Yuki had 400 pennies mimi took 250 away. The teacher then brung 1,876 Pennies to Yuki’s table. How much does Yuki have now?

Answers

Answer 1
What you need to do is 400-250 which leave you will 150+1,876=2,026 so that’s how much penny’s he has in total

Related Questions

Railway Cabooses just paid its annual dividend of $2.50 per share. The company has been reducing the dividends by 11.7 percent each year. How much are you willing to pay today to purchase stock in this company if your required rate of return is 13 percent?

Answers

Based on the information provided, Railway Cabooses paid an annual dividend of $2.50 per share. However, the company has been reducing its dividends by 11.7 percent each year.

To calculate the current annual dividend, we can use the formula: current dividend = previous dividend * (1 - dividend reduction rate).
So, the current annual dividend would be $2.50 * (1 - 0.117) = $2.21 per share. To determine how much you should pay to purchase stock in this company, we need to use the dividend discount model.
The formula for this model is stock price = annual dividend / (required rate of return - dividend growth rate).
Plugging in the values from the problem, we get:
Stock price = $2.21 / (0.13 - 0.117) = $34.15 per share.
Therefore, if your required rate of return is 13 percent, you should be willing to pay $34.15 per share to purchase stock in Railway Cabooses.

for more information on the annual dividends see:

https://brainly.com/question/15871366

#SPJ11

a cube of edge 15 centimeters is cut from a rectangular block of wood as shown find the volume of the remaining block​

Answers

The Volume of Remaining block is  (l w h - 1125) cm³

We have,

Edge of cube = 15 cm

So, Volume of cube

= 15 x 15 x 15

= 1125 cm³

Now, Volume of Remaining block

= Volume of cuboid - Volume of cube

= l w h - 1125 cm³

Here we just have to put the dimension of cuboid in place of l w h.

Learn more about Volume here:

https://brainly.com/question/1578538

#SPJ1

The random variables X and Y are jointly continuous, with a joint PDF of the form
fX,Y(x,y)={cxy,if 0≤x≤y≤1
0,,otherwise,
where c is a normalizing constant.
For x∈[0,0.5], the conditional PDF fX|Y(x|0.5) is of the form ax^b. Find a and b. Your answers should be numbers.

Answers

a = 4 and b = 1. To find a and b, we need to first find the conditional PDF fX|Y(x|0.5), which represents the distribution of X given that Y = 0.5.

We can use Bayes' rule to find the conditional PDF:

fX|Y(x|0.5) = fX,Y(x,0.5) / fY(0.5)

where fY(0.5) is the marginal PDF of Y evaluated at 0.5, and can be found by integrating fX,Y over all possible values of X:

fY(0.5) = ∫ fX,Y(x,0.5) dx

= ∫ cxy dx (from x=0 to x=0.5)

= c(0.5)²

= c/8

Now, we can find fX,Y(x,0.5) by evaluating the joint PDF at x and y=0.5:

fX,Y(x,0.5) = cxy

= c(0.5)x

So, we have:

fX|Y(x|0.5) = (c(0.5)x) / (c/8)

= 4x

Know more about conditional PDF here:

https://brainly.com/question/15867125

#SPJ11

I really need help im bad at Algebra

Answers

The line of best fit for the scatter plot is given as follows:

y = 2x.

How to define a linear function?

The slope-intercept representation of a linear function is given by the equation presented as follows:

y = mx + b

The coefficients of the function and their meaning are described as follows:

m is the slope of the function, representing the change in the output variable y when the input variable x is increased by one.b is the y-intercept of the function, which is the initial value of the function, i.e., the numeric value of the function when the input variable x assumes a value of 0. On a graph, it is the value of y when the graph of the function crosses the y-axis.

The graph touches the y-axis at the origin, hence the intercept b is given as follows:

b = 0.

Hence:

y = mx.

When x = 20, y = 40, hence the slope m is given as follows:

20m = 40

m = 40/20

m = 2.

Hence the equation is:

y = 2x.

More can be learned about linear functions at https://brainly.com/question/24808124

#SPJ1

list the elements of the set in roster notation. (enter empty or ∅ for the empty set.) {x | x is a digit in the number 457,636}

Answers

The given set contains the digits of the number 457,636 and can be written in roster notation as {4, 5, 7, 6, 3}.

Identify the individual digits of the number and write them as elements of the set in the form of roster notation?

list the elements of the set in roster notation. (enter empty or ∅ for the empty set.) {x | x is a digit in the number 457,636.  

Sure, I can provide some additional information on sets and roster notation.

In mathematics, a set is a collection of distinct objects, called elements or members of the set. One way to represent a set is through roster notation, which lists the elements of the set inside braces { } separated by commas. For example, the set of even numbers less than 10 can be written in roster notation as {2, 4, 6, 8}.

In the given problem, we are asked to list the elements of the set in roster notation where the set contains the digits of the number 457,636. The digits of the number are 4, 5, 7, 6, and 3, so the set can be written in roster notation as {4, 5, 7, 6, 3}.

It is worth noting that sets can be empty, denoted by the symbol ∅ or by the word "empty". An empty set contains no elements. For example, the set of integers greater than 10 and less than 0 is an empty set, which can be represented in roster notation as ∅ or {}.

In summary, roster notation is a way to represent sets by listing their elements inside braces. The given set contains the digits of the number 457,636 and can be written in roster notation as {4, 5, 7, 6, 3}.

Learn more about roster notation

brainly.com/question/4771771

#SPJ11

Let S2 = {a = (a1,a2,a3) ∈ R3 | a1a2 + 2a3 = 0}. If y = (y1,y2,y3) ∈ S2 and z = (z1,z2,z3) ∈ S2, is y + z ∈ S2? Justify your answer.

Answers

The answer is yes, y + z ∈ S2.

We need to determine whether the sum of two vectors in S2, y + z, is also in S2.

Let y = (y1, y2, y3) and z = (z1, z2, z3) be two vectors in S2. Then, we know that:

y1y2 + 2y3 = 0 (since y ∈ S2)

z1z2 + 2z3 = 0 (since z ∈ S2)

To show that y + z ∈ S2, we need to show that:

(y + z)1(y + z)2 + 2(y + z)3 = 0

Expanding the left-hand side, we have:

(y1 + z1)(y2 + z2) + 2(y3 + z3) = y1y2 + y1z2 + z1y2 + z1z2 + 2y3 + 2z3

Substituting the expressions for y1y2 + 2y3 and z1z2 + 2z3 from above, we get:

(y1y2 + 2y3) + (z1z2 + 2z3) + y1z2 + z1y2 = 0

Since y1y2 + 2y3 = 0 and z1z2 + 2z3 = 0, we have:

y1z2 + z1y2 = 0

Therefore, we have shown that (y + z)1(y + z)2 + 2(y + z)3 = 0, which implies that y + z ∈ S2.

Hence, the answer is yes, y + z ∈ S2.

To learn more about vectors visit:

https://brainly.com/question/13369636

#SPJ11

let f (x) = cos(4x) 5. compute the following taylor polynomials of f. for any approximations, you should use around 6 decimals. p0(x) = p1(x) = p2(x) = p3(x) = p4(x) =

Answers

We have computed the Taylor polynomials of the given function f (x) = cos (4x), using around 6 decimals for approximation. These polynomials can then be used to approximate the given function.

What is function?

Function is a block of code that performs a specific task. It can accept input parameters and return a value or a set of values. Functions are used to break down a complex problem into simple, manageable tasks. They also help improve code readability and re-usability. By using functions, you can write code more efficiently and easily maintain your program.

The Taylor series of a given function is a polynomial approximation of that function, derived using derivatives. In this case, we are asked to compute the Taylor polynomial for the function f (x) = cos (4x).

The Taylor polynomials of f are as follows:

p0(x) = 1

p1(x) = 1 - 8x2

p2(x) = 1 - 8x2 + 32x4

p3(x) = 1 - 8x2 + 32x4 - 128x6

p4(x) = 1 - 8x2 + 32x4 - 128x6 + 512x8

For any approximations, we can use around 6 decimals. For instance, if x = 0.5, then p4(0.5) = 0.988377, which is an approximation of the actual value of f (0.5), which is 0.98879958.

In conclusion, we have computed the Taylor polynomials of the given function f (x) = cos (4x), using around 6 decimals for approximation. These polynomials can then be used to approximate the given function.

To know more about function click-
http://brainly.com/question/25841119
#SPJ1

eliminate the parameter to express the following parametric equations as a single equation in x and y. x=4sin3t, y4cos3t

Answers

To eliminate the parameter t from the given parametric equations x = 4sin(3t) and y = 4cos(3t), we can use the trigonometric identity sin^2(t) + cos^2(t) = 1.

Squaring both equations, we get: x^2 = 16sin^2(3t) y^2 = 16cos^2(3t) Adding these two equations and using the trigonometric identity, we get: x^2 + y^2 = 16(sin^2(3t) + cos^2(3t)) x^2 + y^2 = 16 Taking the square root of both sides, we get: sqrt(x^2 + y^2) = 4 .

Therefore, the equation that represents the given parametric equations as a single equation in x and y is: x^2 + y^2 = 16 This is the equation of a circle with center at the origin and radius 4.  the equation becomes: (x/4)² + (y/4)² = 1 Finally, we can write the single equation in x and y as: x² + y² = 16.

Learn more about parametric click here

brainly.com/question/30928348

#SPJ1

formulate an ip that assigns each route to one bidder (and each bidder must be assigned to only one route)

Answers

The complete formulation of the integer programming problem can be written as:

Minimize Z = Σi=1n Σj=1m cij xij

subject to:

Σj=1m xij = 1, for i = 1, 2, ..., n

Σi=1n xij = 1, for j = 1, 2, ..., m

xij ∈ {0, 1}, for i = 1, 2, ..., n and j = 1, 2, ..., m.

To formulate an integer programming problem for assigning each route to one bidder (and each bidder to only one route), we can follow these steps:

Define decision variables: Let xij be a binary variable, where xij=1 if bidder i is assigned to route j, and xij=0 otherwise. Here i = 1, 2, ..., n is the index for bidders, and j = 1, 2, ..., m is the index for routes.

Define the objective function: The objective is to minimize the total cost of assignment, which can be represented as the sum of the cost of each assignment, given by cij. Therefore, the objective function can be formulated as:

Minimize Z = Σi=1n Σj=1m cij xij

Define the constraints:

Each bidder can only be assigned to one route: Σj=1m xij = 1, for i = 1, 2, ..., n.

Each route can only be assigned to one bidder: Σi=1n xij = 1, for j = 1, 2, ..., m.

The decision variables are binary: xij ∈ {0, 1}, for i = 1, 2, ..., n and j = 1, 2, ..., m.

These constraints ensure that each bidder is assigned to only one route, and each route is assigned to only one bidder.

The complete formulation of the integer programming problem can be written as:

Minimize Z = Σi=1n Σj=1m cij xij

subject to:

Σj=1m xij = 1, for i = 1, 2, ..., n

Σi=1n xij = 1, for j = 1, 2, ..., m

xij ∈ {0, 1}, for i = 1, 2, ..., n and j = 1, 2, ..., m.

Learn more about binary variable

https://brainly.com/question/15146610

#SPJ4

Full Question ;

formulate an ip that assigns each route to one bidder (and each bidder must be assigned to only one route)

A village with 82people is hit by malaria. The government decides to give one net to each one of them. If 2 nets remained,how many packages of nets of six were taken to the villages?

Answers

14 packages of nets of six were taken to the village. If there are 82 people in the village, then 82 nets are needed to provide one net to each person.

However, we also know that there are 2 nets remaining, which means that a total of 82 + 2 = 84 nets were provided.

To determine how many packages of nets of six were taken to the village, we can divide the total number of nets by 6, and round up to the nearest whole number since we can't have a partial package of nets:

84 nets / 6 nets per package = 14 packages (rounded up)

Therefore, 14 packages of nets of six were taken to the village.

To know more about number of packages-

brainly.com/question/31298394

#SPJ4

A computer password consists of eleven characters. Replications are allowed. Part 1 of 5 (a) How many different passwords are possible if each character may be any lowercase letter or digit? Enter your answer in scientific notation with two digit of accuracy after the decimat point. The possible number of different passwords is ____.

Answers

The possible number of different passwords in scientific notation with two digits of accuracy after the decimal point for the computer is 3.42 x 10^14.

To find the number of different passwords possible, given that, each character may be any lowercase letter or digit, we must first determine the total number of available characters.

There are 26 lowercase letters and 10 digits, so there are a total of 26 + 10 = 36 available characters.

Since replications are allowed and the password consists of 11 characters, we can use the formula:

Number of different passwords = (Total number of available characters) ^ (Password length)

Number of different passwords = 36 ^ 11

Calculating this value, we get 341,821,345,910,986. To represent this number in scientific notation with two digits of accuracy after the decimal point, we divide by 10 raised to the power of the number of digits minus 1:

341,821,345,910,986 / 10^14 = 3.42 x 10^14

So, the possible number of different passwords for a computer consisting of eleven characters is 3.42 x 10^14.

Learn more about decimal points: https://brainly.com/question/1827193

#SPJ11

Suppose ~(0,1), find: (a) P( < 0.5)
(b) P( = 0.5)
(c) P( ≥ 2.3)
(d) P(−1.4 ≤ ≤ 0.6)
(e) The value of z0 such that P(|| ≤ z0) = 0.32

Answers

Probabilities associated with this distribution are

(a) P(Z < 0.5) = 0.6915

(b) P(Z = 0.5) = 0

(c) P(Z ≥ 2.3) = 0.0107.

(d)  P(-1.4 ≤ Z ≤ 0.6) = 0.6449.

(e) The value of z0 such that P(|Z| ≤ z0) = 0.32 is 0.9945.

How to find P( < 0.5)?

The statement "~(0,1)" refers to a standard normal distribution with mean 0 and standard deviation 1.

We can use the standard normal distribution table or a calculator to find probabilities associated with this distribution. Here are the solutions to the given problems:

(a) P(Z < 0.5) = 0.6915, where Z is a standard normal random variable.

How to find P( = 0.5)?

(b) P(Z = 0.5) = 0, since the probability of a continuous random variable taking any specific value is always zero.

How to find P( ≥ 2.3)?

(c) P(Z ≥ 2.3) = 0.0107.

How to find P(−1.4 ≤ ≤ 0.6)?

(d) P(-1.4 ≤ Z ≤ 0.6) = P(Z ≤ 0.6) - P(Z ≤ -1.4) = 0.7257 - 0.0808 = 0.6449.

How to find the value of z0 such that P(|| ≤ z0) = 0.32?

(e) The value of z0 such that P(|Z| ≤ z0) = 0.32 is the 0.16th percentile of the standard normal distribution.

From the standard normal distribution table, we can find that the 0.16th percentile is approximately -0.9945. Therefore, z0 = 0.9945.

Learn more about standard normal distribution

brainly.com/question/29509087

#SPJ11

a researcher has collected the following sample data.512685675124the median is _____.a. 6b. 8c. 7d. 5

Answers

The median of the sample data collected by the researcher in the following sample data 512685675124 is 5, which is option (d).

We need to arrange the numbers in ascending or descending order.

1 1 2 2 4 5 5 5 6 6 7 8 (arranged in ascending order)

The middle number is the median. Since there are 12 digits in the given sample data, the median is the average of the 6th and 7th digits.

So, the median is (5 + 5) / 2 = 5

Therefore, median of the sample data collected by the researcher is 5 (Option d).

Learn more about median at: https://brainly.com/question/14532771

#SPJ11

suppose x is χ2 - distribution with degrees of 20. find a point a such that p(x < a) = 0.025

Answers

For X following a χ²-distribution with 20 degrees of freedom, the point 'a' such that P(X < a) = 0.025 is approximately 8.26.

To find the point 'a' such that P(X < a) = 0.025, where X follows a χ²-distribution with 20 degrees of freedom, you need to use the inverse chi-square distribution function (also called the chi-square quantile function).

Here's the step-by-step explanation:

1. Identify the given parameters: X follows a χ²-distribution with 20 degrees of freedom, and we need to find a point 'a' such that P(X < a) = 0.025.

2. Use the inverse chi-square distribution function (quantile function) with the given probability and degrees of freedom. This function will give you the value of 'a' corresponding to the specified probability.

In most statistical software or calculators, you can find this function. For example, in R programming, you can use the "qchisq()" function:

a = qchisq(0.025, df = 20)

3. Calculate the value of 'a'.

In this case, a ≈ 8.26.

Learn more about degrees of freedom: https://brainly.com/question/14267735

#SPJ11

Find the area of each trapezoid. Round each answers to the nearest tenth.

Answers

Step-by-step explanation:

A trapezoid bases are the parallel sides

   the AVERAGE of the bases  X  the height    is the area

First one :   Height = 6cm    average of bases = (9.3+4.1) / 2 = 6.7 cm

    area =   6.7 cm * 6 cm = 40.2 c^2

The other three are similar...just different numbers...Using this method, you should be able to do them now .....

Answer:

A trapezoid bases are the parallel sides

  the AVERAGE of the bases  X  the height    is the area

First one :   Height = 6cm    average of bases = (9.3+4.1) / 2 = 6.7 cm

   area =   6.7 cm * 6 cm = 40.2 c^2

Read more on Brainly.com - https://brainly.com/question/31725626#readmore

Step-by-step explanation:

Consider the following recursive definition of the Lucas numbers L(n): 1 if n=1 L(n)= 3 if n = 2 Lon - 1) + L(n-2) if n>2 What is L(2)? Your Answer: Answer

Answers

The value of L(2) is for recursive definition of Lucas numbers is 3.

According to the given recursive definition of the Lucas numbers, L(2) = 3 since n=2 is the second term in the sequence and its value is defined as 3.
Based on the recursive definition of Lucas numbers L(n) given, let's determine the value of L(2):

L(n) = 1 if n = 1
L(n) = 3 if n = 2
L(n) = L(n - 1) + L(n - 2) if n > 2

Since we're looking for L(2), we can use the second condition in the definition:

L(2) = 3

So, the value of L(2) is 3.

A set of numbers called the Lucas numbers resembles the Fibonacci sequence. The series was researched in the late 19th century by the French mathematician François Édouard Anatole Lucas, who gave it its name.

This is how the Lucas sequence is described:

For n > 1, L(0) = 2 L(1) = 1 L(n) = L(n-1) + L(n-2)

The sequence's initial few numerals are thus:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ...

The Lucas sequence, like the Fibonacci sequence, offers a variety of intriguing mathematical characteristics and linkages to different branches of mathematics. For instance, exactly like in the Fibonacci sequence, the ratio of successive Lucas numbers converges to the golden ratio[tex](1 + \sqrt{5})/2[/tex].

Learn more about Lucas numbers here:

https://brainly.com/question/31324572

#SPJ11

Angela spent $85 on materials to make tablecloths. She plans to sell the tablecloths in the flea market for $9.50 each. Which equation can Angela use to represent the number of tablecloths, t, she needs to sell to make a profit of at least $250?

Answers

Answer:

9.5T - 85 = 250

Step-by-step explanation:

9.5 being the cost per tablecloth, and subtracting cost of goods.

It evaluates to the following

9.5T - 85 = 250

9.5T = 335

T= 35.263 or 36 Tablecloths.

Let V be a vector space, and T:V→V a linear transformation such that T(5v⃗ 1+3v⃗ 2)=−5v⃗ 1+5v⃗ 2 and T(3v⃗ 1+2v⃗ 2)=−5v⃗ 1+2v⃗ 2. Then
T(v⃗ 1)=
T(v⃗ 2)=
T(4v⃗ 1−4v⃗ 2)=

Answers

Let V be a vector space, and T:V→V a linear transformation then the value of T(v⃗ 1) = -v⃗ 1, T(v⃗ 2) = v⃗ 2 and T(4v⃗ 1 − 4v⃗ 2) = -4v⃗ 1 - 4v⃗ 2.

We can use the given information to find the value of T for various vectors in V and T:V→V a linear transformation such that T(5v⃗ 1+3v⃗ 2)=−5v⃗ 1+5v⃗ 2 and T(3v⃗ 1+2v⃗ 2)=−5v⃗ 1+2v⃗ 2.

For 5v⃗ 1 + 3v⃗ 2, we have:

T(5v⃗ 1+3v⃗ 2) = −5v⃗ 1+5v⃗ 2

5T(v⃗ 1) + 3T(v⃗ 2) = -5v⃗ 1 + 5v⃗ 2

Similarly, for 3v⃗ 1 + 2v⃗ 2, we have

T(3v⃗ 1+2v⃗ 2) = −5v⃗ 1+2v⃗ 2

3T(v⃗ 1) + 2T(v⃗ 2) = -5v⃗ 1 + 2v⃗ 2

Solving these equations for T(v⃗ 1) and T(v⃗ 2), we get

T(v⃗ 1) = -v⃗ 1

T(v⃗ 2) = v⃗ 2

Now, we can use these values to find T(4v⃗ 1 − 4v⃗ 2)

T(4v⃗ 1 − 4v⃗ 2) = 4T(v⃗ 1) - 4T(v⃗ 2)

= 4(-v⃗ 1) - 4(v⃗ 2)

= -4v⃗ 1 - 4v⃗ 2

Therefore, T(4v⃗ 1 − 4v⃗ 2) = -4v⃗ 1 - 4v⃗ 2.

To know more about linear transformation:

https://brainly.com/question/30514241

#SPJ4

I NEED HELP ON THIS ASAP!!!!

Answers

In the two functions as the value of V(x) increases, the value of W(x) also increases.

What is the value of the functions?

The value of functions, V(x) and W(x) is determined as follows;

for h(-2, 1/4); the value of the functions is calculated as follows;

v(x) = 2ˣ ⁺ ³ = 2⁻²⁺³ = 2¹ = 2

w(x) = 2ˣ ⁻ ³ = 2⁻²⁻³ = 2⁻⁵ = 1/32

for h(-1, 1/2); the value of the functions is calculated as follows;

v(x) = 2ˣ ⁺ ³ = 2² = 4

w(x) = 2ˣ ⁻ ³ = 2⁻⁴ = 1/16

for h(0, 1); the value of the functions is calculated as follows;

v(x) = 2ˣ ⁺ ³ = 2³ = 8

w(x) = 2ˣ ⁻ ³ = 2⁻³ = 1/8

for h(1, 2); the value of the functions is calculated as follows;

v(x) = 2ˣ ⁺ ³ = 2⁴ = 16

w(x) = 2ˣ ⁻ ³ = 2⁻² = 1/4

for h(2, 4); the value of the functions is calculated as follows;

v(x) = 2ˣ ⁺ ³ = 2⁵ = 32

w(x) = 2ˣ ⁻ ³ = 2⁻¹ = 1/2

Learn more about functions here: brainly.com/question/10439235

#SPJ1

The following series are geometric series or a sum of two geometric series. Determine whether each series converges or not. For the series which converge, enter the sum of the series. For the series which diverges enter "DIV" (without quotes). (a) ∑n=1[infinity]8n7n= , (b) ∑n=2[infinity]13n= , (c) ∑n=0[infinity]3n92n+1= , (d) ∑n=5[infinity]7n8n= , (e) ∑n=1[infinity]7n7n+4= , (f) ∑n=1[infinity]7n+3n8n=

Answers

(a) ∑n=1[infinity]8n7n is a geometric series and it diverges. Answer: DIV.

(b) ∑n=2[infinity]13n is a geometric series and it diverges. Answer: DIV.

(c) ∑n=0[infinity]3n92n+1 is a geometric series and it converges. Sum = 2.452.

(d) ∑n=5[infinity]7n8n is a geometric series and it converges. Sum = 0.0954.

(e) ∑n=1[infinity]7n7n+4 is a geometric series and it converges. Sum = 3.5

(f) ∑n=1[infinity] 7/8*[tex](7/8)^{(n-1)[/tex] + [tex]3/8*(3/8)^{(n-1)[/tex]. Both of these are geometric series and the series converges. Sum= 1.6.

(a) This series can be rewritten as ∑n=1[infinity][tex](8/7)^n[/tex]. This is a geometric series with ratio r=8/7 which is greater than 1. Hence, the series diverges. Answer: DIV.

(b) This is a geometric series with first term a=13 and common ratio r=13. Since |r|>1, the series diverges. Answer: DIV.

(c) This series can be written as ∑n=0[infinity] [tex]3^n/(9^2)^n[/tex] * [tex]9^{(1/(2n+1))[/tex]. The first part of the series is a geometric series with a=1 and r=3/81<1. The second part of the series is also a geometric series with a=[tex]9^{(1/3)[/tex] and r=[tex](9^{(1/3)})^2=9^{(2/3)[/tex]<1. Therefore, the series converges. To find the sum, we use the formula for the sum of an infinite geometric series:

sum = a/(1-r) + b/(1-c)

where a and r are the first term and common ratio of the first geometric series, and b and c are the first term and common ratio of the second geometric series. Substituting the values, we get:

sum = 1/(1-3/81) + [tex]9^{(1/3)}/(1-9^{(2/3))[/tex]

= 1.01 + 1.442

= 2.452

Answer: 2.452.

(d) This series can be written as ∑n=5[infinity] [tex](7/8)^n[/tex]. This is a geometric series with ratio r=7/8 which is less than 1. Hence, the series converges. To find the sum, we use the formula for the sum of an infinite geometric series:

sum = a/(1-r)

where a and r are the first term and common ratio of the series. Substituting the values, we get:

sum = [tex](7/8)^5/(1-7/8)[/tex]

= [tex]7/8^4[/tex]

= 0.0954

Answer: 0.0954.

(e) This series can be rewritten as ∑n=1[infinity] [tex](7/7.4)^n[/tex]. This is a geometric series with ratio r=7/7.4<1. Hence, the series converges. To find the sum, we use the formula for the sum of an infinite geometric series:

sum = a/(1-r)

where a and r are the first term and common ratio of the series. Substituting the values, we get:

sum = 1/(1-7/7.4)

= 3.5

Answer: 3.5.

(f) This series can be rewritten as ∑n=1[infinity] [tex]7/8*(7/8)^{(n-1)[/tex] + [tex]3/8*(3/8)^{(n-1)[/tex]. Both of these are geometric series with ratios less than 1, so the series converges. To find the sum, we add the sums of the two geometric series:

sum = 7/8/(1-7/8) + 3/8/(1-3/8)

= 1 + 3/5

= 1.6

Answer: 1.6.

For more such questions on Geometric series.

https://brainly.com/question/4617980#

#SPJ11

find the area under the standard normal curve to the left of z=1.43z=1.43. round your answer to four decimal places, if necessary.

Answers

To find the area under the standard normal curve to the left of z=1.43, you will need to use a standard normal (Z) table or an online calculator. Here's a step-by-step explanation:

1. Identify the given value of z: z=1.43
2. Look up the value in a standard normal (Z) table or use an online calculator to find the corresponding area to the left of z=1.43.
3. The table or calculator will provide the area under the curve to the left of z=1.43.
4. Round the answer to four decimal places, if necessary.

Using a standard normal table or calculator, the area under the standard normal curve to the left of z=1.43 is approximately 0.9236 when rounded to four decimal places.

#SPJ11

find more questions related to this https://brainly.com/question/31501593      

     

what statistic would be appropriate for an associational research question involving the correlation between two non-normally distributed, skewed continuous variables?

Answers

Spearman's rank correlation coefficient would be an appropriate statistic  for an associational research question.

Find the statistic approach for non-normally distributed skewed continuous variables?

When the two variables of interest are non-normally distributed and skewed, Spearman's rank correlation coefficient would be an appropriate statistic to use for an associational research question involving the correlation between two non-normally distributed continuous variables.

Spearman's rank correlation coefficient is a nonparametric measure of correlation that is used to assess the strength and direction of association between two ranked variables. It measures the degree to which the rank order of one variable is related to the rank order of another variable, regardless of their actual values.

Unlike Pearson's correlation coefficient, which assumes a linear relationship between the variables and normality of data, Spearman's correlation coefficient is robust to outliers, non-linear relationships, and non-normality of data. It works by converting the data into ranks, which can be used to compute the correlation coefficient.

Therefore, if we have two non-normally distributed, skewed continuous variables and want to examine the association between them, Spearman's rank correlation coefficient would be an appropriate statistic to use.

Learn more about statistic

brainly.com/question/20982963

#SPJ11

Find the zeros of the quadratic function:

y equals x squared plus 2 x minus 24

Answers

Answer:

answer this question in this photo.

At a price of one dollar, 200 units are demanded, and at a price of $9, zero units are demanded. If the demand equation is linear, x is the price and D is the number of units, the demand equation is: a. D=-.04x +.36 b.D= -25x +225 c.D=-.04x + 8 d. D = 25x + 175

Answers

The demand equation is  b. D = -25x + 225.

Since the demand equation is linear and involves "x" as the price, and "D" as the number of units, we can use the two points given to determine the equation.

At a price of $1, 200 units are demanded: (1, 200)
At a price of $9, 0 units are demanded: (9, 0)

Now, we can find the slope (m) using the formula:

m = (y2 - y1) / (x2 - x1)

In this case:

m = (0 - 200) / (9 - 1)
m = -200 / 8
m = -25

Now, we can use one of the points (either point will give the same result) to find the y-intercept (b) by plugging the values into the linear equation:

D = m * x + b

Using the point (1, 200):

200 = -25 * 1 + b
b = 200 + 25
b = 225

Now, we have the demand equation:

D = -25x + 225

So the correct answer is: b. D = -25x + 225.

Learn more about "equation": https://brainly.com/question/2972832

#SPJ11

Which of the following is the definition for combination?
OA. A set of objects chosen from a smaller set in which the order of
the objects doesn't matter.
B. A set of objects chosen from a larger set in which the order of the
objects matters.
OC. A set of objects chosen from a larger set in which the order of the
objects doesn't matter.
OD. A set of objects chosen from a smaller set in which the order of
the objects matters.

Answers

Answer:

C. A set of objects chosen from a larger set in which the order of the objects doesn't matter.

Step-by-step explanation:

That is the definition of a combination. Order does not matter

For example, selecting 3 students from a total of 10 students. The set selected is a smaller set from a larger set

Find the value of X please!!!

Answers

Using the Tangent-Secant Theorem, the value of x, is calculated in teh figure as: x = 16.

What is the Tangent-Secant Theorem?

The Tangent-Secant Theorem states that if a tangent and a secant are drawn from an external point to a circle, then the square of the length of the tangent is equal to the product of the lengths of the secant and its external part.

Applying the theorem:

60² = (2x - 5 + 48)(48)

3,600 = (2x + 43)(48)

3,600 = 96x + 2,064

3,600 - 2,064 = 96x

1,536 = 96x

1,536/96 = 96x/96

16 = x

x = 16

Learn more about the tangent-secant theorem on:

https://brainly.com/question/28556724

#SPJ1

Let Q be the quantity Q = 110(1.137)' which is changing over timet. a. What is the quantity at time t=0? b. Is the quantity increasing or decreasing over time? c. What is the percent per unit time growth or decay rate? % growth per unit time d. Is the growth rate continuous?

Answers

a)The quantity at time t=0 is  110.

b)The quantity is increasing over time .

c) The percent per unit time growth or decay rate is 11.1% .

d)Yes, the growth rate continuous.

a. At time t=0, the quantity Q can be found using the given formula Q = 110(1.137[tex])^{2}[/tex].

  Plugging in t=0, we get.

  Q = 110(1.137[tex])^{0}[/tex]

      = 110(1) = 110.

b. The quantity is increasing over time because the base (1.137) in the formula is greater than 1, which means that Q grows as time (t) increases.

c. The percent per unit time growth rate can be found by taking the derivative of the function and dividing by the initial quantity:

dQ/dt = 110(1.137[tex])^{t}[/tex]* ln(1.137)
dQ/dt at t=0 = 110(1.137[tex])^{0}[/tex] * ln(1.137) = 12.2

% growth per unit time = (dQ/dt)/Q * 100% = 12.2/110 * 100% = 11.1%


d. The growth rate is continuous, as it follows an exponential growth pattern described by the formula Q = 110(1.137)^t, where the base is constant and the time variable is continuous.

Know more about  decay rate   here:

https://brainly.com/question/29224203

#SPJ11

The following table gives the gold medal times for every other Summer Olympics for the women's 100 meter freestyle (swimming).
Year Time (seconds)
1912 82.2
1924 72.4
1932 66.8
1952 66.8
1960 61.2
1968 60.0
1976 55.65
1984 55.92
1992 54.64
2000 53.8
2008 53.1
d) Calculate the least squares line. Put the equation in the form of: ŷ = a + bx. (Round your answers to three decimal places.)
ŷ =____+____x
e) Find the correlation coefficient r. (Round your answer to four decimal places.)
r = ______
f) Find the estimated gold medal time for 1924. (Use your equation from part (d). Round your answer to two decimal places.)
_____ sec
Find the estimated gold medal time for 1992. (Use your equation from part (d). Round your answer to two decimal places.)
_____ sec
i) Use the least squares line to estimate the gold medal time for the 2012 Summer Olympics. (Use your equation from part (d). Round your answer to two decimal places.)
_____ sec

Answers

d) Least squares line ŷ = 521.2542 - 0.2349x.

e) Correlation coefficient r ≈ -0.9869

f) Estimated gold medal time ŷ for 1924 ≈ 71.26 sec

g) Estimated gold medal time ŷ for 1992 ≈ 53.14 sec

h) Estimate the gold medal time for the 2012 ŷ ≈ 52.12 sec

How to calculate each part of the question?

d) To find the least squares line, we need to calculate the mean and standard deviation of the year (x) and the time (y):

mean of x = (1912 + 1932 + 1952 + 1968 + 1976 + 1984 + 2000 + 2012)/8 = 1972

mean of y = (82.2 + 72.4 + 66.8 + 66.8 + 61.2 + 60.0 + 55.6 + 55.9 + 54.6 + 53.8 + 53.1)/11 = 63.2

standard deviation of x = √(((1912-1972)² + (1932-1972)² + ... + (2012-1972)²)/8) ≈ 44.54

standard deviation of y = √(((82.2-63.2)² + (72.4-63.2)² + ... + (53.1-63.2)²)/10) ≈ 10.53

Then, we can calculate the correlation coefficient r:

r = (1/10) * (((1912-1972)/44.54)(82.2-63.2)/10.53 + ((1932-1972)/44.54)(72.4-63.2)/10.53 + ... + ((2012-1972)/44.54)*(53.1-63.2)/10.53) ≈ -0.9869

Using the formula for the least squares regression line, we have:

b = r * (standard deviation of y / standard deviation of x) ≈ -0.2349

a = mean of y - b * mean of x ≈ 521.2542

Therefore, the least squares line is ŷ = 521.2542 - 0.2349x.

f) To estimate the gold medal time for 1924, we substitute x = 1924 into the equation for the least squares line:

ŷ = 521.2542 - 0.2349(1924) ≈ 71.26 sec

g) To estimate the gold medal time for 1992, we substitute x = 1992 into the equation for the least squares line:

ŷ = 521.2542 - 0.2349(1992) ≈ 53.14 sec

h) To estimate the gold medal time for 2012, we substitute x = 2012 into the equation for the least squares line:

ŷ = 521.2542 - 0.2349(2012) ≈ 52.12 sec

Learn more about Correlation coefficient.

brainly.com/question/15577278

#SPJ11

what do you think could have happened if don't know about the different shapes​

Answers

Nothing happened for real.

i think its not a big deal for you but it will be a big deal for your parents ;))))

Use your knowledge of genetic biology and lecture them. Maybe they don't understand.

Just kidding =))))

In short, you may have an optical problem =))))

P/s: don't be furious :'))) it's gonna easy to get old

ok done. Thank to me >:333

Thinking about t distributions. Consider the t (20) and t (40) distributions. a. Which distribution is wider? b. For the same value of t, which distribution has the smallest tail area? c. For the same middle area C, which distribution has the largest t* critical value?

Answers

The t(20) distribution is wider than the t(40) distribution, For the same value of t, the t(40) distribution has the smallest tail area and for the same middle area C, the t(20) distribution has the largest t* critical value.

a. Which distribution is wider?
The t(20) distribution is wider than the t(40) distribution. As the degrees of freedom increase, the t distribution approaches the standard normal distribution, and its width decreases.
b. For the same value of t, which distribution has the smallest tail area?
For the same value of t, the t(40) distribution has the smallest tail area. As the degrees of freedom increase, the distribution becomes more concentrated around the mean, and the tails become smaller.
c. For the same middle area C, which distribution has the largest t* critical value?
For the same middle area C, the t(20) distribution has the largest t* critical value. With fewer degrees of freedom, the distribution is wider and requires a larger t* value to cover the same middle area as compared to the t(40) distribution.

a. The t(40) distribution is wider than the t(20) distribution. This is because as the degrees of freedom increase, the t-distribution approaches a standard normal distribution, which has a smaller variance than the t-distribution with fewer degrees of freedom.
b. For the same value of t, the t(40) distribution has the smallest tail area. This is because as the degrees of freedom increase, the t-distribution approaches a standard normal distribution, which has smaller tail areas than the t-distribution with fewer degrees of freedom.
c. For the same middle area C, the t(20) distribution has the largest t* critical value. This is because as the degrees of freedom decrease, the t-distribution has heavier tails, which require larger t* values to maintain the same middle area C.

Learn more about Area here: brainly.com/question/27683633

#SPJ11

Other Questions
A student performs an experiment to determine the concentration of a solution of hypochlorous acid, HOCI (Ka= 3.5x10^-8). The student starts with 25.00ml of the acid in a flask and titrates it against a standardized solution of sodium hydroxide with a concentration of 1.47M. The equivalence point is reached after the addition of 34.23 ml of NaOH. a. Write the net ionic equation for the reaction that occurs in the flask. b. what is the concentration of the HOCI? c. What would the pH of the solution in the flask be after the addition of 28.55ml of NaOH? d. The actual concentration of the HOCI is 2.25M. Quantitatively discuss whether or not each of the following errors could have caused the error in the student's results. i) the student added additional NaOH past the equivalence point. ii) The student rinsed the buret with distilled water but not with the NaOH solution before filling it with NaOH iii) The student measured the volume of acid incorrectly; instead of adding 25.00ml of HOCI, only 24.00ml was present in the flask prior to titration. choose the expression that best completes this sentence: the function f(x) = ________________ has a local minimum at the point (8,0). a) x8 b) (x8)1 c) x216x 64 d) |x8| e) (x8)13 3. How does the first-person narration help develop the story's theme(s)? pleasee helppp dont js guess or put something random pls i beg This screen displays the history of actions performed for the selected Profile, including documenting each user that performs an action. Stay Information O Changes Log O Correspondence O Notifications True or False. Grade level and age tend to be good predictors of children's development. What is the equation in point-slope form of the line passing through (-1, 3)and (1, 7)? (6 points)Oy-7= 4(x - 1)Oy-7=2(x - 1)Oy-3=2(x - 1)Oy-3-4(x + 1) In a game of pool, ball A is moving with a velocity v0 = (18 ft/s)i when it strikes balls B and C which are at rest side by side as shown. After the collision, A is observed to move with the velocity vA = (3.92 ft/s)i (4.56 ft/s)j , while B and C move in the directions shown. Determine the magnitudes of the velocities of B and C. guess a formula for 1 3 (2n 1) by evaluating the sum for n = 1, 2, 3, and 4. [for n = 1, the sum is simply 1.] Using the ICE setup, calculate the pH of a buffer solution that is 0.050 M in benzoic acid (HC7H5O2) and 0.150 M in sodium benzoate (NaC7H5O2). For benzoic acid, Ka=6.5 x 10-5.Best Answer gayle feels physically and emotionally drawn to her lover but knows the relationship may only be temporary. according to sternberg's model, she is feeling _______. rex industries has two products. They manufactured 12,539 units of products A and 8,254 units of product B. What is the activity rate for each cost pull? A sample of 830 Americans was randomly selected on the population of all American adults. Among other questions, the sample was asked if they believe that the United States will land a human on Mars by 2050. Of those sampled, 544 stated that they believe this will happen.a. Calculate the sample proportion of Americans who believe the US will land a human on Mars by 2050. Round this value to four decimal places.b) Write one sentence each to check the three conditions of the Central Limit Theorem. Show your work for the mathematical check needed to show a large sample size was taken. 103n+26n=131n find n What is the approximate probability of exactly two people in a group of seven having a birthday on April 15? (A) 1.2 x 10^-18 (B) 2.4 x 10^-17 (C) 7.4 x 10^-6 (D) 1.6 x 10^-4 The ischemic exercise test revealed a normal rise in ammonia in this patient. From where does the ammonia derive during heavy exercise, when ATP is being rapidly utilized? 7 points (For full credit, describe the enzymatic reactions involved in this process). Find a unit normal vector for the following function at the point P(-3,-1,27) f(x,y)=x^3 comp wants answer says z component should be negative source credibility is the extent to which a speaker is perceived as competent to make the claims he or she is making. true or false? 2. What is the effect of the metaphor "iron-jawed Marines" as it is used in Paragraph 6? Justify your answer.a. The metaphor describes the cruel nature of the soldiers.b. The metaphor illustrates the hardness of the soldiers' helmets.c. The metaphor illustrates the determined nature of the soldiers.d. The metaphor describes the soldiers' ability to withstand injury. state whether the sequence an=8n 19n1 converges and, if it does, find the limit.