\:helps\:!}}}}}[/tex]

[tex]\begin{align}\colorbox{black}{\textcolor{white}{\underline{\underline{\sf{Please\: mark\: as\: brillinest !}}}}}\end{align}[/tex]

[tex]\textcolor{blue}{\small\texttt{If you have any further questions,}}[/tex] [tex]\textcolor{blue}{\small{\texttt{feel free to ask!}}}[/tex]

♥️ [tex]{\underline{\underline{\texttt{\large{\color{hotpink}{Sumit\:\:Roy\:\:(:\:\:}}}}}}\\[/tex]

Other Questions
Sketch the vector field F(r) = -r / ||r||^3 in the xy-plane. Select all that apply. The lengths of the vectors decrease as you move away from the origin. All the vectors point towards the origin. The length of each vector is 1. All the vectors point in the same direction. All the vectors point away from the origin. calculate by double integration the area of the bounded region determined by the given pairs of curves. x^2=8y x +4y4=0a) -9/2|b) 9/8|c) 9/2|d) 9|e) 27/2|f) none of these Read the First Inaugural Address by Franklin D. Roosevelt on March 4, 1933.Select the best sentence that reflects the central idea of Franklin D. Roosevelt's speech. "Happiness lies not in the mere possession of money; it lies in the joy of achievement, in the thrill of creative effort. The joy and moral stimulation of work no longer must be forgotten in the mad chase of evanescent profits." "More important, a host of unemployed citizens face the grim problem of existence, and an equally great number toil with little return." "Our greatest primary task is to put people to work It can be accomplished in part by direct recruiting by the Government itself, treating the task as we would treat the emergency of a war, but at the same time, through this employment, accomplishing greatly needed projects to stimulate and reorganize the use of our natural resources." "So, first of all, let me assert my firm belief that the only thing we have to fear is fear itselfnameless, unreasoning, unjustified terror which paralyzes needed efforts to convert retreat into advance." write the equation for each translation of the graph of y=|1/2x - 2| +3a) one unit upb) one unit downc) one unit to the leftd) one unit to the right need help please I need help right now and thank you Since the cloud will become the repository of most ESI needed in litigation or an investigation, cloud service providers and their clients must carefully plan how they will be able to identify all documents that pertain to a case, in order to be able to fulfill the stringent requirements imposed by ______ with regard to ESI how do i write the inequality of this? The unnormalized wave function for a negatively charged pion bound to a proton in an energy eigenstate is given by = (x + y + z)exp -x^2 + y^2 + z^2/2bo where bo is a constant for this "pionic" atom that has the dimensions of length.a. Show that the pion is in a p orbital (l=1) b. What is the magnitude of the orbital angular momentum of the pion? c. What is the probability that a measurement of Lz will yield the value 0? a ball is at rest in frame s'. what is the speed of the ball in frame s? express your answer in meters per second. A behavior that requires ____________ response effort is more likely to occur than a behavior that requires____________ response effort A sprinkler set in the middle of a lawn sprays in a circular pattern. The area of the lawn that gets sprayed by the sprinklercan be described by the equation (z+6)2 + (y-9) = 196.What is the greatest distance, in feet, that a person could be from the sprinkler and get sprayed by it? Mai poured 2.4 L into a partilly filled water now there is 10.4 25. What is the underlying principle of Confucius? What is the basic unit of all living things from bacteria to animals and plants?A) musclesB) cellsC) atomsD) water Number 12 gauge wire, commonly used in household wiring, is 2.053 mm in diameter and can safely carry currents of up to 20.0 Aa) For a wire carrying this maximum current, find the magnetic field strength 0.150 mm from the wire's axis.b) For a wire carrying this maximum current, find the magnetic field strength at the wire's surface.c) For a wire carrying this maximum current, find the magnetic field strength 0.315 mm beyond the wire's surface. excluding any minor by-products, how many alkene products are produced in the acid-catalyzed dehydration of 2-methylcyclohexanol? enter your answer as digits only. Confirm that the Integral Test can be applied to the series. Then use the Integral Test to determine the convergence or divergence of the series. 1/10 + 1/12 + 1/14 + 1/16 + 1/18 + ... integral^infinity_1 1/2x + 8 dx = ____a. converges b. diverges I did exactly what they told me! They won't accept any answers! Please help me FAST! If P=(6,5) and Q=(2,1) are the endpoints of the diameter of a circle, find the equation of the circle. A form of autotrophy other than photosynthesis is:a. respiration.b. chemosynthesis.c. heterotrophy.d. decomposition. Y Put the 1's on the K map. HW 13.1 Finish this: Using the procedure give all minimal forms. We'll just mark all the prime implicants now: