Answer: for insulation of heat
Explanation:
Windows in cold countries have double glazing windows to provide a barrier against the outside temperature by creating a buffer zone between two glasses.
The air or any other gas-filled between the glasses act as an insulator and offer great resistance to outside temperature thereby maintaining the inside temperature intact.
state Newton's law of gravitation.
Explanation:
Newton’s law of gravitation, statement that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them.
Hope this helps!
Please find attached photograph for your answer
The device shown below contains 2 kg of water. When the cylinder is allowed to fall 250 m, the temperature of the water increases by 1.4°C. Suppose 2 kg of water are added to the container and the cylinder is allowed to fall 750 m. What would the increase in temperature be in this case? Gizmo image A. 0.7°C B. 1.4°C C. 2.1°C D. 2.8°C
Answer:c. 2.1°C
Explanation:
I just did it
Waves cause beach sand to be ____________. a. well rounded b. poorly sorted
Waves cause beach sand to be well rounded.The effects of wave action on beach sand is crucial for coastal management and engineering.
How does wave action impact the shape of beach sand?Waves crashing onto the shore have a profound impact on the shape and texture of beach sand. The relentless force of waves breaking and washing up onto the beach causes the sand particles to undergo a process known as attrition. This process involves constant movement and collision between the sand grains, leading to abrasion and gradual wearing down of their edges and corners.
As waves repeatedly crash onto the beach, the sand grains rub against each other, causing them to become smoother and more rounded over time. The abrasive action of the waves breaks down larger grains into smaller ones, resulting in a finer sand texture. This process is especially noticeable in areas where the wave action is particularly strong, such as along exposed coastlines or during stormy weather.
The well-rounded nature of beach sand is not only a result of wave action but also of other factors such as the composition of the sand itself. Sands composed of harder minerals tend to resist rounding to a certain extent, while softer minerals are more easily worn down and shaped by wave action.
Learn more about Waves
brainly.com/question/29334933
#SPJ11
A rocket is launched straight up from the earth's surface at a speed of 15000 m/s. what is its speed when it is very far away from the earth?
When a rocket is launched straight up from the Earth's surface, its speed gradually decreases as it moves away from the planet.
However, it never truly reaches a constant speed when it is very far away from the Earth. Instead, its speed continues to decrease due to the gravitational pull of other celestial bodies in space, such as the Sun and other planets. Therefore, it is not possible to determine the rocket's exact speed when it is very far away from the Earth without additional information about the rocket's trajectory, the effects of other gravitational forces, and the time elapsed since the launch. The exact speed when the rocket is very far away would depend on various factors, including the rocket's design, propulsion system, and the duration of its engine burn.
To learn more about rocket, https://brainly.com/question/29384212
#SPJ11
A woman uses a pulley and a rope to raise a 12 weight to a height of 3 . If it takes 4 to do this, about how much power is she supplying? a. 90 b. 190 c. 290 d. 390
The woman is supplying approximately 290 units of power to raise the weight using a pulley and a rope.
Power is calculated using the formula: Power = Work/Time. In this case, the work done is equal to the weight lifted multiplied by the height gained, which is 12 units * 3 units = 36 units of work. The time taken to perform this work is given as 4 units of time.
Therefore, the power supplied can be calculated as 36 units of work divided by 4 units of time, resulting in 9 units of power. However, the answer options provided do not match this calculation.
To determine the correct answer, we need to convert the given units to match the answer options. Since the units of work and time are not specified, we can assume they are arbitrary units. Given that, we can multiply the calculated power (9 units) by a conversion factor to match the answer options. The closest option is 290, so the correct answer is option c. The woman is supplying approximately 290 units of power to raise the weight.
Learn more about pulley here.
https://brainly.com/question/28974480
#SPJ11
A satellite is moving in circular orbit of radius R about Earth. By what fraction must its velocity v be increased for the satellite to be in an elliptical orbit with rmin = R and rmax = 2R?
To transition of the satellite from a circular orbit with radius R to an elliptical orbit with rmin = R and rmax = 2R, the velocity v must be increased by a factor of 2.
In a circular orbit, the centripetal force required to keep the satellite in orbit is provided by the gravitational force between the satellite and the Earth.
Fcircular = Fgravity
The centripetal force in a circular orbit can be expressed as:
Fcircular = (mv²) / R
where m is the mass of the satellite, v is the velocity, and R is the radius of the circular orbit.
The gravitational force between the satellite and the Earth can be expressed using Newton's law of universal gravitation:
Fgravity = (G × m × M) / R²
where G is the gravitational constant and M is the mass of the Earth.
Equating the centripetal force and the gravitational force, we get:
(mv²) / R = (G × m × M) / R²
Canceling the mass (m) on both sides of the equation, we have:
v² / R = (G × M) / R²
Rearranging the equation to solve for v, we get:
v = √((G × M) / R)
Now, let's consider the elliptical orbit. The minimum radius (rmin) is R and the maximum radius (rmax) is 2R.
The velocity in the elliptical orbit at rmin can be calculated using the same equation as before:
vmin = √((G × M) / rmin)
Similarly, the velocity in the elliptical orbit at rmax can be calculated:
vmax = √((G × M) / rmax)
Now, we need to find the ratio of vmax to vmin:
vmax / vmin = √((G × M) / rmax) / √((G × M) / rmin)
Simplifying the expression:
vmax / vmin = √(rmin / rmax)
Substituting the given values rmin = R and rmax = 2R:
vmax / vmin = √(R / (2R))
Simplifying further:
vmax / vmin = √(1 / 2)
Taking the square root of 1/2:
vmax / vmin = 1 / √2
Rationalizing the denominator:
vmax / vmin = √2 / 2
Finally, we can see that vmax is twice vmin:
vmax = 2 × vmin
Therefore, to transition from a circular orbit of radius R to an elliptical orbit with rmin = R and rmax = 2R, the velocity v must be increased by a factor of 2.
Learn more about satellites at
https://brainly.com/question/9153566
#SPJ4
The drag bucket for Laminar Flow airfoils is in what AOA regime?
A. all AOA regimes
B. low AOA regimes
C. high AOA regimes
D. No drag bucket exists with laminar flow wings
the correct answer is option (B): low AOA regimes. The drag bucket for Laminar Flow airfoils is primarily found in the low angle of attack (AOA) regime.
The term "drag bucket" refers to a range of angles of attack where the drag coefficient of an airfoil remains relatively low compared to surrounding angles. Laminar Flow airfoils are designed to maintain laminar boundary layer flow over a significant portion of their upper surface, which helps reduce drag.
Option A: All AOA regimes - This option is incorrect because the drag bucket for Laminar Flow airfoils is not present across all angles of attack. The purpose of Laminar Flow airfoils is to delay the onset of turbulent flow, and this effect is most prominent in a specific range of low angles of attack.
Option B: Low AOA regimes - This option is correct. Laminar Flow airfoils exhibit a drag bucket in the low AOA regime, typically from near zero AOA up to a specific critical AOA. In this range, the laminar boundary layer remains attached, resulting in lower drag compared to higher angles of attack.
Option C: High AOA regimes - This option is incorrect because at high angles of attack, the boundary layer on a Laminar Flow airfoil typically transitions to turbulent flow. Consequently, the laminar flow advantages are lost, and the drag increases significantly.
Option D: No drag bucket exists with laminar flow wings - This option is incorrect because the drag bucket is indeed a characteristic feature of Laminar Flow airfoils, allowing for improved aerodynamic performance in the low AOA regime.
In summary, the correct answer is B: low AOA regimes, as this is where the drag bucket is typically observed for Laminar Flow airfoils.
To learn more about AOA regimes visit:
brainly.com/question/31310915
#SPJ11
if 100 cm 3 of a gas with a density of 0.025 g/cm 3 condenses into 4.5 cm 3 of liquid, what is the density of the liquid? A. 1,125 g/mc3 B. 2,5 g/mc3 C. 0,56 g/mc3 D. 180 g/mc3
The required density of the liquid is 0.56 g/cm³. Option C is correct.
To find the density of the liquid, we can use the formula:
Density = Mass / Volume
Given that the initial gas has a density of 0.025 g/cm³ and condenses into 4.5 cm³ of liquid, we need to find the mass of the liquid to determine its density.
The initial volume of the gas is 100 cm³, and its density is 0.025 g/cm³. Therefore, the initial mass of the gas can be calculated as:
Mass of gas = Density of gas * Volume of gas
= 0.025 g/cm³ * 100 cm³
= 2.5 g
Since the gas condenses into 4.5 cm of liquid, the volume of the liquid is 4.5 cm³.
Now we can find the density of the liquid:
The density of liquid = Mass of liquid / Volume of liquid
= 2.5/4.5 = 0.56 g/mc³
Therefore, the required density of the liquid is 0.56 g/cm³.
Learn more about density here:
https://brainly.com/question/31388775
#SPJ4
Measurement of density contrasts the mass of an object with its volume. High density refers to the amount of matter in a given volume of an object. Here the density of the liquid is 0.55 g/cm³. The correct option is C.
The density of a substance indicates how dense it is in a given area. Mass per unit volume is the definition of a material's density. In essence, density is a measurement of how closely stuff is packed. It is a particular physical characteristic of a specific thing.
The amount of space occupied by matter is measured in volume. It is common practice to measure liquids in liters (L) or milliliters (mL).
The equation connecting density and volume is:
V₁D₁ = V₂D₂
D₂ = V₁D₁ / V₂
D₂ = 100 × 0.025 / 4.5 = 0.55 g/cm³
Thus the correct option is C.
To know more about density, visit;
https://brainly.com/question/31237897
#SPJ4
A drill bit in a hand drill is turning at 1200 revolutions per minute (1200 rpm). Express this angular speed in radians per second (rad/s). a. 2.1 rad/s b. 19 rad/s c. 0.67 rad/s d. 126 rad/s e. 39 rad/s
The angular speed of 1200 rpm is option d. 126 rad/s.
What is angular speed?
Angular speed refers to the rate at which an object rotates or moves in a circular path. It measures how quickly an object is changing its angular position with respect to time.
To convert the angular speed from revolutions per minute (rpm) to radians per second (rad/s), we need to use the following conversion factor:
1 revolution = 2π radians
First, we convert the given angular speed of 1200 rpm to revolutions per second:
1200 rpm = 1200 revolutions/minute * (1 minute / 60 seconds) = 20 revolutions/second
Then, we can convert the revolutions to radians by multiplying by 2π:
20 revolutions/second * 2π radians/revolution = 40π radians/second
Since the answer options are given in decimal form, we can approximate the value of 40π:
40π ≈ 40 * 3.14 ≈ 125.6 rad/s
Therefore, the angular speed of 1200 rpm is d. 126 rad/s.
To learn more about angular speed,
https://brainly.com/question/6860269
#SPJ4
given the following information, determine the crystal structure. consider only fcc and bcc structures as possibilities. lattice parameter a = 0.4997 nm, powder x-ray: λ = 0.1542 nm.
Based on the given information of a lattice parameter and powder X-ray wavelength, the crystal structure can be determined by considering only the FCC and BCC structures as possibilities.
The lattice parameter, denoted as 'a,' represents the distance between the lattice points in a crystal structure. In this case, the given value of 'a' is 0.4997 nm. To determine the crystal structure, we need to compare this lattice parameter with the characteristic values of the FCC (face-centered cubic) and BCC (body-centered cubic) structures.
For the FCC structure, the relationship between the lattice parameter 'a' and the radius of the atoms or ions in the structure is given by a = 4√2r, where 'r' represents the atomic or ionic radius. Similarly, for the BCC structure, the relationship is a = 4√3r.
By rearranging the equations, we can solve for the radius 'r.' For the FCC structure, r = a/(4√2), and for the BCC structure, r = a/(4√3). Substituting the given lattice parameter 'a' into these equations, we can calculate the corresponding radii for each structure.
Next, we compare the calculated radii with the typical atomic or ionic radii for different elements. If the calculated radius matches closely with the known radius of an element, then that element is likely to form the crystal structure.
Lastly, to confirm the crystal structure, we can consider the powder X-ray wavelength (λ) provided. The X-ray diffraction pattern obtained from the powder X-ray experiment can help identify the characteristic peaks for different crystal structures. By comparing the observed diffraction pattern with the known patterns for FCC and BCC structures, we can determine the crystal structure based on the closest match.
In conclusion, by calculating the radii for FCC and BCC structures using the given lattice parameter, and by analyzing the X-ray diffraction pattern obtained from the powder X-ray experiment, the crystal structure can be determined as either FCC or BCC.
Learn more about X-ray wavelength here:
https://brainly.com/question/29102539
#SPJ11
block a has a mass of 2kg and a speed of 50 m/s along the positive x axis.
The momentum of block A is calculated by multiplying its mass (2 kg) with its velocity (50 m/s). Therefore, the momentum of block A is 100 kg·m/s.
What is the momentum of block A given its mass of 2 kg and velocity of 50 m/s?Momentum is a fundamental concept in physics that quantifies the motion of an object. It is defined as the product of an object's mass and its velocity. In this case, block A has a mass of 2 kg and is moving along the positive x-axis with a speed of 50 m/s. To find the momentum, we multiply the mass and velocity: 2 kg * 50 m/s = 100 kg·m/s.
Momentum represents the quantity of motion possessed by an object and accounts for both its mass and how fast it is moving. The larger the mass or velocity, the greater the momentum. When considering momentum, direction is also crucial, as it is a vector quantity. In this scenario, since the block is moving along the positive x-axis, the momentum is positive.
Learn more about momentum Momentum
brainly.com/question/30677308
#SPJ11
When you eat food, not all of the food can be broken down into the basic building blocks and why?
Answer:
cause you crazy..
Explanation:
A child on a sled starts from rest at the top of a 15.0 degree slope. If the trip to the bottom takes 15.2s, how long is the slope? Assume that frictional forces may be neglected.
A child on a sled starting from rest at the top of a 15.0-degree slope takes 15.2 seconds to reach the bottom, with the slope's length of 5.823 meters, neglecting frictional forces.
To find the length of the slope, we can use the equations of motion for motion along an inclined plane.
Given:
The angle of the slope: θ = 15.0 degrees
Time is taken to reach the bottom: t = 15.2 seconds
Initial velocity: u = 0 (since the child starts from rest)
We can use the equation of motion for displacement along an inclined plane:
s = ut + (1/2)at²
In this case, since the child starts from rest, the initial velocity u is 0, and we can simplify the equation to:
s = (1/2)at²
To find the acceleration a, we can use the equation for acceleration along an inclined plane:
a = g * sin(θ)
where g is the acceleration due to gravity (approximately 9.8 m/s²).
Plugging in the values, we have:
a = 9.8 m/s² * sin(15.0 degrees)
Calculating the value of a, we get:
a ≈ 2.529 m/s²
Now, we can use the equation s = (1/2)at² to find the length of the slope s:
s = (1/2) * (2.529 m/s²) * (15.2 s)²
Calculating the value of s, we get:
s ≈ 5.823 meters
Therefore, the length of the slope is approximately 5.823 meters.
To learn more about slope click:
brainly.com/question/29107671
#SPJ4
you hear the sound of a distance cannon 2.0 s after seeing a flash of light from it. how far you from the cannon?
You are approximately 686 meters away from the cannon.
To determine the distance between you and the cannon, we can use the speed of sound as a reference.
The speed of sound in air at room temperature is approximately 343 meters per second (m/s).
Given that you hear the sound of the cannon 2.0 seconds after seeing the flash of light, this time delay represents the time it took for the sound to travel from the cannon to your location.
We can use the formula:
Distance = Speed * Time
Distance = 343 m/s * 2.0 s
Distance = 686 meters
Therefore, you are approximately 686 meters away from the cannon.
To know more about meters here
https://brainly.com/question/30817668
#SPJ4
According to Newton's first law of motion when will an object at rest begin to move
Answer:
When acted upon by a force.
Explanation:
"If a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force."
A figure skater is spinning with her arms held straight out. Which has greater rotational speed, her shoulders or her fingertips? Why?
The figure skater spinning with her arms held straight out will have greater rotational speed at her fingertips compared to her shoulders.
Rotational speed of a figure skaterWhen the skater extends her arms straight out, the moment of inertia increases as the mass is distributed farther from the axis of rotation (her body).
According to the conservation of angular momentum, the product of moment of inertia and angular velocity remains constant unless an external torque acts on the system.
Since the moment of inertia increases when her arms are extended, the angular velocity must decrease to maintain the constant angular momentum.
As a result, the rotational speed is higher at her fingertips because they have a larger distance from the axis of rotation compared to her shoulders.
More on rotational speed can be found here: https://brainly.com/question/14391529
#SPJ4
If the average human has a density of 1.01g/cm3
and the density of the Dead Sea is 1.23g/mL, why
can't we swim in the dead sea? Must have the
words (Mass, volume, and density)
Answer:The Dead Sea water has a density of 1.24 kg/litre
Explanation:
which makes swimming similar to floating.
After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 53.0 cmcm . The explorer finds that the pendulum completes 102 full swing cycles in a time of 138 ss .
What is the magnitude of the gravitational acceleration on this planet?
The magnitude of the gravitational acceleration on this unfamiliar planet is approximately 18.31 m/s².
First, we need to calculate the period of one swing cycle (t) using the formula:
[tex]t = T / N \\t = 138 s / 102[/tex]
Next, we can calculate the time for one full swing (T_full) by dividing t by 2:
[tex]T_{full} = t / 2[/tex]
Now, we can use the formula for the period of a pendulum to solve for the gravitational acceleration (g):
T_full = 2π √(L / g)
Rearranging the formula to solve for g, we have:
g = (4π² L) / T_full²
Substituting the values:
g = (4π² * 53.0 cm) / (T_full)²
There are 100 cm in 1 m, so we divide the length by 100:
g = (4π² * 0.53 m) / (T_full)²
Now, we substitute the value of T_full obtained earlier:
g = (4π² * 0.53 m) / (t/2)²
Calculating t/2 and simplifying further, we have:
g = (4π² * 0.53 m) / [(138 s / 102) / 2]²
g = (4π² * 0.53 m) / [(138 s / 204)²]
g = (4π² * 0.53 m) / (0.676 s)²
Calculating the numerator, we get:
4π² * 0.53 m ≈ 8.365 m²/s²
Substituting this value, we have:
g ≈ 8.365 m²/s² / (0.676 s)²
Calculating the denominator, we get:
(0.676 s)² ≈ 0.456 s²
Finally, substituting the values and calculating, we find:
g ≈ 8.365 m²/s² / 0.456 s²
g ≈ 18.31 m/s²
To know more about gravitational acceleration, here
brainly.com/question/28556238
#SPJ4
Help me yall it due in a few minutes :((()
Answer:
B. blocks 2 & 3.
Explanation:
Block 1 has equal & opposite forces acting on it.
Block 2 has 5N on one side, 3N on the other. It will move in the direction the 5N of force is pushing.
Block 3 has no opposing force.
a pendulum swings back and forth with a repeating motion. the pendulum makes full swings in 5 seconds. which expression below is the number of seconds required for a single swing?
The expression that represents the number of seconds required for a single swing is 2.5 seconds.
Hence, the correct option is C.
The number of seconds required for a single swing of a pendulum is half of the time it takes to complete a full swing.
Given that the pendulum makes full swings in 5 seconds, the expression for the number of seconds required for a single swing would be
5 seconds / 2 = 2.5 seconds
Therefore, the expression that represents the number of seconds required for a single swing is 2.5 seconds.
Hence, the correct option is C.
The given is incomplete and the complete question is '' A pendulum swings back and forth with a repeating motion. the pendulum makes full swings in 5 seconds. which expression below is the number of seconds required for a single swing
A. 3 seconds
B. 2.5 seconds
C. 5 seconds
D. 4 seconds ''.
To know more about seconds here
https://brainly.com/question/7640697
#SPJ4
Why do you fall forward when you stub your toe on a chair? Explain in terms.
Answer & Explanation:
This can be explained with Newton's first law, Inertia - if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
When you walk, your entire body is in a forwarding motion. If your toe hits an object (in this case, a chair), only this unfortunate toe will stop while the rest of your body continues its forwarding motion, resulting in you falling forward.
Given that the nucleus of 18/8 O is formed by 8 protons and 10 neutrons, is the mass of a neutral atom of 18/8 O equals to the sum of the masses of 8 atoms of 1/1 H and 10 neutrons? Recall that the mass of a proton is mP = 1.007276 u and the mass of a neutron is mn = 1.008665 u. The mass of a neutral atom of 1/1 H is mH = 1.007825 u.
The mass of a neutral atom of ₈O¹⁸ is approximately equal to the sum of the masses of 8 atoms of ₁H¹ and 10 neutrons.
Given that the nucleus of ₈O¹⁸ is formed by 8 protons and 10 neutrons.
₈O¹⁸ = 8 protons(p) + 10 neutrons(n)
The mass of an atom is defined as the sum of the nucleons of the atom.
Nucleons are the general word for protons and neutrons since they are both found in the nucleus. Nucleons are hence the scientific term for the subatomic particles found in the atom's nucleus.
So,
Mass of the neutral atom of ₈O¹⁸ = (8 x mp) + (10 x mn)
m(₈O¹⁸) = (8 x 1.007276u) + (10 x 1.008665u)
m(₈O¹⁸) = 8.058208 + 10.08665
m(₈O¹⁸) = 18.144858 u
Also,
Mass of 8 atoms of ₁H¹ = 8 x m(₁H¹)
Mass of 8 atoms of ₁H¹ = 8 x 1.007825u
Mass of 8 atoms of ₁H¹ = 8.0626 u
So,
Mass of 8 atoms of ₁H¹ + 10 mn = 8.0626 + 1.008665
M = 18.9291 u
To learn more about nucleons, click:
https://brainly.com/question/9662870
#SPJ4
The global winds and moisture belts indicate that large amounts of rainfall occur at
the Earth's equator because air is
it should be rising and converging
The global winds and moisture belts indicate that large amounts of rainfall occur at the Earth's equator because air is rising and converging.
What is Earth's equator?The equator is a large circle that circles the planet Earth, lying in a plane perpendicular to the axis of the planet and being equally spaced from all four geographic poles.
Rainfall in equatorial regions averages 4000mm per year. Every other raining produces about 22 days of precipitation in a month. The equatorial regions have higher temperatures because solar radiation produces a lot of heat there.
The cold air filters down into the lower levels of the atmosphere because the hot air is less dense here than the cold air. The tropical regions become warmer as a result. In the tropical rain belt, the tropical climate predominates.
Learn more about equator here:
https://brainly.com/question/4535514
#SPJ6
POR FAVOR AYUDENME A RESOLVER ESTO:
Halla el coeficiente de dilatación lineal de una varilla que a 10 grados centígrados mide 125 metros y cuya longitud a 85 grados centígrados es 125.20 m. ¿De qué material será?
Answer:
α = 2.13 10⁻⁵ C⁻¹ , the closest material is ALUMINUM
Explanation:
The expression for thermal expansion is
ΔL = α L₀ ΔT
temperatures are
ΔT = 85 - 10 = 75 ° C
the length of the rod is L₀ = 125 m and L_f = 125.20 m
ΔL = 125.20 - 125 = 0.20 m
α = [tex]\frac{1}{L_o} \frac{\Delta L }{\Delta T}[/tex]
α = [tex]\frac{ 1}{125} \ \frac{0.20 }{75}[/tex]
α = 2.13 10⁻⁵ C⁻¹
When reviewing the table, the closest material is ALUMINUM
consider that on the interior of a motor 33 a travels through a 250 turn circular loop that is 12.5 cm in radius. What is the magnetic field strength created at its center?
The magnetic field strength created at the center of a circular loop with 250 turns and a radius of 12.5 cm, through which a current of 33 A flows is 0.208 T.
The magnetic field strength created at the center of the circular loop carrying the current can be found by using the formula: B=μ0IN/2R where B is the magnetic field strength, μ0 is the permeability of free space, I is the current passing through the loop, N is the number of turns in the coil, and R is the radius of the coil. By substituting the given values, we get: B = (4π×10^-7) × 33 × 250 / (2 × 0.125)B = 0.208 T Therefore, the magnetic field strength at the center of the circular loop is 0.208 T.
The intensity of a magnetic field in a specific area is measured by its magnetic field strength. Addressed as H, attractive field strength is ordinarily estimated in amperes per meter (A/m), as characterized by the Global Arrangement of Units (SI).
Know more about magnetic field strength, here:
https://brainly.com/question/28104888
#SPJ11
What do bats, dolphin, and whale use to determine their location?
A-Location
B-Frequency
C-Echolocation
D-Amplitude
Please Help
A design team is developing a prototype CO2 cartridge for a manufacturer of rubber rafts. This cartridge will allow a user to quickly inflate a raft. A typical raft is shown in the sketch. Assume a raft inflation pressure of 3 p, which means that the absolute pressure is 3 p greater than local atmospheric pressure). Estimate the volume of the raft and the mass of CO2 in grams in the prototype cartridge.
Length: 6 m
Width: 2 m
Tube diameter: 0.4 m
The estimated volume of the raft is 4.8 cubic meters (m³). Without knowing the pressure and volume of the CO2 cartridge, we cannot accurately estimate the mass of CO2 in grams.
To estimate the volume of the raft, we can assume it has a simple rectangular shape. The volume (V) of a rectangular object is calculated by multiplying its length (L), width (W), and height (H):
V = L * W * H
Given:
Length (L) = 6 m
Width (W) = 2 m
Tube diameter (H) = 0.4 m (assuming it represents the height of the raft)
V = 6 m * 2 m * 0.4 m = 4.8 m³
Next, let's estimate the mass of CO2 in grams in the prototype cartridge. To do this, we need to know the pressure and volume of the CO2 gas. However, the provided information does not specify the pressure or volume of the cartridge. Without these values, it is not possible to accurately estimate the mass of CO2 in grams.
To know more about CO2 cartridge, click here https://brainly.com/question/8476909
#SPJ11
Bethany, who weighs 460 N, lies in a hammock suspended by ropes tied to two trees. The left rope makes an angle of 45∘ with the ground; the right one makes an angle of 30∘.
Find the tension in the left rope.
Find the tension in the right rope.
Bethany weighs 460 N and she is lying in a hammock which is suspended by ropes that are tied to two trees. The left rope makes an angle of 45° with the ground and the right one makes an angle of 30°. Therefore, the tension in the left rope is approximately 325 N (rounded to 3 significant figures) and the tension in the right rope is approximately 362 N (rounded to 3 significant figures).
We need to find the tension in the left and right ropes. We will use the trigonometric functions to solve the problem. Let us assume that T1 is the tension in the left rope and T2 is the tension in the right rope. Now, let us resolve the forces acting on the hammock horizontally and vertically using trigonometry. From the diagram above, we can see that the weight of Bethany (460 N) acts downwards, so we can resolve this force vertically.
We get the following equations:∑ Fx = T1 cos 45° - T2 cos 30° = 0 (∵ hammock is not moving horizontally)
∑ Fy = T1 sin 45° + T2 sin 30° - 460 N = 0 (∵ hammock is not moving vertically)
Now we can solve the two equations simultaneously to get T1 and T2.
T1 cos 45° - T2 cos 30° = 0 ...
(1)T1 sin 45° + T2 sin 30° - 460 N = 0 ...
(2)Multiplying equation (1) by sin 45° and equation (2) by cos 30°, we get:
T1 sin 45° cos 30° - T2 cos 30° cos 45° = 0 ...
(1')T1 sin 45° cos 30° + T2 sin 30° cos 30° = 460 N cos 30° ...
(2')Adding equations (1') and (2'), we get:
T1 sin 45° cos 30° = 460 N cos 30°T1 = 460 N cos 30° / sin 45°T1 = 460 N / √2
T2 = T1 cos 45° / cos 30°T2 = (460 N / √2) (cos 45° / cos 30°)T2 = 362 N.
to know more about trigonometric functions visit:
https://brainly.com/question/14746686
#SPJ11
Place the single weight with a known mass on the spring and release it. Eventually the weight will come to rest at an equilibrium position with the spring somewhat stretched compared to its original (unweighted) length. At this point the upward force of the spring balances the force of gravity on the weight. With the weight in its equilibrium position, how does the amount the spring is stretched depend on the value of the weight's mass? Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight. Use this concept, along with the variable mass value the ruler, and the moveable line, to estimate the spring constant k of the spring. Set the damping to 'Lots so that the mass will come to rest quickly after being changed, and make sure the gravity is set to "Earth. " Finally, set the spring constant to "Small" Estimate the spring constant several times (using different values of mass) and average fogether for the most accurate calculation Exness our answer in N/m to two significant figures
When the single weight is put on the spring and released, it comes to rest at a position where the upward force of the spring is equivalent to the force of gravity. With the weight in the equilibrium position, the amount the spring is stretched depends on the value of the weight's mass.
A greater mass causes a greater stretch on the spring, according to Hooke's law, which states that the extension of a spring is proportional to the force applied to it.The amount of stretch, x, is given by the equationx = mg/kwhere m is the mass of the weight, g is the gravitational force, and k is the spring constant.To determine the spring constant, first, set the damping to "Lots" so that the mass will come to rest quickly after being changed, then set the gravity to "Earth," and lastly, set the spring constant to "Small".
Estimate the spring constant several times using different mass values and then average them together for the most accurate calculation. As a result, suppose you estimated the spring constant using three different masses: 0.25 kg, 0.50 kg, and 0.75 kg, and you received spring constants of 2.5 N/m, 4.5 N/m, and 7.5 N/m, respectively. The average of the spring constants is (2.5 + 4.5 + 7.5) / 3 = 4.83 N/m.Therefore, the estimated spring constant of the spring is 4.83 N/m (to two significant figures).
To know more about equilibrium visit :
https://brainly.com/question/30694482
#SPJ11
175 g of water was heated from 15 to 88 celsius how many kilocalories were absorbed by the water
In the given condition, approximately 12.85 kilocalories were absorbed by the water.
To calculate the amount of heat absorbed by water, we can use the formula:
Q = m × c × ΔT
where Q is the amount of heat absorbed by water, m is the mass of water, c is the specific heat capacity of water, and ΔT is the change in temperature.
In this case, we have 175 g of water that was heated from 15 to 88 degrees Celsius. The change in temperature is:
ΔT = 88 - 15 = 73 °C
The specific heat capacity of water is approximately 4.18 J/g°C. Therefore, we can calculate the amount of heat absorbed by water as follows:
Q = m * c * ΔT Q = 175 g * 4.18 J/g°C * 73 °C Q = 53,765 J
To convert this to kilocalories, we can divide by 4.184 J/cal:
Q = 53,765 J / 4.184 J/cal Q = 12.85 kcal
To know more about specific heat capacity
https://brainly.com/question/27991746
#SPJ4